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Abstract: The melanocortin receptors are G-protein-coupled receptors, which are essential components
of the hypothalamic–pituitary–adrenal axis, and they mediate the actions of melanocortins (melanocyte-
stimulating hormones: α-MSH, β-MSH, and γ-MSH) as well as the adrenocorticotropin hormone
(ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor
genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one
melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D
risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor
genes might confer risk for both disorders. However, they have never been investigated jointly to
evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In
212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the
MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing
used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four
models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive
with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant
(p≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and
one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930,
and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and
one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different
linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D.
This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R
genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene
appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the
role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other
ethnicities as well.

Int. J. Mol. Sci. 2022, 23, 8350. https://doi.org/10.3390/ijms23158350 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158350
https://doi.org/10.3390/ijms23158350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6188-1388
https://orcid.org/0000-0002-2334-6421
https://orcid.org/0000-0001-6056-4244
https://doi.org/10.3390/ijms23158350
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158350?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 8350 2 of 10

Keywords: depression; MDD; type 2 diabetes (T2D); melanocortin receptor gene; MC1R; MC2R;
MC3R; MC4R; MC5R; hypothalamic–pituitary–adrenal axis (HPA-axis); linkage; linkage disequilib-
rium; association; comorbidity

1. Introduction

The melanocortin receptors are G-protein-coupled receptors mediating the actions of
melanocortins (melanocyte-stimulating hormones: α-MSH, β-MSH, and γ-MSH) and the
adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and
stress response [1]. Melanocyte-stimulating hormones (α-MSH, β-MSH, and γ-MSH) and
ACTH are synthesized in peptidergic neurons in the arcuate nuclei of the hypothalamus
and the pituitary gland, respectively, from the same precursor: pro-opiomelanocortin
(POMC) via post-translational modifications [2,3]. This central melanocortin system is part
of the hypothalamic–pituitary–adrenal (HPA) axis, which is involved in stress responses [4]
and metabolic regulation [5] and is expressed in both central (e.g., brain) and peripheral
tissues (e.g., skin) [6]. There are five known melanocortin receptors in humans (MC1R-
MC5R) [7]. MC1R is predominantly expressed in skin melanocytes, adrenal glands, kidneys,
and immune cells [8,9]. MC2R is mainly expressed in the adrenal cortex [10]. MC3R, MC4R,
and MC5R are expressed in the brain and other tissues (e.g., MC3R in macrophages [11]);
MC5R is also present in adipose tissue, kidneys, and skeletal muscles [7,12].

The melanocortin receptors are encoded by five different genes (MC1R-MC5R) that
exert different physiological functions in both humans and domestic animals [7]. MC1R is
best known for regulating skin and coat pigmentation, and MC2R is the main receptor for
ACTH [13]. Mutations in the MC2R gene can cause familial glucocorticoid deficiency [14].
MC3R and MC4R play important roles in energy and lipid metabolism [15]. MC4R dysfunc-
tion causes obesity in both humans [16] and knockout mice [17]. The role of MC3R in energy
homeostasis is less clear, and MC3R-knockout mice have normal weight and normal or low
appetite [18]. While the MC5R function is the least understood, the evidence so far suggests
its role in energy metabolism, inflammatory responses, and exocrine functions [19].

T2D and MDD are two prevalent chronic complex diseases associated with significant
worldwide morbidity and mortality [19]. They cumulatively affect 14% of adult popula-
tions [20,21], and their etiologies can be attributed to interactions between environmental
and genetic risk factors [22–24]. Genetic overlap exists between MDD and T2D and can be
linked to at least a few genes [25,26].

