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Introduction: Pulmonary exacerbations (PEx) in persons with cystic fibrosis

(CF) are primarily related to acute or chronic inflammation associated with

bacterial lung infections, which may be caused by several bacteria that activate

similar bacterial genes and produce similar by-products. The goal of our

study was to perform a stratified functional analysis of bacterial genes at

three distinct time points in the treatment of a PEx in order to determine the

role that specific airway microbiome community members may play within

each clinical state (i.e., PEx, end of antibiotic treatment, and follow-up). Our

secondary goal was to compare the change between clinical states with the

metabolic activity of specific airway microbiome community members.

Methods: This was a prospective observational study of persons with

CF treated with intravenous antibiotics for PEx between 2016 and 2020

at Children’s National Hospital. Demographic and clinical information as

well as respiratory samples were collected at hospital admission for PEx,

end of antibiotic treatment, and follow-up. Metagenomic sequencing was

performed; MetaPhlAn3 and HUMANn3 were used to assign sequences to

bacterial species and bacterial metabolic genes, respectively.

Results: Twenty-two persons with CF, with a mean age of 14.5 (range 7–23)

years, experienced 45 PEx during the study period. Two-hundred twenty-

one bacterial species were identified in the respiratory samples from the

study cohort. Ten bacterial species had differential gene abundance across

changes in the clinical state including Staphylococcus aureus, Streptococcus

salivarius, and Veillonella atypica (all padj < 0.01 and log2FoldChange > |2|).

These corresponded to a differential abundance of bacterial genes, with

S. aureus accounting for 81% of the genes more abundant in PEx and S.

salivarius accounting for 83% of the genes more abundant in follow-up, all

compared to the end of treatment. Lastly, 8,653 metabolic pathways were
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identified across samples, with again S. aureus and S. salivarius contributing

to the differential abundance of pathways (106 in PEx vs. 66 in follow-up,

respectively). V. atypica was associated with a single metabolic pathway (UDP-

N-acetyl-D-glucosamine biosynthesis) increased in follow-up compared to

PEx.

Discussion: Taken together, these data suggest that the metabolic potential of

bacterial species can provide more insight into changes across clinical states

than the relative abundance of the bacteria alone.

KEYWORDS

cystic fibrosis, lung disease, microbiome, bacterial gene, metabolic pathway

1. Introduction

Cystic fibrosis (CF) is a genetic disease caused by the
absence or dysfunction of the cystic fibrosis transmembrane
conductance regulator (CFTR) protein (1). As a result,
persons with CF commonly experience impaired pulmonary
mucociliary clearance and subsequent chronic airway infections
(2). Moreover, the lungs of CF patients are unable to properly
clear the damaging byproducts of the inflammatory immune
responses associated with chronic airway infections (3). When
a response to infection causes an acute decrease in lung function
or patient health (referred to as a pulmonary exacerbation, PEx),
antibiotic intervention becomes necessary to regain pulmonary
function (4). This cycle of chronic infection, inflammation,
damage, treatment, and re-infection creates a negative feedback
loop where the more damage the lungs sustain, the more
likely another infection will occur. Additionally, many external
genetic factors and genotypic variants of CF contribute to the
disease phenotype of the CF individual that make it very difficult
to create a universal treatment solely based on host genotype or
phenotype (5). Beyond CFTR modulators and broad antibiotic
treatments directed at common CF airway pathogens, insights
may be gained in observing the variation in the CF airway
microbiome across clinical states (6–9). More recent work also
suggests that the metabolome could be used to predict or
diagnose pulmonary exacerbation (10, 11).

The goal of our study was to perform a stratified functional
analysis of bacterial genes associated with the clinical states of
PEx hospitalization, end of antibiotic treatment, and follow-up
in order to determine the role that specific airway microbiome
community members may play within each clinical state. Our
secondary goal was to compare the change between clinical
states with the metabolic activity of specific airway microbiome
community members. Our hypothesis is that differences in gene
expression of specific airway community members is detectable
between clinical states and correlates to differences in metabolic
activity between clinical states. These findings will provide
insight into the mechanisms behind changes in clinical state as

well as airway microbiome community members’ contributions
to these changes.

