Is Interchangeability Possible? Understanding and Evaluating the Evidence-Based Implications for Quality & Safety

Geno J. Merli, MD, FACP, FHM
Professor of Medicine
Chief Medical Officer
Director Jefferson Center for Vascular Diseases
Jefferson Medical College
Thomas Jefferson University Hospital
Leading Causes of Death U.S.

- All other causes: 470,943
- Pneumonia and influenza: 77,880
- COPD: 90,650
- Accidents: 89,347
- Cancer: 514,657
- Cardiovascular: 926,061

Most Cardiovascular Deaths Related to Clotting and Bleeding
Anticoagulant Drugs

TFPI = tissue factor pathway inhibitor; TAFI = thrombin-activatable fibrinolysis inhibitor-1; PAI-1 = plasminogen activator inhibitor-1.
Disease Treated

Infection
- Bacterial
- Viral
- Fungal

Cardiovascular
- HBP
- Cholesterol
- Arrhythmias

Thrombosis
- DVT
- PE
- ACS
- Stroke
- AFIB
Left Atrial Thrombus
Atrial Fibrillation

Total Hip Replacement

Fractured Hip
Thrombogenicity of Prosthetic Cardiac Valves

- Caged Ball (Starr-Edwards) Valve
- Bileaflet (St. Jude Medical) Valve
- Porcine (Carpentier-Edwards) Bioprosthesis
- Single-Tilting-Disk Valve

Safety Considerations
Anticoagulant Drugs

- Bleeding
- Allergic Reactions
- Thrombocytopenia
- Skin Necrosis
- Liver Toxicity
- Vascular Reactions
- Rebound Thrombosis
- Anticoagulant Resistance
- Drug Interactions
- Population Variations (gender, age, ethnicity)
A generic drug is identical, or bioequivalent to a brand name drug in:

- Dosage form
- Safety
- Strength
- Route of administration
- Quality
- Performance characteristics
- Intended use
Traditional Generics

- Similar efficacy is assumed
- Safety is not monitored after introduction
- Interchangeable
- Economic advantages
- Clinicians thought to have a preference not necessarily based on medical literature
- Mandatory changes made by Pharmacy Benefit Managers (ie, Blue Cross, Humana, Aetna, etc)

Genazzani A. Biodrugs. 2007
Declerck P. Drug Safety. 2007
Oral Anticoagulants

- Warfarin (Coumadin®) and its derivatives [phenprocoumon (Sintrom®); acenocoumarol (Marcumar®)] have been used for over 50 years.
- Generics warfarins available since 1997
- 6 generic warfarins FDA rated bioequivalent to warfarin:
 - Barr Laboratories
 - Apothecon
 - Genpharm
 - Sandoz
 - USL Pharm
 - Taro Pharmaceuticals
Oral Anticoagulants

- A narrow therapeutic index (range between effective and toxic doses)
- Non-linear pharmacokinetics
- Small changes in dose can result in considerable changes in the anticoagulant response
Key Points Generic Warfarin

- Warfarin has a narrow therapeutic index and a varying pharmacodynamic response.

- Close monitoring is needed when patients are switched from brand name to generic product, or vice versa, or from one generic to another generic to avoid under-dosing or over-dosing.

- The generic interchange of warfarin should be avoided in elderly patients, and patients with liver disease and gastric resection.

- All anticoagulants are critical drugs. In the case of warfarin, small changes can result in large pharmacodynamic variations.
Biosimilar or Follow-On Biologics

- Proteins
- Polysaccharides
- Glycosylated Proteins
- Antibodies
- Polynucleotides
Unfractionated Heparin (UFH)
Contaminated Unfractionated Heparin
Low Molecular Weight Heparins

<table>
<thead>
<tr>
<th>Agent</th>
<th>Method of Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalteparin</td>
<td>Nitrous acid depolymerization</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>Benzylation followed by alkaline depolymerization</td>
</tr>
<tr>
<td>Tinzaparin</td>
<td>Enzymatic depolymerization with heparinase</td>
</tr>
<tr>
<td>Pentasaccharide</td>
<td>Synthetic analog</td>
</tr>
</tbody>
</table>
VTE Medically-ill