Melanocortin receptors mediate the action of the hypothalamic–pituitary–adrenal
(HPA) axis in response to superimposed stresses and cortisol feedback, which have been
linked to depression (MDD) [27] and type 2 diabetes (T2D) [28]. In humans, polymorphisms
in the melanocortin receptor genes have been previously reported in patients with major
depressive disorder (MDD) (MC1R [29], MC2R [30], and MC5R [31]), emotional eating and
food craving (MC4R [32]), obesity (MC1R [33], MC3R [34], MC4R [12], and MC5R [12] via
linkage studies in Quebec families [12]), and T2D (MC4R) [35], but never in the MDD-T2D
comorbidity. In this study, we evaluate the contribution of variants in the melanocortin
receptor genes to the familial comorbidity of T2D and MDD.

2. Results and Discussion
Linkage, LD/Association Analysis, and LD among SNPs

We detected significant (p ≤ 0.05) linkage to and/or LD (i.e., association) with MDD
for one SNP in MC2R and one SNP in MC5R and to/with T2D for three SNPs in MC1R, one
SNP in MC2R, two SNPs in MC3R, and one SNP in MC4R. Table 1 shows information on the
significant parametric models and chromosome and base pair location, Ref/Alt alleles and
risk alleles, gene sites, and functional consequences of the specific risk variants. Moreover,
Table 1 reports if the risk variant is independent or within a LD block, and whether it has
been previously published in MDD or T2D.
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Table 1. Melanocortin Receptor Genes: Risk SNPs for MDD and T2D.
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In this study, we reported nine variants in the melanocortin receptor genes that are 
significantly linked/in LD (or associated) to/with MDD and/or T2D in families with en-
riched T2D history. None of these variants have previously been reported in MDD or in 
T2D. This study pioneers the investigation of the five melanocortin receptor genes’ roles 
in familial MDD and T2D. Within our familial dataset, the MC2R and MC5R genes were 
significantly linked/in LD (or associated) to/with MDD, and four genes (MC1R, MC2R, 
MC3R, and MC4R) were significantly linked/in LD (or associated) to/with T2D. Of inter-
est, the MC2R gene was significantly linked/in LD (or associated) to/with both MDD and 
T2D, thereby indicating the MC2R gene’s possible role in their comorbidity, despite being 
mediated by independent variants. To our knowledge, this study reveals a novel link of 
MC1R, MC2R, and MC3R genes to T2D. 

The MC1R gene has been extensively studied in relation to skin and hair color [36]. 
Its role in MDD and obesity might be explained by ultraviolet light-induced mood 
changes [37]. However, MC1R has a role in mediating anti-inflammatory response. A 
study shows that both interferon and lipopolysaccharide (LPS) trigger MC1R expression 
in human neutrophils, and MC1R mediates the anti-inflammatory effects of alpha-MSH, 
likely contributing to neutrophil chemotaxis direct inhibition and anti-inflammatory ac-
tivity [38]. Agonists of MC1R play a role in inflammatory response [39]. In mice, a mel-
anocortin-like peptide blocks, as much as alpha-MSH and ACTH, cytokines’ release in 
response to LPS, rescuing the animals from lethal LPS doses, thereby showing that MC1R 
may play an anti-inflammatory role in protecting against LPS-generating gut microbes 
[40]. Thus, MC1R might play a systemic role in mediating inflammation derived from the 
gut–brain axis [41]. The role that MC1R plays in inflammation might contribute to T2D. 
In the present study, we found for the first time that the MC1R gene is related to T2D. In 
fact, we found MC1R rs1805007 significantly linked to T2D under the D1 and D2 models. 

1 Models: D1: dominant, complete penetrance; D2: dominant, incomplete penetrance; R1: recessive, complete
penetrance; R2: recessive, incomplete penetrance.

