

Thomas Jefferson University Jefferson Digital Commons

Department of Physical Therapy Capstone Posters

Department of Physical Therapy

2-12-2016

High Intensity Interval Training in High Risk Individuals: A Systematic Review of the Literature

Claire Marine, SPT
Department of Physical Therapy, Thomas Jefferson University

Stephanie Nagy, SPT

Department of Physical Therapy, Thomas Jefferson University

Chelsea Payne, SPT
Department of Physical Therapy, Thomas Jefferson University

Carolyn Wise, SPT
Department of Physical Therapy, Thomas Jefferson University

Christine K. Wade, PT, EdD, RN
Department of Physical Therapy, Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/dptcapstones

Let us know how access to this document benefits you

Recommended Citation

Marine, SPT, Claire; Nagy, SPT, Stephanie; Payne, SPT, Chelsea; Wise, SPT, Carolyn; and Wade, PT, EdD, RN, Christine K., "High Intensity Interval Training in High Risk Individuals: A Systematic Review of the Literature" (2016). *Department of Physical Therapy Capstone Posters*. 6. https://jdc.jefferson.edu/dptcapstones/6

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Physical Therapy Capstone Posters by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

High Intensity Interval Training in High Risk Individuals: A Systematic Review of the Literature

Claire Marine, SPT, Stephanie Nagy, SPT, Chelsea Payne, SPT, Carolyn Wise, SPT Christine Wade, PT, EdD, RN

Thomas Jefferson University College of Health Professions, Department of Physical Therapy

Background

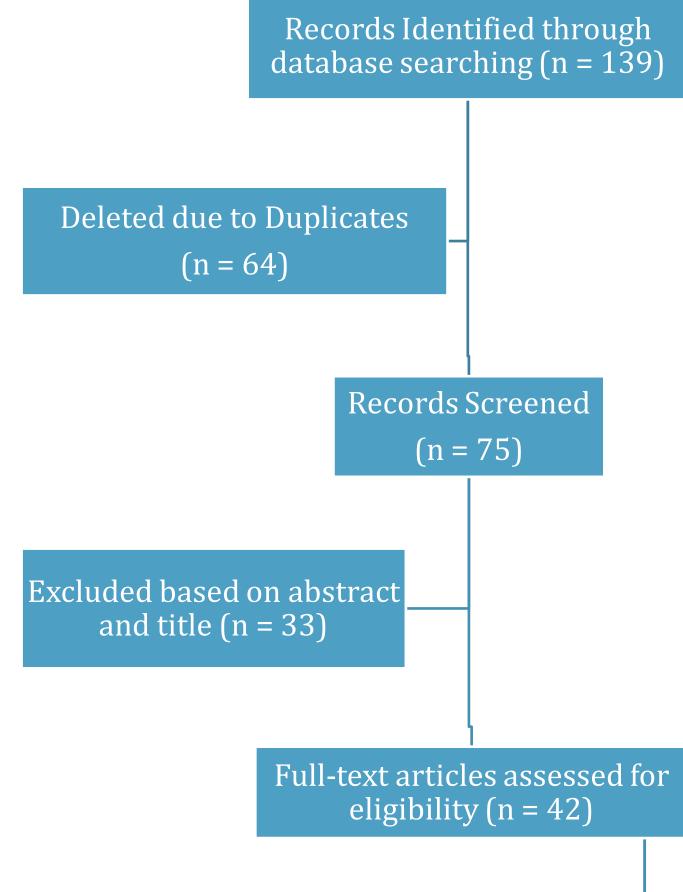
- One of the barriers to including aerobic exercise in physical therapy treatment plans is lack of time⁴
- Moderate intensity exercise is the current exercise recommendations for populations who are at high risk for adverse events during exercise¹⁰
- High intensity interval training (HIIT) uses short bouts of high-energy exercise that can accumulate to a shorter overall exercise time
- HIIT has positive health benefits in healthy adults including improvement in anaerobic and aerobic capacity⁹ and decreasing risk of coronary artery disease⁸
- HIIT may also prove beneficial in populations with progressive diseases who are at high-risk for exercise complications such as chronic obstructive pulmonary disease (COPD) and chronic heart failure (HF)

