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Abstract

Background: Allogeneic bone marrow transplantation (allo-BMT) is a potentially curative therapy for a variety of hematologic
diseases, but benefits, including graft-versus-tumor (GVT) activity are limited by graft-versus-host-disease (GVHD). Carcinoembryonic
antigen related cell adhesion molecule 1 (Ceacam1) is a transmembrane glycoprotein found on epithelium, T cells, and many
tumors. It regulates a variety of physiologic and pathological processes such as tumor biology, leukocyte activation, and energy
homeostasis. Previous studies suggest that Ceacam1 negatively regulates inflammation in inflammatory bowel disease models.

Methods: We studied Ceacam1 as a regulator of GVHD and GVT after allogeneic bone marrow transplantation (allo-BMT) in
mouse models. In vivo, Ceacam12/2 T cells caused increased GVHD mortality and GVHD of the colon, and greater numbers of
donor T cells were positive for activation markers (CD25hi, CD62Llo). Additionally, Ceacam12/2 CD8 T cells had greater
expression of the gut-trafficking integrin a4b7, though both CD4 and CD8 T cells were found increased numbers in the gut post-
transplant. Ceacam12/2 recipients also experienced increased GVHD mortality and GVHD of the colon, and alloreactive T cells
displayed increased activation. Additionally, Ceacam12/2 mice had increased mortality and decreased numbers of
regenerating small intestinal crypts upon radiation exposure. Conversely, Ceacam1-overexpressing T cells caused attenuated
target-organ and systemic GVHD, which correlated with decreased donor T cell numbers in target tissues, and mortality. Finally,
graft-versus-tumor survival in a Ceacam1+ lymphoma model was improved in animals receiving Ceacam12/2 vs. control T cells.

Conclusions: We conclude that Ceacam1 regulates T cell activation, GVHD target organ damage, and numbers of donor T
cells in lymphoid organs and GVHD target tissues. In recipients of allo-BMT, Ceacam1 may also regulate tissue
radiosensitivity. Because of its expression on both the donor graft and host tissues, this suggests that targeting Ceacam1
may represent a potent strategy for the regulation of GVHD and GVT after allogeneic transplantation.
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Introduction

Ceacam1 is a member of a large family of carcinoembryonic

antigen proteins [2]. It is primarily a type I transmembrane

protein with multiple splice variants [9], though soluble forms also

exist. Ceacam1 is widely expressed on a variety of tissues including

endothelium [10], epithelium [11], hematopoietic cells [12] and

both hematologic and solid tumors, and interacts in a homophilic

and heterophilic fashion with physiological and pathogen-

associated ligands, including carcinoembryonic antigen and the

Neisseria spp. proteins [13].

Some Ceacam1 isoforms contain intracellular ITIM motifs, and

activation of Ceacam1 results in the recruitment of the SHP-1 and

SHP-2 phosphatases [8,14], which dephosphorylate substrates

across a range of signaling pathways. Ceacam1 thus inhibits T cell

receptor (TCR) signaling and suppresses multiple aspects of T cell

function. Ceacam1 agonists attenuate cytokine secretion, T cell

polarization and cytolytic function. In vivo, ligation of Ceacam1

with soluble ligands or over-expression of ITIM-containing

Ceacam1 isoforms on T cells attenuates experimental colitis

[7,8]. Additionally, Ceacam1 is also expressed on intestinal T cells

in patients with Celiac disease [15] and ulcerative colitis [16], and

may represent an attempt by the immune system to negatively

regulate these inflammatory processes.

In addition to immune regulation, Ceacam1 exerts a wide

variety of other biological functions. It is a cell-cell adhesion

molecule [17,18], and a receptor for a variety of commensal and

pathogenic microbes in mouse and man [17,19,20,21]. Ceacam1

also regulates angiogenesis [6], energy homeostasis [22], and

tumor biology [23,24,25]. Ceacam1 regulates the tumorigenesis

of colon cancers, and is a prognostic factor in lung adenocarci-

noma. Tumor expression of Ceacam1 may regulate tumor

angiogenesis and invasion, and the expression of both Ceacam1

and CEA by tumors may inhibit the functions of tumor

infiltrating lymphocytes.

Allo-BMT is an established therapy with curative intent for a

variety of hematologic malignancies and non-malignant conditions

[26]. Alloreactive T cells of donor origin play a criticial role in

both GVHD, a major complication of allo-BMT, and graft-versus-

tumor activity, a major contributor to the efficacy of allo-BMT as

a cancer therapy.