2. Materials and methods

2.1. Study design

This single-center prospective observational study enrolled
persons with CF treated with intravenous (IV) antibiotics for
PEx between 2016 and 2020 at Children’s National Hospital
in Washington, DC. Study approval was obtained from the
Institutional Review Board at Children’s National (Pro6781,
8 Dec 2015 and Pro10528, 31 Aug 2018). Written informed
consent was obtained from study participants ≥18 years of
age, with written parental consent from children <18 years
of age. Assent was obtained for children 11–17 years of age.
Respiratory samples and clinical data were collected at during
three clinical states: the initiation of IV antibiotics for PEx, at
the end of antibiotic treatment, and at their next follow-up visit,
an adaptation of the BETR criteria (6, 12, 13). Study participants
could re-enroll in the study if they had another exacerbation
during the study period; as such, many study participants
contributed respiratory samples for more than one PEx.

2.2. Respiratory sample collection and
processing

Sputum, oropharyngeal (OP) swab, or bronchoalveolar
lavage (BAL; all performed clinically) specimens were collected
and processed with standard procedures previously described
(12–14). Briefly, respiratory samples were collected in sterile
containers and held at 4◦C until processing. Microbiologic
cultures were performed in the clinical laboratory. For future
metagenomic sequencing, sputum and BAL specimens were
mixed with equal volumes of Sputasol (Thermofisher) and
sterile normal saline, followed by vortexing and heating in
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a 37◦C bead bath to homogenize the sample. Homogenized
samples and the Amies media from OP swabs were centrifuged
at 12,000 g × 10 min to pellet the cells. Supernatants and cells
were frozen separately at −80◦C until DNA extraction.

2.3. Bacterial DNA extraction and
metagenomic sequencing

Bacterial DNA extraction and metagenomic sequencing
were performed with standard procedures as previously
described (13, 15). Briefly, frozen cell pellets were thawed at
room temperate and mixed with sterile phosphate buffered
saline (PBS). The QIAamp DNA Microbiome Kit (Qiagen) was
used following the manufacturer’s protocol to extract bacterial
DNA. Qubit (Thermofisher Scientific) was used to measure
DNA quantity and Bioanalyzer (Agilent) was used to assess
DNA quality. Libraries were constructed using a Nextera XT
Library Prep Kit (Illumina). A Mid-Output 2 × 150 cycle kit
was used to sequence 20–30 libraries per run on a NextSeq
500 (Illumina). The respiratory samples were also sequenced
with ZymoBiomics Microbial Community Standards (Zymo
Research) as controls.

2.4. Bioinformatic analysis

Evaluation of sequences for quality and for sequence
trimming was done using FastQC and Flexbar (16). Human
sequences were filtered out using KneadData (17). MetaPhlAn3
was used to assign bacterial taxonomy (18), using the function
“rel_ab_w_read_stats” to generate count tables. HUMAnN3
was used to analyze the sequence data of the samples
for gene, pathway, and associated microbiome community
member (18). MetaCycwas utilized for pathway collection (19).
The function “humann_regroup” was used to assign Gene
Ontology (GO) values from the original uniref90 gene output.
Relative abundance and count tables were imported into R for
subsequent analyses and figure generation. Rstudio packages
used for analysis included DESeq2 v.1.24.0 (20), ggplot2 v3.2.0
(21), phyloseq v.1.28.0 (22), and vegan v.2.5-6 (23). Bacterial
species observed, Shannon index, and the inverse Simpson’s
index were calculated using the specnumber and diversity
functions, respectively. Permutational analysis of variance
(PERMANOVA) was also performed in Rstudio using the adonis
function for analysis and portioning sums of squares using Bray-
Curtis dissimilarities. Repeated patient samples were controlled
for using the strata function. DESeq2 was used to perform the
differential abundance analysis between time points for bacterial
taxonomy, bacterial genes, and bacterial metabolic pathways
(20), utilizing a log fold change shrinkage for visualization and
ranking (24). STATA/IC (v15.1) was used for statistical analysis
to compare these measures across time points.