Purpose

• This systematic review of the literature (SRL) aims to demonstrate that high intensity interval training is an effective, safe, and more efficient training protocol as compared to continuous moderate intensity exercise in patients with COPD or HF

Methods

Timeline


Began July 2015

Databases

 Cochrane, CINAHL, Scopus, and Ovid Medline

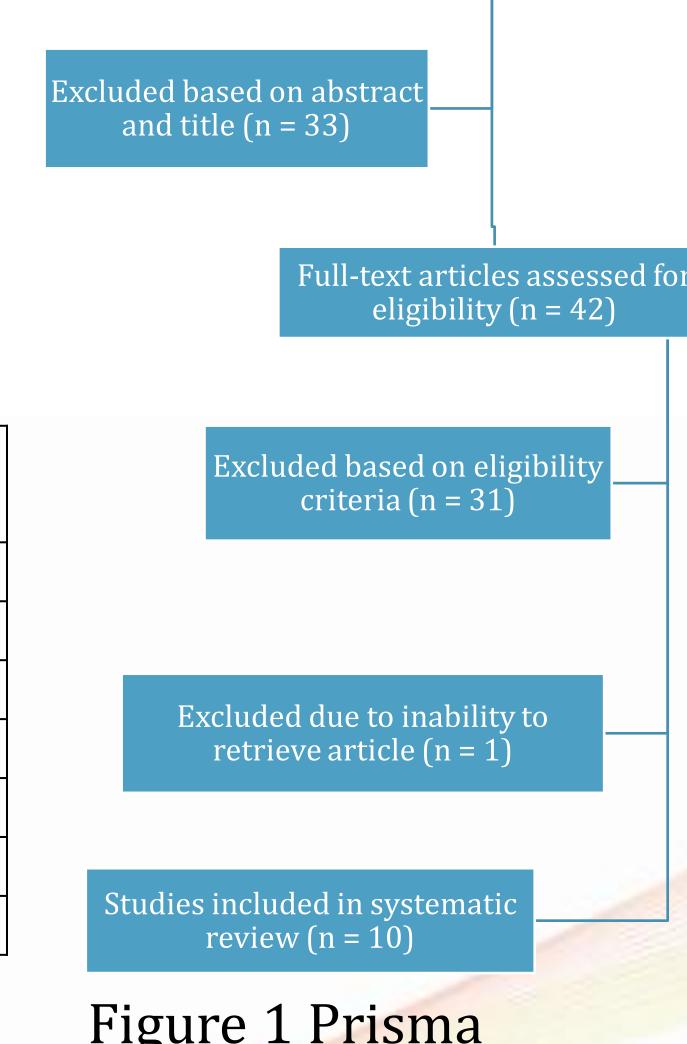
Search terms

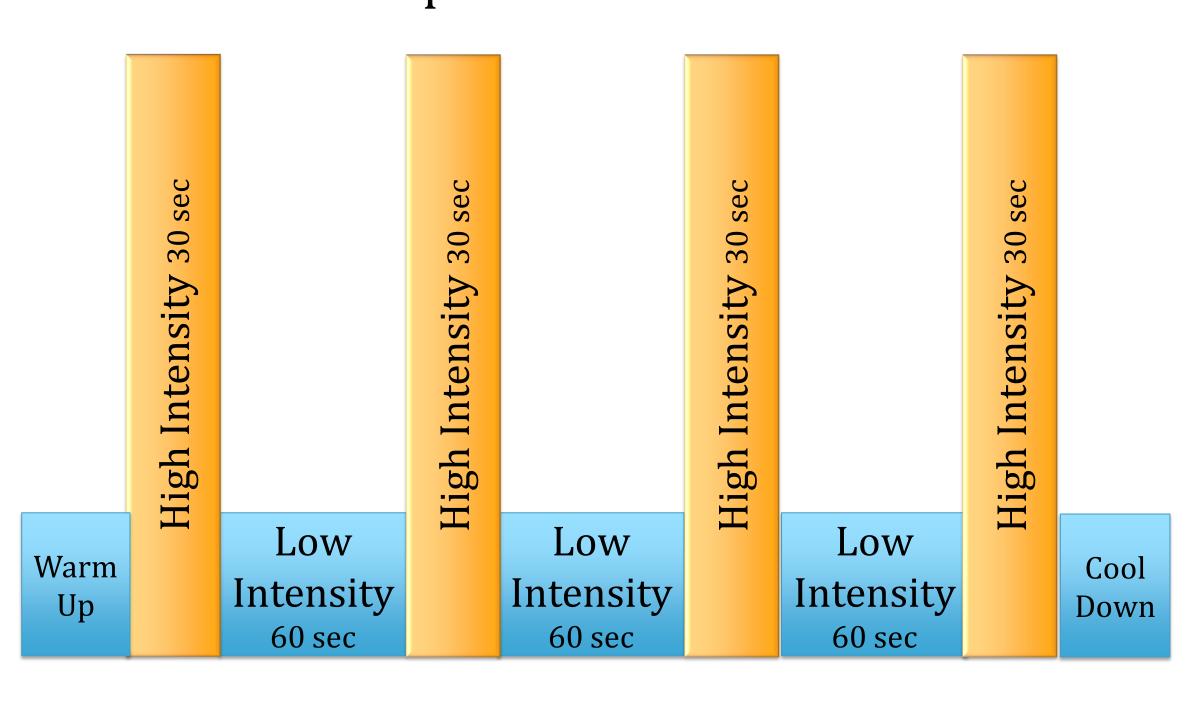
 ("high intensity interval training" AND "COPD") and ("high intensity interval training" AND "heart failure")

Table 1 Average Subject Characteristics

	Heart	
	Failure	COPD
n (Total)	45.1	21.7
Age	64.4	63.9
Sex (M/F)	35.2/10	15/6.7
EF (%)	32.6	-
FEV1/FVC (%)	ı	46.3
PEDro Score	5.3/10	4.7/10
Attrition (%)	21.4	11.7

FEV1/FVC: percentage of vital capacity expired in first second of maximal expiration; EF: left ventricular ejection fraction




Figure 1 Prisma

Results

Table 2 HIIT Protocol Examples

Study Ref.	Modality	High Intensity	Low Intensity or Rest	Intervals	Total session time	
Heart F	ailure					
32	Cycle ergometer	80-100% WRpeak	Passive	30s HI, 30s rest	45 min	
28	Uphill treadmill and outdoor walking	90-95% of peak HR	50-70% peak HR	4x4min at HI, 3 min LI	25 min	
Chronic Obstructive Pulmonary Disease						
42	Cycle ergometer	85-95% peak PHR	Passive rest while other leg cycles	4x4 min each leg, 8 series, 100% SpO ₂	32 min	