Figure 1. Ceacam1 regulates GVHD mortality. A) LEFT: 56106 TCD-BM 6 16106 TRBALB/c. N = 10/group. Representative data from one of four
experiments. RIGHT: 56106 TCD-BM 6 26106 TRB10.BR. N = 20/group combined from two experiments. Square: BM only. Triangle: WT T. Circle:
Ceacam12/2 T. B) LEFT: 56106 TCD-BM 6 0.56106 TRBALB/c. N = 10/group. Representative data from one of three experiments. RIGHT: 56106 TCD-
BM 6 16106 TRBALB/c. N = 10/group. Representative data from one of two experiments. Square: BM only. Triangle: WT T. Circle: Ceacam1-Tg T. C)
56106 TCD-BM 6 16106 TRBALB/c. Combined N = 55 in groups receiving T cells from six experiments. Diamond: Ceacam12/2 recipients, BM only.
Square: WT recipients, BM only. Triangle: WT recipients, BM+T. Circle: Ceacam12/2 recipients, BM+T.
doi:10.1371/journal.pone.0021611.g001
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Donor-recipient antigenic disparity, donor T cells, and tissue

injury resulting in inflammation due to the conditioning regimen

all contribute to GVHD, which primarily affects intestines, liver,

skin and thymus [27].

Ceacam1 is expressed both on leukocytes (especially T cells), as

well as on epithelial and endothelial cells, which are prominent

components of the parenchyma of the above-mentioned GVHD

target organs. In addition, Ceacam1 is upregulated on many

tumors. In this report, we assess the impact of Ceacam1 on

alloreactive T cells in the donor allograft, as well as the effects of

Ceacam1 deficiency on recipients of allo-BMT with respect to

GVHD and GVT activity.

Results

Ceacam1 on donor T cells and recipient tissues can
regulate GVHD mortality

We assessed Ceacam1 regulation of GHVD on donor T cells or

recipients in two well-described major histocompatibility complex

(MHC) class I/II-disparate models C57BL/6 (B6, H-2b)RBALB/

c (H-2d) and BALB/cRB10.BR (H-2k). We used Ceacam12/2 B6

mice [28], Ceacam1-transgenic (Tg) B6 mice (described in Figure
S1), and Ceacam12/2 BALB/c mice [28] as the source of donor

T cells or recipients. In all experiments, recipients received split-

dose lethal irradiation (BALB/c: 8.5 Gy, B10.BR: 11 Gy) and a

graft of 56106 allogeneic T cell depleted bone marrow (TCD-BM)

of wildtype (WT) origin, with or without splenic T cells.

We first transplanted irradiated BALB/c mice with B6 TCD-

BM with WT or Ceacam12/2 T cells, and observed that

recipients of Ceacam12/2 T cells had significantly increased

mortality compared to recipients of WT T cells (Figure 1A, left).

We confirmed this in a second MHC-disparate allo-BMT model,

BALB/cRB10.BR (Figure 1A, right).

We next asked whether T cells overexpressing Ceacam1 would

cause less disease, and transplanted BALB/c recipients with

0.56106 or 16106 donor WT or Ceacam 1-Tg T cells. At both

doses, recipients of Ceacam1-Tg T cells showed attenuated

mortality (Figure 1B).

Figure 2. Ceacam1 regulates GVHD target organ damage. A) 56106 TCD-BM 6 16106 TRBALB/c. Day 21. Histopathology score. N = 5–12/
group. SB, small bowel. LB, large bowel. B) Thymocyte count and apoptotic skin cells from (A). N$7/group. Day 21. One of two representative
experiments. C) Apoptotic skin cells from (A). N$7/group. Day 21. D) 56106 TCD-BM 6 16106 TRBALB/c. Histopathology score. Day 21. N$7/group.
SB, small bowel. LB, large bowel. E) Thymocyte counts from (E): N$7/group. One of two independent experiments. DP: CD4+CD8+ double-positive
thymocytes. Day 21. F) Apoptotic skin cells from (E). N$7/group. Day 21. G) 56106 TCD-BM 6 16106 TRWT or Ceacam12/2 BALB/c. Histopathology
score. Day 14. N$12/group. SB, small bowel. LB, large bowel. H) Thymocyte count from (I). N$8/group. One of two independent experiments. DP:
CD4+CD8+ double-positive thymocytes. Day 14.
doi:10.1371/journal.pone.0021611.g002
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Finally, we assessed the role of Ceacam1 on tissues of allo-BMT

recipients, and transferred TCD-BM+T cells into WT vs. Cea-

cam12/2 BALB/c recipients. This revealed that Ceacam12/2

recipients had increased early (but not overall) mortality, with nearly

50% of mice succumbing within the first week (Figure 1C).

Ceacam1 is an important regulator of GVHD target organ
damage

We next asked whether Ceacam1 regulated GVHD target

organ damage, and again assessed effects of Ceacam1 deficiency

or overexpression on donor T cells, and Ceacam12/2 allo-BMT

recipients.