3. Results

3.1. Study cohort and clinical
characteristics

Twenty-two persons who had a total of 45 PEx were
included in the study (Table 1), with 13 of 22 study participants
contributing respiratory samples for multiple PEx. The median
age was 16.5 years (range 7–23). The majority were male
(59%) and non-Hispanic White (55%). Sixty-eight percent
had at least one copy of the F508del mutation of the CFTR
gene. For 42% of the PEx, the study participant was receiving
a CFTR modulator (ivacaftor n = 5, ivacaftor/lumacaftor
n = 12, and tezacaftor/ivacaftor n = 2). At onset of the
first PEx, the mean body mass index was 19.4 (SD 3.5), and
the mean best percent predicted forced expiratory volume in
one second (ppFEV1) in the prior 6 months was 81.4% (SD
25.9%). The most common bacteria identified by respiratory
culture were Pseudomonas aeruginosa (47%), methicillin-
resistant Staphylococcus aureus (20%), and methicillin-sensitive
Staphylococcus aureus (16%). The most common antibiotics
received for the PEx were tobramycin (62%), ceftazidime
(32%), and meropenem (27%). The most common antibiotics
directed against methicillin-resistant Staphylococcus aureus
were vancomycin and trimethoprim-sulfamethoxazole (each
13%). The median antibiotic course for the PEx was 14 days.
Using a paired t-test, we found a significant difference in
ppFEV1 between PEx and end of treatment (65.1 vs. 80.3,
p < 0.001, observations = 42 of 45 total PEx) and between
end of treatment and follow-up (80.4 vs. 70.5, p < 0.001,
observations = 41 of 45 total PEx).

3.2. Bacterial abundance and diversity
identified by metagenomic sequencing

All PEx respiratory samples were collected and sequenced
(see Figure 1 for breakdown of sample type). Thirty-three end
of treatment respiratory samples were collected and successfully
sequenced (2 failed sequencing, 10 were not collected). Thirty-
nine follow-up samples were collected and sequenced (6 were
not collected). As a sensitivity analysis was previously performed
of our sample collection and sequencing methods which showed
good congruence between sample types (13), we did not
adjust for sample type in our subsequent analyses. Five Zymo
sequencing controls showed significant correlation with their
expected community compositions (R 0.743–0.812, R2 0.552–
0.659, all p < 0.01). The clinical samples had an estimated
number of reads from the clades in the range of 37.8 K to 7.7
million.

A total of 211 bacterial species were identified across all
respiratory samples, with a range of 1–86 species observed per
sample (Figure 2). We also compared alpha diversity between
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time points using a paired t-test (Table 2). We did not find
significant differences between PEx and end of treatment but
did between end of treatment and follow up. We also found

TABLE 1 Study cohort demographics and clinical features.

Study participant characteristics N = 22

Age at first PEx (mean years, SD) 14.6 (5.0)

Sex (n, % female) 9 (41%)

Race/Ethnicity (n, %)

Non-Hispanic White 12 (54.5%)

Non-Hispanic Black 1 (4.5%)

Hispanic 9 (41%)

CFTR genotype (n, %)

F508del homozygous 10 (45.5%)

F508del heterozygous 5 (22.7%)

Other 7 (31.8%)

Pulmonary exacerbation
characteristics

N = 45

Current culture results (n, %)*

Methicillin-sensitive Staphylococcus aureus 7 (16%)

Methicillin-resistant Staphylococcus aureus 9 (20%)

Streptococcus pyogenes 1 (2%)

Pseudomonas aeruginosa 21 (47%)

Achromobacter xylosoxidans 1 (2%)

Burkholderia cepacia 3 (7%)

Burkholderia multivorans 1 (2%)

Burkholderia gladioli 3 (7%)

Acinetobacter baumanii 1 (2%)

Pseudomonas putida 1 (2%)

Unidentified gram-negative rod 1 (2%)

Antibiotics used (n, %)*

Piperacillin-tazobactam 7 (16%)

Ceftazidime 16 (36%)

Cefepime 9 (20%)

Ceftaroline 1 (2%)

Meropenem 12 (27%)

Aztreonam 5 (11%)

Tobramycin 28 (62%)

Amikacin 2 (4%)

Ciprofloxacin 2 (4%)

Levofloxacin 4 (4%)

Vancomycin 6 (13%)

Linezolid 3 (7%)

Clindamycin 1 (2%)

Doxycycline 3 (7%)

Trimethoprim-sulfamethoxazole 6 (13%)

Total antibiotic days (mean, SD) 15.2 (4.9)

PEx, pulmonary exacerbation; SD, standard deviation; CFTR, cystic fibrosis
transmembrane conductance regulator.
*Totals do not add to 100% as many cultures had multiple organisms and multiple
antibiotics were used for each PEx.