<table>
<thead>
<tr>
<th>Trial</th>
<th>RRR</th>
<th>Thromboprophylaxis</th>
<th>Patients with VTE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIME(^1)</td>
<td>86%</td>
<td>UFH (Q8hrs)</td>
<td>1.4 %</td>
</tr>
<tr>
<td>P<0.001 for equivalence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19%</td>
<td>Enoxaparin</td>
<td>0.2 %</td>
</tr>
<tr>
<td>THE-PRINCE(^2)</td>
<td>10.4%</td>
<td>UFH (Q8hrs)</td>
<td>10.4 %</td>
</tr>
<tr>
<td>P=0.015 for equivalence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4%</td>
<td>Enoxaparin</td>
<td>8.4 %</td>
</tr>
</tbody>
</table>

Low-Molecular-Weight Heparin (LMWH)

Clear Benefits over Placebo

<table>
<thead>
<tr>
<th>Study</th>
<th>RRR</th>
<th>Thromboprophylaxis</th>
<th>Patients with VTE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDENOX<sup>1</sup></td>
<td>63%</td>
<td>Placebo</td>
<td>14.9<sup>*</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enoxaparin 40mg</td>
<td>5.5</td>
</tr>
<tr>
<td>PREVENT<sup>2</sup></td>
<td>45%</td>
<td>Placebo</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dalteparin</td>
<td>2.8</td>
</tr>
<tr>
<td>ARTEMIS<sup>3</sup></td>
<td>47%</td>
<td>Placebo</td>
<td>10.5<sup>†</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fondaparinux</td>
<td>5.6</td>
</tr>
</tbody>
</table>

*VTE at day 14; †VTE at day 15

RRR = relative risk reduction
Is VTE Prophylaxis Effective?

Meta-Analysis

Anticoagulant VTE prophylaxis in 19,958 at-risk hospitalized medical patients in 9 studies

- 62% reduction in fatal PE [RR 0.38; CI 0.21-0.69]
- 57% reduction in fatal or nonfatal PE [RR 0.43; CI 0.26-0.71]
- 53% reduction in DVT [RR 0.47; CI 0.22-1.00]
- Nonsignificant increase in bleeding [RR 1.32; CI 0.73-2.37]

Recurrent VTE: 1st 24 Hours

- Subtherapeutic: 23%
- Therapeutic: 5%
- Supratherapeutic: 6%

Outcomes UFH

Standard vs Weight-Based Dosing

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Standard UFH</th>
<th>Weight-based UFH</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st aPTT > 1.5*</td>
<td>32%</td>
<td>86%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>aPTT > 1.5 in 24 hrs</td>
<td>77%</td>
<td>97%</td>
<td>0.002</td>
</tr>
<tr>
<td>aPTT therapeutic in 24 hrs</td>
<td>75%</td>
<td>89%</td>
<td>0.08</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>2/52</td>
<td>2/63</td>
<td>1</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1/52</td>
<td>0</td>
<td>0.45</td>
</tr>
<tr>
<td>RVTE</td>
<td>8/32 (25%)</td>
<td>2/41 (5%)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* aPTT > 1.5 times control

Standard and Weight-Based UFH

- Bolus 5000 units then
- Infusion 1300 units per hour
- Target aPTT therapeutic range of the hospital
- Check aPTT in 6 hours and adjust upward or downward by 200 units

aPTT should be checked every 6 hours for the first 24 hours then

Daily or more frequently as indicated by the need to achieve the therapeutic range
- Check platelet count baseline then every 2 to 3 days from day 4 thru 14
- Initiate warfarin 5 mg on day 1
- Continue unfractionated heparin until the INR is between 2 and 3 for 2 consecutive days

- Bolus 80 IU/kg then
- Infusion 18 IU/kg/hr
- Target aPTT therapeutic range of the hospital

Check aPTT in 6 hours and adjust via the schedule
- Check platelet count baseline then every 2 to 3 days from day 4 thru 14
- Initiate warfarin 5 mg on day 1
- Continue unfractionated heparin until the INR is between 2 and 3 for 2 consecutive days

Kearon C, et al Chest 2008;133:454S-545S
Unfractionated Heparin

Subcutaneous Dosing

- FIDO Investigators [1C]
 - Initial Dose 333 U/kg, SC
 - Maintenance 250 U/kg, SC, Q12hrs
 - No monitoring

- Pini Method [1C]
 - 250 u / kg, Q12hrs
 - Adjust dose 6 hours after the AM dose and adjust upward or downward based on aPTT of 1.5 x baseline aPTT

Kearon C, et al JAMA 2006;296:935-942
Kearon C, et al Chest 2008;133:454S-545S
All patients had bilateral leg venography and lung scanning on day 1 and 10. No warfarin started until day 11.