We observed that recipients of Ceacam12/2 T cells had more

severe large intestinal GVHD (Figure 2A). Surprisingly however,

these mice exhibited less thymic GVHD, as determined by thymic

cellularity and numbers of CD4+CD8+ double-positive (DP)

thymocytes (Figure 2). Thymic cellularity from age/sex-matched

non-transplanted animals are shown in Figure S2. We also

observed a modest trend towards less skin GVHD in recipients of

Ceacam12/2 T cells (Figure 2C), suggesting that Ceacam12/2 T

cells caused preferential damage to the (large) intestines.

In experiments comparing recipients of WT and Ceacam1-Tg

T cells on day 21 post-transplant, we found that recipients of

Ceacam1-Tg T cells demonstrated significantly less GVHD of the

liver, intestines, and thymus compared to recipients of WT T cells,

but similar skin GVHD (Figures 2D–F). This appears to suggest

that Ceacam1-Tg T cells caused less GVHD overall, with

relatively little organ specificity.

Finally, we assessed Ceacam12/2 allo-BMT recipients on day

14 post-transplant. In correspondence with increased early GVHD

mortality, Ceacam12/2 allo-BMT recipients showed increased

large bowel damage and thymic GVHD (Figure 2G–H).

Ceacam1 regulates donor T cell numbers in lymphoid
tissues and target organs during GVHD

We next assessed the numbers of donor CD4 and CD8 effector

T cells after transfer of Ceacam12/2 or Ceacam1-Tg T cell-

containing allografts, or in Ceacam12/2 allo-BMT recipients.

Comparing recipients of WT T cells with those receiving

Ceacam12/2 T cells, we observed increased numbers of

Ceacam12/2 donor alloactivated effector T cells in the spleen,

MLN, and IEL of allo-BMT recipients (Figure 3A), which was

associated with a concomitant decrease in the number of

Ceacam12/2 alloactivated CD4 and CD8 T cells in the PLN

and liver.

When we analyzed organs of recipients of allografts containing

WT vs. Ceacam1-Tg T cells, we noted decreased numbers of donor

effector T cells in the MLN, PLN, and liver (Figure 3B). Via

histopathological analysis, we also observed decreased numbers of

total lymphocytic infiltrates into the liver, small and large bowels by

histopathology (Figure 3B), as well as decreased neutrophilic

infiltrates in these organs (data not shown). Finally, we assessed

infiltrating T cells in WT and Ceacam12/2 allo-BMT recipients,

and observed increased numbers of donor alloactivated effector T

cells in the MLN and IEL of Ceacam12/2 allo-BMT recipients, but

decreased numbers of these cells in the PLN and liver (Figure 3C).

Figure 3. Ceacam1 regulates donor T cell numbers in GVHD target tissues. A) 56106 TCD-BM 6 16106 TRBALB/c. Day 14. Donor
CD44+CD62L2 effector cells were enumerated. Donor T cells are shown. N = 5–18/group. Combined data from two to three experiments. B) 56106

TCD-BM 6 16106 TRBALB/c. Day 14. Donor CD44+CD62L2 effector cells were enumerated. N = 7 group. Combined data from two experiments. C)
56106 TCD-BM 6 16106 TRBALB/c. Day 14. Donor CD44+CD62L2 effector cells were enumerated. N = 7–18 group. Combined data from two to four
experiments.
doi:10.1371/journal.pone.0021611.g003
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Ceacam1 regulates the sensitivity of the small intestine
to radiation injury

The accelerated early mortality of Ceacam12/2 allo-BMT

recipients, together with increased accumulation of donor T cells

in GI tract and mesenteric lymph nodes, but decreased numbers

peripheral lymph nodes (Figure 3C), led us to ask whether

Ceacam1 had differential effects in regulating GVHD target organ

damage for various target organs and tissues. In the context of

Ceacam12/2 recipients, we therefore tested the radiation sensitivity

of Ceacam12/2 mice used as hosts, by irradiating WT and

Ceacam12/2 BALB/c mice and assessing survival. Ceacam12/2

animals showed increased kinetics of mortality, and in some cases,

overall mortality after radiation injury (Figure 4A). Similar results

were obtained on the B6 background (Figure 4C). We then

enumerated regenerating and surviving crypts in the small intestine

(terminal ileum) at 84 hours after irradiation to assess intestinal

radiation damage, and observed that Ceacam12/2 mice had fewer

regenerating and surviving crypts as compared with WT counter-

parts (Figure 4B and D), indicating greater damage to the small

intestine across a wide range of radiation doses. It is thus quite likely

that our radiation-containing conditioning regimen for transplant

recipients also contributes in part to their survival kinetics, selective

GVHD target organ damage (Figure 2G–H), and the selective

accumulation of donor T cells in lymphoid tissues and target organs

(Figure 3C) in these recipients.

