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Gαq and its Aktions  
David M. Harris, Andrea D. Eckhart and Walter J. Koch 

Center for Translational Medicine, Department of Medicine, Thomas Jefferson 
University, 1025 Walnut Street Room 317 Philadelphia, PA 19107, USA  
_______________________________________________________________ 
 
Cardiovascular diseases remain the main cause of death in the western world. Many of 
these diseases such as coronary artery disease, hypertension, and diabetes eventually lead 
to chronic heart failure (HF). HF occurs when the heart cannot pump adequate blood to 
meet metabolic demands. The primary initial response of cardiac myocytes to increased 
work is a balance between hypertrophy and apoptosis, or programmed cell death.1,2 
Apoptosis is thought to augment the progression to HF from compensatory hypertrophy 
simply by decreasing the number of functional myocytes present in the heart. 
Discovering what processes or pathways contribute to this tipping of the scale from 
compensatory hypertrophy to HF remains a mystery and is paramount to helping treat HF 
patients effectively.  

It has been well documented that hypertrophy can be induced by endogenous and 
exogenous agents that act on G protein-coupled receptors (GPCRs) that specifically 
activate the heterotrimeric G protein Gq.1 Early pioneering studies showed that α1-
adrenergic receptor (α1-AR) stimulation elicited hypertrophy in response to 
norepinephrine (NE) in neonatal rat ventricular myocytes (NRVMs).3 Subsequently, 
many other Gq-coupled receptor agonists have been shown to cause hypertrophy 
including angiotensin II (AngII), endothelin-1 (ET-1), thrombin and prostaglandins. This 
hypertrophy is considered to be compensatory at first, aiding the heart in maintaining 
cardiac output and supplying needed oxygenated blood to distant organs. However, this 
compensatory hypertrophy can become deleterious and the heart begins its slide into 
failure. At what point the scale tips in favor of maladaptation and HF versus adaptive 
cardiac hypertrophy is the research goal of many investigators and discovering molecules 
or pathways that can act on both sides of this scale is essential in understanding the 
transition to HF.  

In this issue of the Journal of Molecular and Cellular Cardiology Howes et al.4 attempt 
to separate cell survival from hypertrophy in response to direct Gαq stimulation. The 
authors demonstrate the ability of the α-subunit of Gq to activate two separate 
downstream pathways independently: hypertrophy and anti-apoptotic mechanisms. The 
current manuscript suggests that direct Gαq stimulation is a candidate that may play a 
role in mediating a balance between these two pathways with the primary mechanistic 
target the activation of Akt (also known as protein kinase B).  

Numerous studies to date have demonstrated that GPCRs are important in activating the 
phosphoinositide-3 kinase (PI3K)/Akt pathway, which is a cellular pro-survival signaling 
axis. PI3K phosphorylates and activates Akt which subsequently phosphorylates 
glycogen synthase-3β (GSK3β) inhibiting its apoptotic effects on NF-AT, β-catenin and 



caspase-3 activation.5 Upon activation of a given GPCR, its α subunit and βγ subunits 
dissociate and each component can activate a number of downstream molecules and 
therefore, both could theoretically be involved in Akt activation. In vitro studies have 
shown that both Gαq and Gβγ (from Gi-coupled receptors) can activate Akt.6 Recent in 
vivo experiments have also shown the importance of Gβγ activating the PI3K–Akt 
pathway in the hypertrophying heart as transgenic mice expressing a Gβγ sequestering 
peptide (βARKct) had significantly less activation of PI3K in myocardium after pressure-
overload compared to non-transgenic control mice indicating that PI3K activation, 
upstream of Akt activation, is βγ-subunit dependent.7 The current manuscript is important 
as it clearly illustrates that Gαq alone can activate Akt in a PI3K-dependent manner. 
Future studies will need to be completed in order to verify that different combinations βγ 
subunits, which may not be sequestered by the βARKct, are not involved.  

In addition to their more classically appreciated signaling cascades, it is now appreciated 
that GPCRs, including those that are Gq coupled such as AngII AT1 receptors, can also 
activate PI3K via transactivation of receptor tyrosine kinases (RTKs) such as the receptor 
for epidermal growth factor (EGFR).8 The pathophysiological significance of this novel 
Akt signaling is not known but could be important especially in conditions of cardiac 
stress. Moreover, it is not completely understood whether Gαq alone can do this. Another 
level of complexity is added when one considers that a given GPCR is capable of 
coupling and activating multiple G proteins. Therefore, it has been difficult to definitely 
and directly ascribe the role of individual G proteins in PI3K-mediated Akt activation or 
whether this is RTK dependent. In this current study, overexpressed Gαq alone is able to 
activate the tyrosine kinase, Src, which phosphorylates and activates the EFGR and 
causes PI3K-dependent Akt phosphorylation.4 The transactivation of the EGFR by Gαq is 
similar in mechanisms to the GPCR–RTK cross-talk that occurs in cardiac fibroblasts 
where activation of β2-ARs causes cell proliferation in an Src and EGFR-dependent 
manner.9 The end result of Gαq-Akt activation in Howes et al. [4] 4 is an increase in 
cardiomyocyte survival when these cells are exposed to the pro-apoptotic agent, 2-
deoxyglucose (2DOG).  