FIGURE 1

Flow diagram of respiratory samples by time point. E, pulmonary
exacerbation; T, end of antibiotic treatment; F, follow up; BAL,
bronchoalveolar lavage; OP, oropharyngeal.

a significant difference in beta diversity as measured by the
Bray-Curtis index, which appeared to be driven by the shift
in the end of treatment samples (Figure 3). Additionally, we
evaluated the differential abundance of bacterial species after
first normalizing the count data to relative abundance (25).
Only Gemella haemolysans was increased in PEx compared
to end of treatment (log2 fold change 4.7, padj < 0.001).
Gemella haemolysans (log2 fold change 5.0, padj < 0.001) and
Streptococcus salivarius (log2 fold change 5.1, padj = 0.004) were
increased in follow-up compared to end of treatment.

3.3. Stratified differential abundance of
bacterial genes across changes in
clinical status

Of the 221 total bacteria identified in the dataset, a total of
ten species (4.5%) displayed significant (padj < 0.01 and log2
fold change > |2|) differential gene abundance across changes
in clinical status. These included Gemella haemolysans, Gemella
morillorum, Neisseria flavescens, Staphylococcus argenteus,
Staphylococcus aureus, Streptococcus mitis, Streptococcus
oralis, Streptococcus salivarius, Veillonella atypica, and
Actinomyces_sp_oral_taxon_181 (Figure 4). Interestingly,
the species Gemella morbillorum and Veillonella atypica
contained differentially abundant genes in follow-up compared
to end of treatment but did not in PEx compared to end of
treatment. Similarly, the Actinomyces sp. was not present in
follow-up versus end of treatment (Figure 4). As shown in
Figure 5, when we compared the gene abundances at follow-up
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FIGURE 2

Relative abundance plot of the top 40 species observed. The 40 species with the highest contribution to the dataset are included here. The bar
plot for each sample can approach a maximum relative abundance of 1.00. In cases where the bar is <1.00, it is because the remaining species
contributing to that respiratory sample’s community are from the remaining 181 species observed in the dataset. E, pulmonary exacerbation; T,
end of treatment; F, follow up.

TABLE 2 Alpha diversity measures between time points.

Alpha diversity
measures

Pulmonary
exacerbation

(n = 34*)

End of
treatment
(n = 34*)

P-value End of
treatment
(n = 29†)

Follow up
(n = 29†)

P-value

Species observed (mean, SD) 21.1 (19.3) 14.8 (13.5) 0.133 14.7 (13.0) 35.6 (29.5) <0.001

Shannon index (mean, SD) 1.244 (0.876) 1.226 (0.696) 0.920 1.236 (0.627) 1.647 (0.982) 0.047

Inverse simpson index
(mean, SD)

3.125 (2.559) 2.975 (1.807) 0.745 2.861 (1.523) 4.680 (3.784) 0.020

SD, standard deviation.
*For the paired t-test, the number of comparisons is limited to the number of end of treatment samples (n = 33).
†For the paired t-test, the number of comparisons is limited to the number of paired samples (n = 27).

and PEx, we found that each of the eleven genes found belonged
to Veillonella atypica in follow-up.

A total of 192,714 genes were identified across all samples.
Of these genes, across all comparisons, 1,673 were found to
be significantly differentially abundant with padj < 0.01 and
log2 fold change > |2|. When comparing the gene abundances
at PEx and end of treatment, there were 1,608 significantly
differentially abundant genes in PEx distributed across all three
Gene Ontology (GO) categories with 552 genes in “Biological
Processes” [(BP)], 951 genes in “Molecular Functions” [(MF)],
83 genes in “Cellular Components [(CC)], and 22 genes left

uncategorized (Figure 4C and Table 3). When comparing the
gene abundance at follow-up and end of treatment, there were
989 significantly differentially abundant genes in follow-up with
358 genes in [BP], 566 genes in [MF], 50 genes in [CC], and 15
left unidentified (Figure 4D and Table 3).