Donor Ceacam12/2 CD8 T cells express higher levels of
integrin a4b7 post-transplant

Next, we studied a variety of possible mechanisms by which

Ceacam1 may regulate donor T cell function. We analyzed donor

WT and Ceacam12/2 alloactivated splenic T cells on day 14 after

allo-BMT for trafficking molecules, and found that Ceacam12/2

CD8+ CD44+CD62L2 effector T cells expressed higher levels of

integrin b7 subunit and the gut homing integrin a4b7 (Figure 5A),

which is important for intestinal GVHD [31,32,33]. However,

WT vs. Ceacam12/2 CD4 effector T cells had similar integrin b7

subunit expression, yet also accumulated in greater numbers in the

gut (Figure 3A), suggesting that regulation of target organ

damage by Ceacam1 is very likely to involve multiple additional

mechanisms beyond trafficking molecule expression. Additionally,

levels of the aE subunit, which forms integrin aEb7, were similar,

as were levels of CCR9, CD31, PSGL1, CCR7, CXCR3, and

LFA1 (data not shown).

When we assessed the expression of trafficking molecules in

recipients of WT vs. Ceacam1-Tg T cell allografts, we found no

significant differences in levels of b7 subunit, integrin a4b7

(Figure 5B), or any other molecules. This is consistent with the

systemic reduction in GVHD in recipients of Ceacam1-Tg T cells.

Finally, we assessed trafficking molecules in irradiated WT vs.

Ceacam12/2 recipients of identical donor allografts, and observed

again that donor CD8, but not CD4 splenic T cells in Ceacam12/2

Figure 4. Ceacam12/2 mice exhibit increased radiation sensitivity and intestinal damage from ionizing radiation. A) WT and
Ceacam12/2 BALB/c mice were irradiated as a single-dose. N = 5/group. One of two independent experiments. B) Experiment as in A. Quantification
of surviving and regenerating crypts from the terminal ileum. N = 3/group, 9 sections per terminal ileum taken. C) WT and Ceacam12/2 B6 mice were
irradiated as a single-dose. N = 5/group. One of two independent experiments. D) Experiment as in C. Quantification of surviving and regenerating
crypts from the terminal ileum. N = 3/group, 9 sections per terminal ileum taken.
doi:10.1371/journal.pone.0021611.g004

Ceacam1 Regulates Graft-versus-Host-Disease

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e21611



recipients had a trend towards increased expression of the b7

subunit, although this was not directly reflected in increased

expression of integrin a4b7. (Figure 5C). Taken together, these

observations suggest that regulation of trafficking molecule expres-

sion by Ceacam1 is only one component of how it regulates GVHD

target organ damage.

Ceacam1 is expressed on T cells during alloactivation
Ceacam1 can be found on activated T cells [7,8,29] and, we

thus performed a kinetic analysis of Ceacam1 expression on T cells

during alloactivation. We adoptively transferred CFSE-labeled B6

T cells into irradiated BALB/c recipients, and observed transient

expression only on day 2 after alloactivation (Figure 6 and data

not shown). Furthermore, only CFSElo alloactivated T cells, which

have divided $4 times in 48 hours, expressed low but consistently

detectable levels of Ceacam1 (Figure 6A). These kinetics are

consistent with a role for Ceacam1 in regulating early events in T

cell alloactivation.

Ceacam1 regulates the alloactivation and proliferation of
T cells

Because the expression of Ceacam1 on alloreactive T cells after

adoptive transfer occurred in vivo with similar kinetics as T cell

alloactivation [30], we asked whether Ceacam1 on either donor

alloreactive T cells or radio-resistant cells in allo-BMT recipients

could regulate this process. We transferred CFSE-labeled purified

B6 WT or Ceacam12/2 splenic T cells into irradiated BALB/c

recipients and analyzed donor T cells in spleens on day 3.

We observed that relative to isotype control staining, an

increased percentage of alloactivated CFSElo CD4 Ceacam12/2

T cells were positive for the alloactivation marker CD25, and that

a greater percentage of these cells downregulated CD62L than

WT T cells (Figure 6B–C), suggesting that more of them became

activated. Additionally, an increased percentage of donor

Ceacam12/2 CD4 T cells had divided to a CFSElo alloactivated

state (Figure 6D), suggesting enhanced proliferation in the

absence of Ceacam1.

We repeated these experiments with alloreactive Ceacam1-Tg

T cells and as expected, observed a decrease in numbers of CFSElo

T cells as assessed by CFSE dilution (Figure 6E). This is

consistent with an inhibitory role for Ceacam1 in the proliferation

of alloreactive T cells. However, we did not observe significant

differences in alloactivation between Ceacam1-Tg vs. WT donor

T cells (data not shown).