The premise that Gαq can have cellular pro-survival features is intriguing considering 
that initial studies ascribed Gαq overexpression as a condition causing the heart to fail in 
vivo and also inducing apoptosis after cardiac stress.10, 11 These studies in transgenic 
mice also demonstrated a dose-dependent on Gαq expression in cardiac hypertrophy and 
pathology. Lower levels had minimal effects on cardiac growth while higher levels either 
caused significance hypertrophy and HF or even death due to ventricular failure.10 This 
finding led to further studies comparing wild-type Gαq overexpression and 
overexpression of a constitutively active mutated form of Gαq (GqQ209L) in cardiac 
myocytes.11 Data showed that although both wild-type Gαq and GqQ209L caused 
hypertrophy of cells, only the constitutively active GqQ209L produced apoptotic cell 
death. Importantly, those studies and the current study within this issue may in fact be 
complementary. Previously, it was shown that the constitutively active mutant GqQ209L 
decreased levels of phosphatidylinositol bisphosphate (PIP2), a substrate for PI3K, thus 
decreasing the ability of PI3K to activate Akt that occurs downstream.4 This depletion is 
explained by the increased phospholipase C (PLC) activity caused by GqQ209L 



expressing cells. Therefore, it was concluded that decreased levels of PIP2 due to 
enhanced Gq activity in heart failure limit the availability of PIP2 for PI3K/Akt 
signaling.4 The current manuscript by this group provides novel mechanistic insight into 
how Gαq overexpression activates Akt and provides anti-apoptotic effects, presumably in 
conditions where PIP2 is not limiting.  

Howes et al. provides evidence that not only can Gαq mediate cardiac hypertrophy 
through PKC and MAPK signaling, it can also directly signal via the cardioprotective 
PI3K pathway. This manuscript is also one of the first to describe that Gq can transactive 
the EGFR in a PKC- and Ca2+-independent manner, which is interesting since the 
primary downstream actions of Gq-coupled GPCRs are tied to activation of 
phospholipase C, PKC and Ca2+ mobilization.6 It will be interesting to investigate the 
mechanisms underlying this novel signaling pathway of Gαq and whether this is due to 
specific spatial and temporal activation of Gq-coupled receptors in the myocyte.  

Another important finding from this study is the ability to separate the hypertrophic 
pathways stimulated by more classical Gq that are EGFR independent (MAPK and 
calciuneurin) from the cardiomyocyte protective pathways that are dependent upon novel 
Gαq–EGFR activation.4 At which point activation of Gαq prefers one pathway versus the 
other raises an interesting question. In the early stages of cardiovascular disease it could 
be hypothesized that there may be equal signaling down the respective hypertrophic and 
the anti-apoptotic pathways in myocytes resulting in cardiac hypertrophy with adequate 
function, as would occur with compensatory hypertrophy. In the chronic setting, as 
circulating levels of AngII, ET-1, and NE increase and exposure is prolonged, activation 
of Gq-coupled receptors increases, and the “stealing” of PIP2 by the hypertrophic 
pathways may become prevalent resulting in a decrease in the ability of Gαq to activate 
the Src/EGFR dependent PI3K/Akt signaling cascade. With a subsequent decrease in 
phosphorylated (i.e. activated) Akt (phospho-Akt) and its cardioprotective benefits, cell 
survival would be compromised with a decrease in myocytes the ventricles will become 
dysfunctional.  

The dissection of these pathways provides valuable information on the mechanisms that 
are associated with Gαq stimulation. However, it is important to keep in mind that 
although Gq signaling is increased through particular GPCRs in hypertrophy and HF, the 
expression levels of Gαq are not increased, unlike what has been shown for other G 
proteins including Gαi.12 In the current study, the authors wanted to investigate Gq 
signaling specifically therefore used the overexpression strategy as they did not want to 
complicate the results by adding a Gq-coupled agonist. As discussed above this is 
important because many Gq-coupled receptors can couple to other G proteins such as Gi 
or also can directly activate other proteins including ion channels and thus, the authors 
chose to study “pure” Gαq signaling. However, it is important that effects from these 
confounding variables be considered within the context of Gq-coupled signaling in vivo 
in the failing heart as you cannot have simple Gαq activation without activation of a 
GPCR and thus in HF there could be influences of other downstream signaling events 
following Gq activation.  