The test statistics and specified significant models are reported in Figure 1 for T2D and
Figure 2 for MDD. The MC3R risk variants rs3746619 and rs3827103 are within LD-block
Set 01 (Table 1) and, thus, function as replicates of one another.
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Figure 1. For each significant T2D-risk SNP in MC2R-MC4R genes, we present the −log10(P) as a
function of each test statistic (Linkage, LD|Linkage, LD|NoLinkage, Linkage|LD, and LD+Linkage)
and label the significant inheritance model: D1: dominant, complete penetrance; D2: dominant,
incomplete penetrance; R1: recessive, complete penetrance; R2: recessive, incomplete penetrance.
For MC1R-rs1805007, the most significant test statistics between D1 and D2 are presented. For
MC2R-rs104894660, the most significant test statistics between R1 and R2 are presented. For MC4R-
60372302-C, R2 test statistics are presented as more significant than R1. The level of statistical
significance is marked by the dotted line.
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In this study, we reported nine variants in the melanocortin receptor genes that are
significantly linked/in LD (or associated) to/with MDD and/or T2D in families with
enriched T2D history. None of these variants have previously been reported in MDD or in
T2D. This study pioneers the investigation of the five melanocortin receptor genes’ roles
in familial MDD and T2D. Within our familial dataset, the MC2R and MC5R genes were
significantly linked/in LD (or associated) to/with MDD, and four genes (MC1R, MC2R,
MC3R, and MC4R) were significantly linked/in LD (or associated) to/with T2D. Of interest,
the MC2R gene was significantly linked/in LD (or associated) to/with both MDD and
T2D, thereby indicating the MC2R gene’s possible role in their comorbidity, despite being
mediated by independent variants. To our knowledge, this study reveals a novel link of
MC1R, MC2R, and MC3R genes to T2D.

The MC1R gene has been extensively studied in relation to skin and hair color [36]. Its
role in MDD and obesity might be explained by ultraviolet light-induced mood changes [37].
However, MC1R has a role in mediating anti-inflammatory response. A study shows
that both interferon and lipopolysaccharide (LPS) trigger MC1R expression in human
neutrophils, and MC1R mediates the anti-inflammatory effects of alpha-MSH, likely con-
tributing to neutrophil chemotaxis direct inhibition and anti-inflammatory activity [38].
Agonists of MC1R play a role in inflammatory response [39]. In mice, a melanocortin-
like peptide blocks, as much as alpha-MSH and ACTH, cytokines’ release in response to
LPS, rescuing the animals from lethal LPS doses, thereby showing that MC1R may play
an anti-inflammatory role in protecting against LPS-generating gut microbes [40]. Thus,
MC1R might play a systemic role in mediating inflammation derived from the gut–brain
axis [41]. The role that MC1R plays in inflammation might contribute to T2D. In the present
study, we found for the first time that the MC1R gene is related to T2D. In fact, we found
MC1R rs1805007 significantly linked to T2D under the D1 and D2 models. It is known
that MC1R rs1805007 regulates skin pigmentation [42] and is associated with red hair [43]
and morbid obesity [33]; as in the present study, a prior study also failed to find that it
confers MDD risk [29]. We also detected two additional MC1R variants. We found that
the variant rs2228479 is linked/in LD (or associated) to/with T2D, specifically under the
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recessive incomplete penetrance model (R2); previously, it was associated with morbid
obesity [33] and with antidepressant response in MDD patients [29]. Furthermore, we
found that the rs201192930 G allele is linked/in LD (or associated) to/with T2D, specifically
under the recessive, complete penetrance model (R1). Previously, the A allele was reported
as contributing to melanoma [44].

MC2R binds to ACTH and mediates the release of cortisol from the adrenal glands [13].
Variants in the MC2R gene have been reported in Chinese patients with MDD [30]. In the
Italian families under study, we found for the first time that MC2R variants confer risk for
T2D. Namely, the study revealed that rs111734014 is significantly linked/in LD (or associ-
ated) to/with MDD under the recessive complete penetrance model (R1). Additionally, we
detected that the MC2R rs104894660 G allele is significantly linked/in LD (or associated)
to/with T2D, under the recessive complete (R1) and incomplete (R2) penetrance models.
Of note, the MC2R rs104894660 A allele is reported in Clinvar and Uniprot as “pathogenic”,
causing familial glucocorticoid deficiency via a recessive model of inheritance [45]. The
MC2R rs104894660 G allele linkage/LD/association to/with T2D is, therefore, novel and
might be explained by an increased MC2R affinity to ACTH, leading to higher cortisol
secretion and subsequent insulin resistance, which together contribute to T2D. The poten-
tially higher cortisol level can also explain the predisposition to stress-related MDD by its
negative impact on mood, as it has been demonstrated in humans [46].