Lastly, we assessed the role of Ceacam1 expression on radio-

resistant cells in allo-BMT recipients for donor T cell alloactiva-

tion. We transferred CFSE-labeled B6 T cells into irradiated WT

vs. Ceacam12/2 BALB/c mice, and analyzed donor T cells in

spleens on day 3. Here, we did not observe differences in

proliferation (data not shown), but donor CD4 T cells in

Ceacam12/2 allogeneic recipients did exhibit an increase in

alloactivation as measured by CD25 (Figure 6F).

Ceacam1 does not significantly influence T cell
polarization, cytolysis or dendritic cell function in GVHD

We measured serum cytokines in recipients of WT, Ceacam1-

Tg and Ceacam12/2 T cells on days 7 and 14 post-transplant,

and observed that levels of IFNc, TNF, IL-2, IL-4, IL-6, IL-10,

and IL-12p70 were similar (data not shown). Percentages of

FoxP3+ donor regulatory T cells and expression of T-bet were also

similar between recipients of WT, Ceacam1-Tg and Ceacam12/2

T cells (data not shown and Table 1), and stimulation of

splenocytes harvested on day 14 after BMT post-transplant from

these three groups revealed essentially no IL-17+ donor T cells (not

shown), and similar percentages of donor IFNc+ T cells (data not

shown and Table 1).

As Ceacam1 can regulate the cytolytic responses of lymphocytes

[34,35,36,37,38], we assessed the cytolytic function of WT vs.

Ceacam12/2 alloactivated CD8 T cells from the spleens of allo-BMT

recipients on day 14. Ceacam12/2 CD8 T cells and WT CD8 T cells

demonstrated similar cytolysis against 51Cr-radiolabeled allogeneic

A20 B cell lymphoma cells and EL4 controls (Table 1). Lastly, we

found no differences in DC numbers, activation state (CD80, CD86,

MHC class II) from the infusion of Ceacam12/2 or Ceacam1-Tg T

cells (Table 1), or in Ceacam12/2 allo-BMT recipients.

Ceacam12/2 donor T cells have enhanced graft-versus-
tumor activity towards A20 lymphoma but not renal cell
carcinom

Finally, we assessed the GVT activity of Ceacam12/2 donor

alloreactive T cells against A20 lymphoma and RENCA renal cell

carcinoma. Recipients of Ceacam12/2 donor T cells had

Figure 5. Ceacam12/2 donor CD8 T cells in the spleen express
increased levels of integrin b7 subunit post-transplant. A) 56106

TCD-BM 6 16106 WT or Ceacam12/2 TRBALB/c. Day 14. N = 6 to 10/
group. One of two independent experiments. B) 56106 TCD-BM 6

16106 WT or Ceacam1-Tg TRBALB/c. Day 14. N = 6 to 10/group. One of
two independent experiments. C) 56106 TCD-BM 6 16106 TRWT or
Ceacam12/2 BALB/c. Day 14. N = 5 to 8/group. One of two independent
experiments.
doi:10.1371/journal.pone.0021611.g005
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Figure 6. Ceacam1 is expressed transiently upon T cell alloactivation, and regulates T cell activation and proliferation. A) 107 CFSE-
labeled B6 or B6 CD45.1 splenic T cellsRBALB/c (8.5 Gy). Spleens analyzed day 2. Donor CD4 and CD8 T cells were analyzed by number of divisions
viaCFSE dilution. Ceacam1 median fluorescence intensity (MFI) is shown. N = 6, combined from three experiments. * p,0.05 for MFI difference vs.
non-dividing cells. B) 107 WT or Ceacam12/2 CFSE-labeled TRBALB/c. Day 3, splenic T cells. Percentage of donor CD25 positive CD4 CFSElo cells are
shown. N = 5–10/group. Combined data from three experiments. C) Percentage of CD62L positive CD4 CFSElo cells from experiment as in (A).
Combined from four experiments, total N = 10/group. D) Percentage of donor CFSElo, fast-proliferating allo-activated T cells from experiment as in (A).
N = 5/group, one of three experiments shown. E) 107 CFSE+ B6 or CEACAM1-Tg TRBALB/c. Day 3 spleen. CFSE dilution on donor T cells are shown.
Shaded: Ceacam1-Tg; open: WT. N = 2/group. Representative data from one of two experiments. F) 107 CFSE+ B6 TRWT or Ceacam12/2 BALB/c.
Percentage of donor CD25 positive CD4 CFSElo cells are shown. N = 10/group. Combined data from four experiments.
doi:10.1371/journal.pone.0021611.g006
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improved survival in the A20 lymphoma model (Figure 7A), but

both T cell replete groups showed comparable survival in the

RENCA solid tumor model (Figure 7B). When we analyzed these

two tumor lines for Ceacam1 expression, we noted that all A20

lymphoma cells uniformly expressed high levels, while only a

subset of RENCA cells expressed some Ceacam1 (Figure 7C).