Interestingly, although the comparisons of PEx and follow-
up versus end of treatment displayed similar distributions
of genes across GO categories (Figures 4C, D), the species
demonstrating these changes in each comparison to treatment
differed. The species Staphylococcus aureus accounted for
eighty-one percent of the differential gene abundance in PEx
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FIGURE 3

Bray-Curtis non-metric multidimensional scaling (NMDS) plot. E, pulmonary exacerbation; T, end of treatment; F, follow up. The ellipses
represent the t distribution. The adonis test was significant at p = 0.001, controlling for repeated patient samples using the strata function.

with 1,306 genes represented in all three GO categories.
Meanwhile, the species Streptococcus salivarius accounted for
eighty-three percent of the differential gene abundance in
follow-up with 821 genes represented in all three GO categories.
Additionally, of the 989 genes differentially abundant in follow-
up vs. end of treatment, 128 (121 belonging to Streptococcus
salivarius) genes differed from those in PEx. This number was
dwarfed by the 673 (651 belonging to Staphylococcus aureus)
genes that were unique to PEx (not differentially abundant in
follow-up vs. end of treatment) (Figure 6). In the comparison of
follow-up to PEx, eleven total genes spread across all three GO

Categories were found to be differentially abundant in follow-
up, with log2 fold changes ranging from 2.5–3.5 (Figure 5).

3.4. Stratified differential abundance of
bacterial metabolic pathways across
changes in clinical status

There were 8,653 metabolic pathways identified across
all samples. Of these pathways, across all comparisons, 120
were found to be significantly differentially abundant with
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FIGURE 4

Stratified differential abundance of bacterial genes between changes in clinical status. Panel (A) Log2 fold change distribution across bacterial
species in Follow-up compared to Treatment across GO categories. Panel (B) Log2 fold change distribution across bacterial species in
Exacerbation Onset vs. Treatment across GO categories. Panel (C) Stratified differential abundance of bacterial genes in Follow-up compared to
Treatment across GO categories. Panel (D) Stratified differential abundance of bacterial genes in Exacerbation-Onset compared to treatment
across GO categories. GO, gene ontology; BP, biological processes; MF, molecular functions; CC, cellular components. The genus name is
centered on each column shown.
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FIGURE 5

Differential abundance of Veillonella atypica genes in follow-up versus pulmonary exacerbation. While ten bacterial species were identified to
have a differential abundance of bacterial genes across clinical states (i.e., pulmonary exacerbation, end of treatment, and follow-up), only
Veillonella atypica had a differential abundance of bacterial genes when comparing follow-up pulmonary exacerbation onset. BP, biological
processes; MF, molecular functions; CC, cellular components.

padj > 0.05 and log2 fold change > |2|. When comparing PEx
and follow-up to end of treatment, 106 and 66 pathways were
found to be significantly differentially abundant, respectively.
Interestingly, in the PEx versus end of treatment comparison,
all 106 pathways occurred in Staphylococcus aureus. Likewise,
in the follow-up versus end of treatment comparison, all
66 pathways occurred in Streptococcus salivarius. There
were 53 pathways that were uniquely differentially abundant
in PEx; spanning across 16 of the 17 total MetaCyc
pathway superfamilies detected (Table 3). The “Cofactor,
prosthetic group, electron carrier, and vitamin biosynthesis”
and “Nucleotide and Nucleotide Biosynthesis” were the most
substantial superfamilies, containing 18 and 8 metabolic
pathways, respectively. There were 13 unique differentially
abundant metabolic pathways in follow-up compared to end
of treatment spanning across four MetaCyc superfamilies.
“Carbohydrate Biosynthesis” contained the most pathways
with 4, followed by “Carbohydrate Degradation with 3
(Figure 7). Most notably, when we compared follow-up to
PEx, we found that Veillonella atypica species possessed
the only differentially abundant metabolic pathway: UDP-N-
acetyl-D-glucosamine biosynthesis (from the “Carbohydrate
Biosynthesis” superfamily; see1 for an image of the pathway).
The product of this pathway is N-acetyl-glucosamine (GlcNac),
which has been shown to activate glycolysis and may affect

1 https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=
UDPNAGSYN-PWY

community interactions between anaerobes and aerobes in the
CF airway.