Venographic Assessment
Efficacy and Safety LMWH vs UFH

Clinical Outcomes
Efficacy and Safety LMWH vs UFH

UFH vs Tinzaparin 175 U/kg, Q24hrs

- **Total VTE**: 7% UFH, 4% Tinzaparin
- **DVT**: 3% UFH, 3% Tinzaparin
- **PE**: 2% UFH, 2% Tinzaparin
- **Maj Bld**: 1% UFH, 1% Tinzaparin
Clinical Outcomes
Efficacy and Safety LMWH vs UFH

ACCP Guidelines

- Initial treatment with LMWH, subcutaneously once or twice daily as an outpatient [1C] or as an inpatient [1A] rather than UFH.

- Dalteparin
 - 200 IU/kg, Qday

- Enoxaparin
 - 1 mg/kg, Q12hrs or
 - 1.5 mg/kg, Qday

- Tinzaparin
 - 175 IU/kg, Qday

- Fondaparinux
 - < 50 kg – 5mg, Qday
 - 50-100 kg – 7.5 mg, Qday
 - > 100 kg – 10 mg, Qday

Kearon C, et al Chest 2008;133:454S-545S
Merli GJ. Am J Med. 2008;121:S2-S9
Acute Coronary Syndrome

- 5.3 million ER visits due to chest pain
- 1.4 million hospitalizations per year
- 15% of (UA/NSTEMI) patients die or have recurrent MI within 30 days
- 41% of UA/NSTEMI patients die, have a recurrent MI or experience severe ischemia requiring Hospitalization within 2 weeks of initial presentation
- 85% of patients presenting with UA/NSTEMI go to the catheterization laboratory
Acute Coronary Syndrome

FRIC
(nadroparin)

FRAXIS
(dalteparin)

ESSENCE
(enoxaparin)

TIMI-11B
(enoxaparin)

End Point: Death, MI, Recurrent Ischemia / +/- Revascularization

Efficacy and Safety of Subcutaneous Enoxaparin in Non-Q-wave Coronary Events (ESSENCE)

Unstable angina
Non-Q-wave MI NSTEMI

Enoxaparin
1 mg/kg
SQ q 12 h
+ ASA

UFH
IV dose-adjusted
+ ASA

Follow-up visit
Day 14

Follow-up visit
Day 14

Follow-up call
Day 30/365

Follow-up call
Day 30/365

Treatment
min 48hrs, max 8 days

Follow-up

N=3,171

Double-blind, multicenter

ESSENCE: Results up to 30 days

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>UFH (N=1,564)</th>
<th>Enoxaparin (N=1,607)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, MI, recurrent angina</td>
<td>19.8%</td>
<td>16.6%</td>
<td>0.019</td>
</tr>
<tr>
<td>Death, MI</td>
<td>6.1%</td>
<td>4.9%</td>
<td>0.130</td>
</tr>
<tr>
<td>30 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, MI, recurrent angina</td>
<td>23.3%</td>
<td>19.8%</td>
<td>0.016</td>
</tr>
<tr>
<td>Death, MI</td>
<td>7.7%</td>
<td>6.2%</td>
<td>0.080</td>
</tr>
<tr>
<td>Revascularization</td>
<td>32.2%</td>
<td>27.1%</td>
<td>0.001</td>
</tr>
</tbody>
</table>

ESSENCE: Results

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>UFH (N=1,564)</th>
<th>Enoxaparin (N=1,607)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>7.0%</td>
<td>6.5%</td>
<td>NS</td>
</tr>
<tr>
<td>Any bleeding</td>
<td>14.2%</td>
<td>18.4%</td>
<td>0.001</td>
</tr>
</tbody>
</table>

ESSENCE: One-year follow-up

Death, MI, recurrent angina

Coronary revascularization

% Patients

Time since enrollment (months)

Heparin vs. Enoxaparin

p=0.022

p=0.002

N=3,171

Incidence of HIT

UFH vs Enoxaparin — THR Patients

- Improved Definition of HIT*

UFH (n=332) vs Enoxaparin (n=333)

- Secondary analysis of 665 patients who received (UFH) or enoxaparin after THR
- The secondary analysis employed a sensitive laboratory definition of HIT that allowed for earlier diagnosis and treatment

FREQUENCY, %

UFH: 4.8
Exoxaparin: 0.6

P<0.001

Improved Definition of HIT*

*≥50% platelet count fall from the postoperative peak.