Sample HIIT Protocol

Table 3 Outcomes in Subjects with Heart Failure

Study Ref.	Method of Exercise	Lung Function	Cardiovascular Function		QOL
32	High Intensity	↑ VO2peak, WRpeak	↑ LV function, elastic qualities of aorta	↑ 6MWT	↑ QOL (MLHFQ)
	Control	No change	↑ PWV	No change	No change
41	High Intensity	↑ VO2peak, time at VT1 ^a	NT	↑ 6MWT	↑ QOL (HADS)
41	Continuous Exercise	↑ time at VT1	NT	↑ 6MWT	↑ QOL (HADS)
33	High Intensity + Resistance Exercise	↑VO2peak, WRpeak, VO2 AT, RRR ^a	NT	NT	NT
	High Intensity	↑ VO2peak, WRpeak, VO2/t slope	NT	NT	NT
39	High Intensity	↑ VO2peak, RER	↑ DBP ^a , HR, NYHA class	NT	NT
39	Continuous Exercise	↑ VO2peak, RER	↑ DBP, HR, NYHA class	NT	NT
	High Intensity	↑ VO2peak	No change	↑ gait speed	No change
34	Continuous Exercise	↑ VT performance	IN NYHA CIASS	↑ sit to stand measure, gait speed	No change
35	High Intensity	NT		↑ 6MWT ^a , workload ^a , exercise time*	↑ QOL ^a (MLFHQ)
	Control	NT	NT	NR	NR
37	High Intensity	↑ VO2peak ^a , work economy ^a	↑ structural changes in heart ^a , hemodynamic measures ^a , HR	NT	↑ QOL ^a (MacNew)
	Continuous Exercise	↑ VO2peak	↑ hemodynamic measures	NT	↑ QOL (MacNew)
	Control	NR	NR	NR	No change

Table 4 Outcomes in Subjects with COPD

Study Ref.	Method of Exercise	Lung Function	Cardiovascular Function	Functional Mobility	QOL
36	HVNOVIC HIGH INTENSITY	↑ VO2peak, workload, multiple PFT measures	No change in HR	NT	NT
	Normoxic High Intensity	↑ VO2peak, workload, and RER	No change in HR	NT	NT
38	High Intensity	↑ VO2peak	↑ hemodynamic measures, HR	NT	NT
	Continuous Exercise	↑ VO2peak	↑ hemodynamic measures, HR	NT	NT
42	High Intensity	↑ WRpeak, minute ventilation	NR	↑ leg discomfort/dyspnea	NT
	Continuous Exercise	↑ WRpeak	NR	NR	NT

6MWT: 6-minute walk test, a: significant difference between groups noted, AT: anaerobic threshold, CE: continuous exercise, DBP: diastolic blood pressure, HADS: Hospital Anxiety and Depression Scale, HI: high intensity, HOMA-IR: homeostasis model assessment—insulin resistance, HR: heart rate, LV: left ventricular, MLFHQ: Minnesota Living with Heart Failure Questionnaire, NR: not reported, NT: not tested, NYHA: New York Heart Association, PWV: pulse wave velocity, RER: respiratory exchange ratio, RRR: respiratory rate recovery, RT: resistance training, VO2/t slope: first-degree slope of VO2 at first minute recovery, VT: ventilatory threshold, VT1: first ventilatory threshold, WRpeak: work rate peak, \uparrow : improved compared to baseline. PFT: pulmonary function test, RER: respiratory exchange ratio

Discussion

Safety

 No significant adverse events occurred due to exercise training. Three deaths reported were unrelated to the research interventions³⁵

Efficacy

• HIIT subjects improved: VO2peak^{34, 41}, left ventricular function³², structural changes to the heart³⁷, resting HR³⁷, Six Minute Walk Test³², ³⁵, decreased leg discomfort during exercise⁴², and Quality of Life^{32, 35}

Efficiency

- The high intensity protocols involve less total active exercise time than continuous exercise
- When comparing HIIT and CE total start-to-finish session time, some HIIT protocols were shorter and some were longer than CE sessions

Limitations

 Limitations include high attrition, appropriateness of studies included, variation of protocols, and completeness of outcomes reported

Further Research

Identifying HIIT protocols that utilize minimal possible time for exercise training yet maintain effectiveness will be beneficial for this patient population.

Conclusion

 This SRL provides evidence that high intensity interval training can be an effective, safe, and possibly a more time efficient exercise program for patients between the ages of 18-80 years old diagnosed with either chronic heart failure without preserved ejection fraction or chronic obstructive pulmonary disease

Clinical Recommendation

- Estimate maximal power with a test such as the steep ramp to determine proper intensity level
- HIIT should be conducted within the clinic with close supervision, especially when initially implementing the training protocol
- Supervision ensures proper patient education with various intensity levels, ensures patient safety, and provides motivation for high intensity

Additional Information

Full Poster

Full Paper

References