4. Discussion

In this study, we found that only 5% of the bacterial
species observed displayed differential gene abundance between
changes in clinical status across all comparisons. The most
significant findings from the PEx vs. end of treatment
and follow-up vs. end of treatment comparisons were the
differentially abundant genes/pathways of Staphylococcus aureus
in PEx and those of Streptococcus salivarius in follow-up.
When comparing to end-of treatment, PEx and follow-up
displayed similar differential gene abundance with genus’ such
as Gemella sp., Neisseria sp., and other Streptococcus species. As
various broad-spectrum antibiotics such as those administered
to our patient dataset have commonly been known to target
many bacterial species and decrease their metabolic activity,
we attributed these similarities to being an effect of antibiotic
treatment and therefore inconsequential to the onset of PEx.
Additionally, although PEx and follow-up differed in genus’
such as Veillonella sp. and Actinomyces sp., the gene abundances
made up such a small portion of the differentially abundant
genes that they were also ruled as inconsequential. Perhaps
most intriguingly, in the comparison of follow-up and PEx,
we found that the only species with differentially abundant
genes in follow-up was the anaerobic species of Veillonella
atypica. The follow-up vs. PEx comparison additionally only
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TABLE 3 Gene and pathway abundance of clinical status comparisons (across respective categories).

Categories Unique
exacerbation

Unique
follow-up

Sig follow-up
vs.

exacerbation

Sig exacerbation
vs. end of
treatment

Sig follow-up vs.
end of treatment

Genes 673 128 11 1608 989

[BP] Genes 6 552 358

[MF] Genes 2 951 566

[CC] Genes 3 83 50

Uncategorized – 22 15

Pathways 53 13 1 106 66

Amine and polyamine
degradation

1 – –

Amino acid biosynthesis 5 5 –

C1 compound utilization and
assimilation

2 – –

Carbohydrate biosynthesis 1 4 1

Carbohydrate degradation – 3 –

Cell structure biosynthesis 4 1 –

Cofactor, prosthetic group,
electron carrier, and vitamin
biosynthesis

18 – –

Fermentation 1 – –

Glycolysis 3 – –

Inorganic nutrient
metabolism

1 – –

Nucleic acid processing 1 – –

Nucleoside and nucleotide
biosynthesis

8 – –

Other biosynthesis 1 – –

Pentose phosphate pathway 1 – –

Polyprenyl biosynthesis 2 – –

Secondary metabolite
biosynthesis

2 – –

Tetrapyrrole biosynthesis 2 – –

E, pulmonary exacerbation; F, follow-up; T, end of treatment; BP, biological processes; MF, molecular functions; CC, cellular components.

yielded one differentially abundant pathway: the UDP-N-acetyl-
D-glucosamine biosynthesis I pathway in Veillonella atypica.

Our results suggest that Veillonella atypica and
N-acetylglucosamine may play a potential role in improved
lung function. The anaerobic bacteria most universally found
in CF patient’s lungs are Veillonella and Prevotella (common
oral commensals) (26–28). While the role of anaerobes in the
CF airway still remains unclear (29), orally derived anaerobic
bacteria occupy distinct niches distinct from Staphylococcus or
Pseudomonas and the naturally anoxic conditions actually favor
anaerobic growth that may contribute to altered ecosystem
dynamics (7, 30–32). Studies have shown occurrences of both
positive and negative correlations between the presence of
anaerobic bacteria and lung function in CF patients (27–29,

32), however, studies focusing on Veillonella itself have reported
a positive correlation with the presence of this anaerobe and
milder disease in patients with CF (28, 33). In our study,
we found that Veillonella was only differentially abundant
compared to the PEx clinical state but not compared to the end
of treatment state (when the patient is no longer experiencing a
sharp decrease in lung function). Given its positive associations
with milder disease as well as its displayed “absence” in the
PEx clinical state, we surmised that the metabolic activity
of Veillonella atypica may play an influential role in the CF
lung microbiome.

The only differentially abundant pathway in follow-up
vs. PEx was the UDP-N-acetyl-D-glucosamine biosynthesis I
pathway in Veillonella atypica. The product of this pathway is
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FIGURE 6

Uniquely differentially abundant genes at pulmonary exacerbation versus end of treatment. While ten bacterial species were identified to have a
differential abundance of bacterial genes across clinical states (i.e., pulmonary exacerbation, end of treatment, and follow-up), the majority of
bacterial genes differentially abundant in exacerbation belonged to Staphylococcus aureus. GO, gene ontology; BP, biological processes; MF,
molecular functions; CC, cellular components.