HIT: LMWH vs UFH

Meta-analysis of 5 Studies*1,2

<table>
<thead>
<tr>
<th>Study or Subcategory</th>
<th>OR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leyvraz 1991</td>
<td></td>
</tr>
<tr>
<td>Warkentin 1995†</td>
<td></td>
</tr>
<tr>
<td>Ganzer 1999†</td>
<td></td>
</tr>
<tr>
<td>Pouplard 1999</td>
<td></td>
</tr>
<tr>
<td>Mahlfeld 2002†</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
</tr>
</tbody>
</table>

Favors LMWH Favors UFH

*Included surgical patients. †Three studies compared enoxaparin with UFH.

LMWHs
GENERIC EQUIVALENCE

Physicochemical Equivalence

Biochemical Equivalence

Pharmacologic Equivalence

Clinical Equivalence
LMWHs
GENERIC EQUIVALENCE

- Physicochemical Equivalence
- Biochemical Equivalence
- Pharmacologic Equivalence
- Clinical Equivalence
CURRENT PERSPECTIVE ON GENERIC LMWHs

- The regulatory bodies, US FDA and EMEA, may allow the generic versions of LMWHs and apply the same guidelines as for other biologicals.

- Additional requirements to provide supplementary chemical and biological data to support the filing may be needed. Some stipulations from the Citizens Petition may be considered.

- Clinical trials may or may not be required for specific products for approved indications depending upon the filing material review.
Issues with Biosimilars

- Variable potency and response

- Immunogenicity (glycosylation, contamination, changes to 3D structure)
 - Immune system is able to detect small changes in protein structure between an introduced molecule versus the original
Is Chemical Characterization of Branded LMWH Sufficient to Satisfy Assure Pharmacodynamics Equivalence?

No: LMWHs are hybrid products of biologic origin with chemical modifications. The starting material is more important to characterize for product consistency.
BioSimilar Drugs

- Derived from living cells, therefore they can not be copied or duplicated

- Two biologics can result in significantly different immune responses

- Lack of scientific evidence to guarantee a safe interchange between biologics

- Difficulties exist in:
 - Molecular characterization
 - Depth of knowledge in regard to mechanism of action

Genazzani A. Biodrugs. 2007
Declerck P. Drug Safety. 2007
Immunogenicity of BioSimilars

- Generally proteins isolated from human tissues or serum are less immunogenic than non-human proteins
- Immune system is able to detect small changes in protein structure between an introduced molecule versus the original
- Methods used to detect formation of antibodies:
 - Difficulties with measurement
 - Inability to compare different studies

Schellekens H. *Clin Ther*. 2002

Immunogenicity of Biosimilars
Clinical Consequences

- Severe allergic or anaphylactic reaction
- Immune response to therapeutic protein may reduce efficacy
- Immune response leading to autoimmunity to patients own endogenous proteins
- Main focus is the questionable efficacy of protein and non-protein products that are being manufactured
- Manufacturing process in some cases have been able to address these concerns

Schellekens H. *Clin Ther.* 2002
<table>
<thead>
<tr>
<th>Political Statement</th>
<th>Scientific Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosimilar designed to be identical to parent product</td>
<td>Biosimilars may be similar but not identical</td>
</tr>
<tr>
<td>Parent product composition varies batch or lot</td>
<td>Batch-to-batch variability is a characteristic of all biologics</td>
</tr>
<tr>
<td></td>
<td>Variability is unique to each product</td>
</tr>
<tr>
<td></td>
<td>Limits of acceptable variability defined by clinical experience</td>
</tr>
<tr>
<td>Laboratory data predicts biosimilar efficacy and safety in clinical settings</td>
<td>Laboratory testing not sufficient</td>
</tr>
<tr>
<td></td>
<td>Clinical data on efficacy, safety, and immunogenicity needed</td>
</tr>
<tr>
<td>MFG process changes frequently for parent product without supporting studies</td>
<td>FDA requires clinical data on MFG</td>
</tr>
<tr>
<td></td>
<td>MFG changes are supported by data</td>
</tr>
</tbody>
</table>
Waxman Biosimilars Bill

- Biosimilarity based on chemical, physical, biologic and other non-clinical laboratory studies.

- One or more clinical studies are required to demonstrate safety, purity and potency.

- Demonstration on similarity in one indication can be used to support claims of similarity in other indications.

- Requested indications must be approved for the reference product.

- Route, dosage and strength must be the same as that of the reference product.
Waxman Biosimilars Bill

- Designation of interchangeability is possible, though not a requirement for biosimilarity.

- The official name of the biosimilar agent will be the same as that of the reference product.