Discussion

In this report, we show that Ceacam1, which is found on both

donor alloreactive T cells as well as non-hematopoietic tissues such

as gastrointestinal and hepatic epithelium, can regulate both donor

T cell function and the sensitivity of allo-BMT recipients to

radiation-containing preparative regimens. In addition, Ceacam1

on donor T cells and tumors may modulate GVT activity.

Ceacam1 on both the donor allograft and recipient tissues thus

appears to represent an important regulator of GVHD and GVT

morbidity and mortality via both T cell dependent and

independent mechanisms, suggesting that therapeutic approaches

which modulate Ceacam1 may need to assess and balance GVHD

vs. GVT.

Ceacam1 on T cells has previously been shown to restrain CD4

T cell polarization, cytokine secretion and cytotoxicity. In our

GVHD model systems however, we found similar T cell

polarization and cytokine secretion when we analyzed donor

alloreactive T cells ex vivo (Table 1). We ascribe this to the strongly

proinflammatory cytokine milieu found in recipients following

myeloablative radiation treatment, as well as the ubiquitous

presence of alloantigen, which together promote strong Th1

differentiation regardless of Ceacam1 expression. However, in our

model systems Ceacam1 regulated T cell activation, and numbers

of donor alloactivated T cells in both lymphoid tissues and GVHD

target tissues, in patterns that generally correlated with levels

target organ damage (Figures 2 and 3).

We also assessed the role of Ceacam1 in allo-BMT recipients. In

our model systems, WT T cells in a Ceacam1-deficient

environment showed a phenotype similar to that of Ceacam12/2

alloactivated T cells: both showed increased activation, selective

damage to the large intestines, and preferential accumulation in

the MLN and intestinal parenchyma of mice with GVHD, and

correspondingly decreased infiltration of the liver and PLN,

ultimately leading to exacerbation of disease, with accelerated

mortality in the first two weeks post-transplant. This suggests that

Ceacam1 on donor T cells interacts with recipient tissues, and that

Ceacam1 ‘‘fraternal’’ interactions between cells of the donor graft,

were not sufficient to restrain GVHD in Ceacam12/2 recipients.

However, the increased early mortality of Ceacam12/2 allo-BMT

recipients with GVHD also led us to ask whether Ceacam12/2

mice were sensitive to radiation injury. While Ceacam12/2 mice

were not significantly defective for hematopoiesis after sublethal

irradiation at 3.5 and 4.5 Gy (data not shown), they did exhibit

significantly increased damage to the small intestines after lethal

irradiation (Figure 4).

Ceacam1 also directly regulates intestinal epithelia. Due to

enhanced Wnt/b-catenin signaling, Ceacam12/2 jejunal and ileal

enterocytes exhibit higher levels of the positive cell cycle regulators

c-Myc and cyclin D1 [41]. Dysregulated c-Myc may sensitize cells

to apoptosis [42,43], and higher levels of these proteins may

render Ceacam12/2 enterocytes more sensitive to radiation

injury. Finally, Ceacam1 also regulates cell-cell adhesion

[17,18,44,45] under normal and pathological conditions; it may

therefore also be possible that loss of Ceacam1 regulates radiation-

induced sloughing of intestinal epithelium.

It is difficult to directly assess the relative importance of

gastrointestinal radiation sensitivity versus increased GVHD in

Ceacam12/2 allo-BMT recipients, as radiation-induced gut

damage may both be directly manifested in intestinal pathology,

yet transmural migration of bacterial superantigens is an

important first step for the initiation of GVHD[1,39,40], and

increased damage to the intestines of Ceacam12/2 mice may thus

amplify the development of GVHD in these mice, and also explain

in part the specifically increased large intestinal GVHD we

observed.

In experiments with Ceacam12/2 donor T cells, we also observed

a trend for splenic donor CD8 alloactivated T cells to express higher

levels of a4b7. Although integrin a4b7 is important for GVHD

pathogenesis, and we have previously shown that b7
2/2 T cells cause

a sustained decrease in acute systemic and intestinal GVHD [31],

differential expression of integrin a4b7 by Ceacam12/2 T cells is

almost certainly only one part of how Ceacam1 regulates target organ

GVHD. Indeed, donor alloactivated CD4 T cells expressed

comparable levels of integrin a4b7 as wildtype cells, yet were also

found in increased numbers in the gut (Figure 3A). This suggests that

other mechanisms, such as Ceacam1 regulation of donor T cell

activation (Figure 6) may also contribute to its regulation of GVHD

target organ damage.

Moreover, recipients of Ceacam1-Tg T cells also had reduced

intestinal infiltrates despite similar integrin a4b7 expression,

suggesting that Ceacam1 regulates the accumulation of donor T

cells in target tissues via multiple mechanisms. Thus, our results on

donor lymphocyte infiltrates into GVHD target tissues and

secondary lymphoid tissues must be interpreted cautiously, as

they must be influenced by T cell proliferation, retention and

apoptosis, in addition to trafficking.