Another important variable that needs to be considered when examining signaling in 
cardiac myocytes is the overall role of Ca2+ and electrical stimulation. Activated G-
proteins interact with ion channels, transporters, and other signaling molecules located at 
the membrane that may contribute to in vivo effects. Within the contracting 
cardiomyocyte, there is a flux of Ca2+ into the cell initiating Ca2+ release from the 
sarcoplasmic reticulum and this rapid elevation of intracellular Ca2+ is needed for 
contraction of the myofilaments. Since some Gq-coupled receptors have been shown in 
some cell types to transactivate the EGFR in a Ca2+-dependent manner13, Ca2+ becomes a 
vital second messenger that may also contribute to effects similar to what Howes et al. 
report and contribute to specific components of Gq signaling. Of importance here is that 
this Ca2+-dependent EGFR transactivation has not yet been shown in myocytes. However, 
Ca2+ is also important in heart disease since it can lead to the activation of Ca2+-
calmodulin kinase (CaMKII) and Ca2+-dependent PKC isozymes and this can complicate 
downstream kinase signaling including Akt activation and directly assessing mechanisms.  

Genetic approaches provide researchers with great tools in order to delineate signaling 
pathways and observe the effects of targeted molecules on the system chosen. Instead of 
using genetic approaches to study the effects of Gαq activation, a recent paper by Sabri et 
al.14 describes use of an intracellular Gαq agonist (recombinant Pasteurella multocida 
toxin (rPMT)) to elucidate the role of endogenous Gαq signaling in NRVM. Activation of 
NRVM with rPMT revealed that novel isoforms of PKC (δ and ε) were activated by 
rPMT treatment but not the conventional PKC that is present in rat NRVM (PKCα). This 
paper highlighted that following exposure to rPMT (endogenous Gαq activation) for 
24 hours, there is a decrease in the amount of phospho-Akt. There was also a small but 
insignificant increase in apoptosis measured by TUNEL-positive cells when exposed to 
H2O2, reinforcing the thought that cardioprotection is lost when the cells are activated 
with rPMT. Further the study went to show that there was decreased phospho-Akt when 
GF109203X (non-selective inhibitor of PKC α, δ, and ε) was used in rPMT treated cells 
implicating the novel PKC isoforms δ and ε in repression of Akt activation.14  In the 
current manuscript by Howes et al., when the same inhibitor was used, there were no 
alterations in phospho-Akt [4]. Since Gαq signaling appears to be so reliant on the 
amount of expression, differences in Gαq levels could be responsible for the differences 
observed. Also, the abundance or translocation of PKC isoforms could have been 
different between the two studies. The physical location and compartmentalization of the 
signaling molecules must also be considered since this plays a vital role in their ability to 
activate other downstream molecules.  

The differences in physiological versus pathological PI3K signaling could also be 
responsible for the differences between studies. A recent review by Dorn and Force1

highlights the different isoforms of PI3K activated by the IP3 pathway (γ) and that of the 
IGF-1 (α) pathway. The activation of PI3K is different between these two pathways as 
both rely on the p110 molecule for signaling but once again different isoforms are 
associated with the two pathways: p110γ for Gq coupled receptor and p110α for the 
growth factor receptors. Interestingly, p110α is responsible for physiological growth, and 
is not needed for pathological growth whereas p110γ is opposite in mediating 
pathological hypertrophy, but not exercise or physiological hypertrophy. Both PI3K 



isoforms lead to Akt activation, however, it should be noted the Akt activation can lead to 
both physiologic and pathologic growth through GSK3β and/or mTOR. The balance 
between activation of Gαq and EGFR, which PI3K isoform is activated and signaling 
duration could all play a major role in the effects observed in the current paper.  

Although Akt activation via Gαq could prove to be beneficial in treating disease, it must 
also be noted that inhibiting Gq signaling altogether has been shown to have beneficial 
effects in the heart by attenuating hypertrophy and maladaptation following pressure 
overload.15, 16 This was done with a peptide inhibitor of GPCR-Gαq coupling and in 
transgenic hearts expressing this peptide inhibitor of Gq, hypertrophy was attenuated 
following transverse thoracic aorta constriction (TAC) and chronically this led to 
preservation of cardiac function and prevention of maladaptive remodeling.16 Gαq
inhibition has also proven to be successful in other tissues including vascular smooth 
muscle where Gαq inhibition attenuates hypertension induced by AngII.17 Moreover, the 
success of clinical trials (LIFE18 and EUROPA19) showing improvements in LV 
hypertrophy following treatment with Losartan (AngII receptor antagonist) and 
perindopril (ACE inhibitor) also cannot be ignored since these drugs do decrease overall 
Gq signaling in the cardiomyocyte. Thus, although Gαq stimulation can lead to cell 
survival, there is ample evidence that Gq inhibition is beneficial in HF  

In summary, the current manuscript by Howes et al. in JMCC illustrates the ability of 
Gαq to directly activate two separate downstream pathways independently and initiate 
two different effects: hypertrophy and cell survival via Akt activation that is dependent 
on Src/EGFR/PI3K activation. The triggers that cause hearts in compensated hypertrophy 
to progress into a state of cardiac failure are still unknown. The current manuscript offers 
Gαq as a candidate that may play a role in mediating this balance between pathways. It 
also reminds us that multiple signaling pathways are continuously activated by any one 
molecule and that dissecting out the specific pathways involved mechanistically may 
provide novel targets for future HF therapies.  
_________________________________________________________________ 
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