- Innovator biologic products will receive marketing exclusivity for 5 years from the date of approval.
 - Period may be extended 6 months if supplement application for new indication is approved (excluding use in pediatric subpopulation).
 - Period may be reduced by 3 months if annual gross sales in US exceed $1 billion.
Rep. Anna Eshoo
14th Congressional District of California
Eshoo Biosimilars Bill

- Biosimilarity based on analytical studies to show product is highly similar to reference product notwithstanding minor differences in clinically inactive components.

- Clinical studies are required to demonstrate safety, purity and potency in each condition of use approved for the reference product.

- Requested indications must be approved for the reference product.

- Route, dosage and strength must be the same as that of the reference product.
Eshoo Biosimilars Bill

- Designation of interchangeability is possible, though not a requirement for biosimilarity.

- The official name of the biosimilar shall be unique so that it is distinguished from the reference product and any subsequent biosimilars.

- Guidance for licensure must be provided by the FDA.
 - FDA has the ability to not approve a given product or product class if the current science or experience precludes it.
Eshoo Biosimilars Bill

- Innovator biologic products will receive marketing exclusivity for 12 years from the date of approval.
 - Period may be extended to 14 years if supplement application for new indication is approved
 - Period may be increased by an additional 6 months if use in pediatric populations is approved.
Comparison of the Biosimilars Legislation Proposed by Representatives Waxman and Eshoo

<table>
<thead>
<tr>
<th></th>
<th>Waxman Bill</th>
<th>Eshoo Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosimilarity based on:</td>
<td>Chemical, physical, biologic and other non-clinical laboratory studies</td>
<td>Analytical studies to show that product is highly similar to the reference notwithstanding minor differences in clinically inactive components</td>
</tr>
<tr>
<td>Animal studies</td>
<td>Not specifically mentioned</td>
<td>Yes; including assessment of toxicity</td>
</tr>
<tr>
<td>Clinical studies</td>
<td>Yes; one or more studies sufficient to demonstrate safety, purity and potency. Applicant may use demonstration of similarity or interchangeability in one indication to support claims in other indications provided the same mechanism of action is involved in all conditions</td>
<td>Yes; one or more studies (including immunogenicity and PK/PD) to demonstrate safety, purity and potency in each condition of use approved for the reference product.</td>
</tr>
<tr>
<td>Mechanism of action</td>
<td>Must be the same as that of the reference product</td>
<td>Same as Waxman bill</td>
</tr>
<tr>
<td>Requested indications</td>
<td>Must be approved for the reference product</td>
<td>Same as Waxman bill</td>
</tr>
<tr>
<td>PK/PD</td>
<td>Route, dosage, strength must be the same as the reference product</td>
<td>Same as Waxman bill</td>
</tr>
<tr>
<td>Production</td>
<td>Appropriate facility must be used</td>
<td>Same as Waxman bill</td>
</tr>
<tr>
<td>Waiver of requirements</td>
<td></td>
<td>FDA Secretary has the discretion to waive any analytical, animal or immunogenicity requirements determined to be unnecessary.</td>
</tr>
<tr>
<td>Interchangeability</td>
<td>Possible to get such a designation, though not required for biosimilarity</td>
<td>Same as Waxman bill</td>
</tr>
<tr>
<td>Product name</td>
<td>FDA Secretary shall designate the same official name for the biosimilar as for the reference drug</td>
<td>FDA Secretary shall ensure that each biologic product approved under the bill bears a unique name that distinguishes it fro the reference product and any subsequent biosimilars approved.</td>
</tr>
</tbody>
</table>
Comparison of the Biosimilars Legislation Proposed by Representatives Waxman and Eshoo

<table>
<thead>
<tr>
<th></th>
<th>Waxman Bill</th>
<th>Eshoo Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance on requirements</td>
<td></td>
<td>FDA Secretary must issue guidance on requirements for licensure following a period of public comment/input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No products can be approved until such a time that final guidance has been issued.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDA Secretary may indicate in guidance that certain products or product classes will not be licensed because current science or experience does not allow it.</td>
</tr>
<tr>
<td>Marketing exclusivity for innovator products</td>
<td>5 years from date of approval May be extended by 6 months if a supplement application is approved for a new indication other than use in a pediatric subpopulation May be reduced by 3 months is annual gross sales in the US exceed $1 billion.</td>
<td>12 years from the date of approval If a supplement application for a new indication is approved during the initial 8 years following approval, the period of exclusivity is increased to 14 years. An additional 6 months is granted if use in pediatric or neonatal subpopulations is approved at any time during the period of exclusivity.</td>
</tr>
</tbody>
</table>