The MC3R gene is involved in obesity [47] and a marker near this gene has been
reported having a role in insulin secretion [48]. Deficiency of MC3R in mice cause increased
fat deposition and obesity, despite the decreased appetite [49]. Obesity may lead to T2D.
In our study, we detected two MC3R closely linked variants, rs3746619 and rs3827103,
contained within the same LD-block Set01, that are significantly linked/in LD (or associated)
to/with T2D under the D1 model. As rs3746619 is located in the 5′UTR MC3R region and
rs3827103 is a missense variant, their pathogenetic effect might be unrelated, as the first
might affect gene transcription and the second may affect protein conformation. These
two variants have been previously studied in obesity with inconsistent results. Both
variants have been negatively associated with obesity in studies involving Caucasian [50],
Chilean [51], and Thai [52] populations; rs3746619 has been positively associated with
obesity in a study in a Singaporean [53] population; rs3827103 has been positively associated
with obesity in a study in Caucasians [33] and with body fat percentage in a study in
Malaysian adolescents [54] and African-Americans [55], implying a potential role in body
fat composition in various ethnic groups [33]). These inconsistent results might be due to
underlying allelic population differences specifically reported for these two variants [56],
potential different LD blocks carrying the risk variant across populations, or differences in
sample sizes and detecting power.

Variants in the MC4R gene—well-known as the human obesity gene [57]—have been
reported in Chinese patients with T2D [35], and MC4R knockout mice are hyperphagic and
obese [58] and have marked insulin resistance [59], all of which may contribute to T2D. We
detected a novel variant, chr18-60372302-C, in linkage/LD/association to/with T2D under
the recessive complete (R1) and incomplete (R2) penetrance models. The alternative allele
T, not conferring risks within our families for T2D, causes a W16X stop variant that was
previously reported in a mother and child with early-onset obesity, not confirmed in the
other overweight/obese family members, and absent in the control subjects [60,61]. This
T allele confers impaired MC4R expression and signaling, both in vitro and in vivo [62],
while the stop signal is rescued in vitro by aminoglycoside-mediated read-throughs of
stop codons [63].

The MC5R was the last of the melanocortin receptors to be cloned, and it is potentially
implicated in energy metabolism and inflammatory responses [64]. Variants in the MC5R
gene have been previously associated with MDD [31] and T2D in Finns [65]. We detected
the MC5R rs2236700 SNP as significantly linked/in LD (or associated) to/with MDD under
the dominant complete penetrance model. While a previous study reported no association
of rs2236700 with bipolar disorder [66], interestingly, the rs2236700 T2D-risk G allele we
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detected confers susceptibility to schizophrenia when present with two variants of two
other genes (tryptophan 2,3-dioxygenase [TDO2] and melanin-concentrating hormone
receptor 2 [MCHR2]) [67]. Of note, the TDO2 gene is activated by glucocorticoids [68] and
is a candidate gene in other neuropsychiatric disorders (i.e., autism [69] and alcohol use
disorder [70]), as it mediates immunosuppressive effects of kynurenine and its metabolites,
loss of effective immune surveillance [71], and inflammation [72]. The pathogenic mecha-
nism of MC5R-related MDD might be mediated by its role in inflammatory responses [64];
of note, MC5R-deficient mice display behavioral changes such as reduced aggression and
more defensive behaviors [73]. Mutated MC5R in humans might cause similar behavioral
and/or mood changes, but this remains to be confirmed.