Table 1. Summary of Ceacam1 deficiency or overexpression.

Deficient
donor T:

Transgenic
donor T:

Deficient
recipients:

Survival Q q Q

Complete blood count = = =

Engraftment/chimerism = = =

Serum TNF, IFNc, IL-2, IL-12 = = =

Donor T cells

Activation/Proliferation q Q q

T-bet, FoxP3, IFNc = = =

Trafficking molecules q = q

Cytotoxicity = n/a n/a

Numbers in

Spleen q = =

MLN/intestine q Q q

PLN Q Q Q

Splenic donor DCs

percentage, apoptosis = = =

Maturation (CD80/86) = = =

Target organ damage

Liver = Q =

Small intestine = Q =

Large intestine q Q q

Thymus Q Q q

doi:10.1371/journal.pone.0021611.t001
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Although Ceacam12/2 and Ceacam1-Tg T cells displayed

overall symmetric and opposite phenotypes, we also noted

differences. Ceacam1-Tg T cells primarily showed decreased

proliferation, whereas Ceacam12/2 T cells showed changes in

proliferation, but also trafficking and activation. Some of these

differences may be due to our models: on WT T cells, Ceacam1 is

only briefly and transiently upregulated during activation.

Consequently, Ceacam12/2 T cells are ‘‘missing’’ Ceacam1 only

transiently, while Ceacam1-Tg T cells constitutively over-express

Ceacam1. Furthermore, while Ceacam12/2 T cells are effectively

insensitive to all Ceacam1 ligands and interactions, Ceacam1-Tg

T cells which over-express the protein may have increased

fraternal Ceacam1 interactions with other donor T cells, but

may not necessarily experience increased Ceacam1 interactions

with donor BM or host hematopoietic and non-hematopoietic

components. These differences may explain why their activation

and trafficking phenotypes are not directly opposed.

We were interested to note that in our GVT experiments,

recipients of Ceacam12/2 T cells had significantly improved

survival when challenged with A20 lymphoma but not renal cell

carcinoma. Although both A20 lymphoma and renal cell

carcinoma express Ceacam1, A20 cells uniformly expressed

Ceacam1 at high levels, while only a subset of RENCA cells

showed (somewhat lower) expression. Indeed, a number of

hematologic tumors, including EL4 leukemia, P815 mastocytoma,

and C1498 myeloid leukemia all express substantial levels of

Ceacam1 (data not shown), whereas some solid tumors, such as

mouse 4T1 breast epithelial cancer and CT51 colon tumor

Figure 7. Ceacam12/2 T cells have intact graft-versus-tumor activity. A) 56106 B6 BM+0.56106 A2060.56106 B6 WT or Ceacam12/2 T
cellsRBALB/c (8.5 Gy). N = 20/group for groups receiving T cells, combined from two experiments. B) 56106 B6 BM60.16106 RENCA60.86106 B6 WT
or Ceacam12/2 T cellsRBALB/c (8.5 Gy). N = 9 for groups receiving T cells. C) A20 lymphoma cells and RENCA tumor cells in culture were stained for
Ceacam1 expression.
doi:10.1371/journal.pone.0021611.g007
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normally express only lower or even minimal levels of Ceacam1,

similar to the lower level of expression we found with RENCA (not

shown).

Therefore, one possibility is that the GVT activity of T cells can

be negatively regulated by tumors expressing high levels of

Ceacam1, but is less important for tumors that express low levels

or only on a subset of cells in the first place. However, RENCA in

our GVT model systems is found primarily in the liver, and to a

lesser extent, the lungs. Since donor allografts with Ceacam12/2

T cells showed decreased numbers of donor alloreactive T cells in

the liver as compared with wildype in GVHD experiments

(Figure 3A), interpretation of GVT activity against RENCA with

respect to Ceacam1 on T cells must also consider this aspect of its

biology.

In conclusion, our results show that Ceacam1 on both donor T

cells and allo-BMT recipients controls the proliferation, activation,

and trafficking of donor alloreactive T cells, and the sensitivity of

gastrointestinal tissues to irradiation. Consequently, Ceacam1 may

represent a viable target for reducing radiation-associated

gastrointestinal toxicity, for the control of GVHD and GVT

activity after allo-BMT.

Materials and Methods

Ethics Statement
All animal protocols were approved by the Memorial Sloan-

Kettering Cancer Center (MSKCC) Institutional Animal Care

and Use Committee (protocol #99-07-025).

Mice
C57BL/6 (B6, H-2b), BALB/c (H-2d), and B10.BR (H-2k) mice

were obtained from The Jackson Laboratory (Bar Harbor, ME).