As we and others have described [74,75], MDD, schizophrenia, bipolar disorder, and
T2D share genetic comorbidity, but mental–metabolic comorbidity studies have begun in
recent years [76,77]. Of equal interest, the globally recognized T2D risk gene TCF7L2 [78]
has been found via a linkage study to contribute to schizophrenia [79], further supporting
the existence of comorbid genetic pathogenesis of metabolic–mental disorders.

Our study suggests that the melanocortin receptors risk variants, detected as con-
tributing to familial risk for MDD and/or T2D, might be part of a more complex pathway
implicated in the shared comorbidity of metabolic and mental disorders [76,77]. While it
is hard to disentangle the genes’ direct roles in the phenotypes tested from the possible
underlying biological effect(s), the genes reported appear implicated in the investigated
phenotypes, but only MC2R shows pleiotropic effects within our familial dataset. This
might be explained by the mediating effect of the HPA-axis on the MC2R of the adrenal,
triggering cortisol secretion. Hypercortisolism is implicated in MDD [27] and T2D [28],
and as we previously hypothesized, it is most likely implicated in the MDD-T2D comorbid-
ity [25]. However, we want to note the significance and intrinsic limitation of the present
study. While variants in linkage with a disorder cosegregate with the disease, they are
not necessarily associated with it; on the other hand, variants in LD with a disease are
both in linkage and associated with it; thus, they cosegregate as well as associate with the
disease under study across various families. Despite this, only in vitro or in vivo studies
can prove the functional effects of the variants on the gene expression, translation, or down-
stream function. Thus, we cannot prove that the detected risk variants are indeed causative
variants; they might be in LD with an unknown, yet-to-be identified pathogenic variant.

3. Materials and Methods

Our aim was to investigate the potential role of the MC1R, MC2R, MC3R, MC4R, and
MC5R genes in the pathogenesis of T2D, MDD, and their comorbidity.

We studied previously recruited Italian families with T2D, and the dataset was dei-
dentified and coded. The study was approved by the Jefferson Ethical Committee. The
212 families studied descended from at least three generations of Italians originating from
the Italian peninsula. Families with identical twins and siblings with uncertain paternity
were excluded. The families had an enriched history of T2D [80,81] and were phenotyped
for the presence or absence of MDD using DSM-IV diagnostic criteria [82].

In the family subjects, we amplified 11 single nucleotide polymorphisms (SNPs) in
MC1R, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R using
microarrays. We performed genotyping and Mendelian error exclusion by PLINK [83].
Using Pseudomarker, we analyzed the total 29 SNPs for 2-point parametric linkage and
linkage disequilibrium (LD), which involve association with T2D and MDD using the
following models: dominant with complete penetrance (D1), dominant with incomplete
penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete
penetrance (R2). To test the presence or absence of LD blocks within the variants showing
statistically significant results in T2D or MDD (p ≤ 0.05), we computed LD correlations
via LD matrices among the SNPs available in the Toscani Italian population from the
1000 Genomes Project (https://www.internationalgenome.org/data-portal/population/
TSI (accessed on 28 May 2022)) (LDmatrix function-RDocumentation). The SNPs that

https://www.internationalgenome.org/data-portal/population/TSI
https://www.internationalgenome.org/data-portal/population/TSI


Int. J. Mol. Sci. 2022, 23, 8350 7 of 10

significantly correlated (r [2] ≥ 0.9) with other SNPs were considered within the same LD
block and labeled based on that unique LD block (e.g., Set 01 and Set 02). All SNPs that
were not correlated with any other SNPs were designated as “Independent”.

4. Conclusions

Our study expanded the phenotypic spectra of melanocortin receptor genes. This is
the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and
MC5R genes are replicated in MDD; however, these appear with one novel variant each.
Within our dataset, only the MC2R gene appears to confer risks for both MDD and T2D,
albeit with different risk variants. To further clarify the role of the melanocortin receptor
genes in MDD-T2D, these findings should be replicated in other ethnicities to improve our
understanding of the comorbidity of MDD and T2D.
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