B6 and BALB/c Ceacam12/2 mice, and B6 Ceacam1-Tg mice

were generated at McGill University (B6 and BALB/c from

Harlan (Montreal, Quebec, Canada)), and maintained at Memo-

rial Sloan-Kettering Cancer Center. Mice used were between 8

and 12 weeks old.

Bone Marrow Transplantation
BM cells removed from femurs and tibias were T cell-depleted

(TCD) with anti-Thy-1.2 and low-TOX-M rabbit complement

(Cedarlane Laboratories, Hornby, ON, Canada). Enriched splenic

T cells were obtained by nylon wool column passage. Cells were

resuspended in DMEM and injected into lethally irradiated

recipients on day 0 after total body irradiation (137Cs source) as a

split dose 3 hours apart.

T cell carboxyfluorescein diacetate succinimidyl ester
(CFSE) labeling and transfer

Purified splenic T cells were incubated with CFSE (Invitrogen,

Carlsbad, CA) at a concentration of 2.5–5 mM in PBS (56107

cells/mL) at 37uC for 20 minutes, washed twice with PBS,

resuspended in DMEM and infused intravenously into lethally

irradiated allogeneic recipients. Splenocytes from recipients were

harvested at varying time points and analyzed by FACS as

described.

Assessment of GVHD
Survival was monitored daily, and mice were scored weekly for

5 clinical parameters (weight, posture, activity level, fur ruffling,

and skin lesions) on a scale from 0 to 2. A clinical GVHD score

was generated by summation of the 5 criteria scores; mice scoring

5 or greater were considered moribund and euthanized.

Histopathologic analysis
Small and large bowel, liver, and skin were assessed by experts

in a blinded fashion. Organs were preserved in formalin,

transferred to 70% ethanol, and then embedded in paraffin,

sectioned, stained with hematoxylin and eosin, and scored with a

semi-quantitative scoring system. Bowel and liver were scored for

19 to 22 different parameters associated with GVHD (detailed in

Table S1); skin was evaluated for number of apoptotic cells/mm2

of epidermis via terminal deoxynucleotide transferase dUTP nick

end labeling (TUNEL).

Statistical analysis
Histopathologic scores, median fluorescence intensities and cell

counts were compared between groups using the nonparametric

unpaired Mann-Whitney U test; the Mantel-Cox log-rank test was

used for survival data.

Additional methods
Additional methods are described in Methods S1.

Supporting Information

Figure S1 Generation of Ceacam-1 transgenic mice and
expression of Ceacam1 on transgenic T cells. A) The

CC1-4L cDNA, expressing 4 Ig domains and the long cytoplasmic

domain was inserted into the unique EcoR1 site within the

VAhCD2 vector containing the hCD2 promoter and 2 polyad-

enylation sites (PolyA1,2). B) The linearized construct was

microinjected into C57Bl/6 oocytes to produce transgenic mice

that were identified by Southern blot with a 1.3 kb 32P-labelled

probe. This probe cross-reacts with the endogenous Ceacam1,

Ceacam2 and Ceacam10 genes and also identifies the 1.7 kb

EcoR1-digested transgene. C) Tg mice were identified by PCR

amplification of a 320 bp fragment from tail genomic DNA with

the CyT2 oligo within the CC1-L cytoplasmic domain and oligo

CD2A2 within the hCD2 LCR region. D) Western blots of lysates

from thymi and spleens from 5 and 8-week-old WT and Tg

littermates with the rabbit polyclonal anti-Ceacam1 Ab 2457. E–F)

Cell surface Ceacam1 on thymic (E) and splenic (F) CD3-gated T

cells of WT and Tg mice (n = 4) was revealed with anti-Ceacam1

Ab 2457. Controls were normal rabbit serum.

(TIFF)

Figure S2. Ceacam12/2 mice exhibit increased thymic
and splenic cellularity compared with wildtype animals,
but do not exhibit skewing towards particular leukocyte
lineages or subsets, while Ceacam1-Tg transgenic mice
have similar numbers of splenocytes, thymocytes, and
bone marrow cells compared with WT animals. A) 2

month old Ceacam12/2 male BALB/c mice were analyzed with

age and sex-matched wildtype BALB/c, N = 5. Similar results

were observed with age and sex-matched female wildtype and

Ceacam12/2 BALB/c mice (N = 5, not shown), and in age and

sex-matched wildtype and Ceacam12/2 B6 mice (N = 5, not

shown). B) Thymocytes from mice in (A) were analyzed by flow

cytometry. N = 5. C) 8-week old B6 and Ceacam1-Tg mice were

analyzed for splenic, thymic and bone marrow (BM) cellularity.

N = 3/group.

(TIFF)

Table S1 Histopathological scoring scheme for gastro-
intestinal GVHD target organs.
(DOC)

Methods S1

(DOC)
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