N-acetyl-glucosamine (GlcNac), which can serve as a precursor
for peptidoglycan or function in glycolysis by catabolizing to
fructose 6-phosphate (Fru6P) (34, 35). Studies have shown
that antibiotic tolerance in bacteria can be greatly enhanced
when the bacteria are deprived of essential nutrients (36, 37).
A prior study found that the presence of GlcNac not only
activated glycolysis in Escherichia coli, but it also reactivated the
Escherichia coli’s peptidoglycan biosynthesis process (38). The
abundance of the UDP-N-acetyl-D-glucosamine biosynthesis
I pathway in follow-up (and lack thereof in PEx) may point
to important community interactions between anaerobes and
aerobes which may influence the onset of the PEx clinical state.
This finding may also provide context to why the abundance
of Veillonella has been positively correlated to increased lung
function in patients with CF in past studies.

Our data also supports that Staphylococcus aureus adapts
to a nutrient-limited CF lung environment. The majority of
the differentially abundant genes in follow-up compared to
end of treatment belonged to Streptococcus salivarius and
those in PEx belonged to Staphylococcus aureus. Moreover,
when the genes uniquely abundant at PEx compared to end

of treatment (not present in follow-up vs. treatment) were
sequestered, we found that the vast majority belonged to
Staphylococcus aureus. Additionally, Staphylococcus aureus was
the only species with differentially abundant functional profiles
in PEx vs. end of treatment and displayed the largest number
of metabolic pathways and MetaCyc superfamilies across all
three comparisons. It is reasonable to surmise that the 673
genes uniquely abundant in Staphylococcus aureus during PEx
(before antibiotic treatment), but not during follow-up (after
antibiotic treatment) were associated with the decrease in
lung function (PEx) that the persons with CF experienced.
Staphylococcus aureus is the most common pathogen isolated
from CF persons and has strong associations with inflammatory
activity in the lung (39, 40). This species also has a large genetic
diversity in persons with CF in comparison those isolated
from the lungs of healthy individuals (39, 41). A compelling
argument for Staphylococcus aureus’s association with PEx is
its reputation for promoting pathogenic genes. Studies have
shown Staphylococcus aureus to promote genes associated
with persistence during chronic infection and antimicrobial
resistance during antibiotic treatment (39, 42). Staphylococcus
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FIGURE 7

Stratified differential pathway abundance. Panel (A) Metabolic pathways attributed to Streptococcus salivarius were differentially abundant
between follow-up and treatment. Panel (B) Metabolic pathways attributed to Staphylococcus aureus were differentially abundant between
pulmonary exacerbation and treatment. Panel (C) A single metabolic pathways attributed to Veillonella atypica was differentially abundant
between follow-up and pulmonary exacerbation. When comparing the metabolic pathways between clinical states (i.e., pulmonary
exacerbation, end of treatment, and follow-up), only one bacterial species was differentially abundant between each comparison. The different
metabolic pathways are shown in different colors for each bacterial species. PEx, pulmonary exacerbation.

aureus has also displayed participation in certain adapted
bacterial community interactions with Pseudomonas aeruginosa
(43, 44), which have been strongly correlated with chronic
respiratory diseases.

A consequence of the chronic PEx events that persons
with CF experience due to chronic infection is the associated
inflammation and subsequent tissue damage which leads to
remodeling of the epithelial cell architecture (26, 45). This
remodeling, combined with the anoxic and acidic conditions
characteristic to the CF lung, poses conceivable selective
pressures on the lung microbiome (26, 44). As expected, in
past studies, Staphylococcus aureus was found competing with
Pseudomonas aeruginosa for limited resources when in the
CF lung environment (7, 44). In prior studies of Escherichia
coli, it was found that inactivating the nucleotide biosynthesis
genes significantly decreased the Escherichia coli’s ability to
produce the enzymes necessary for metabolite biosynthesis (46).
Genes involved in nucleotide metabolism were also required for
Pseudomonas aeruginosa survival in an in vivo and an in vivo-
like model (47). This aligns with the finding that the largest
number of differentially abundant metabolic pathways in PEx
vs. end of treatment belonged to the “cofactor, prosthetic group,
electron carrier, and vitamin biosynthesis” and “nucleotide and
nucleoside biosynthesis” pathways of Staphylococcus aureus.
The gene and path abundance findings in our study also
suggest that Staphylococcus aureus is not only capable of
metabolite and nucleotide biosynthesis, but that this ability

may contribute to the chronic infection and inflammation that
persons with CF experience.

The role of Streptococcus in the lung is lesser known, but the
genus has been growing in recognition as a central component
of the CF lung microbiome with a highly variable genome (48,
49). The differential gene abundance in follow-up versus end of
treatment, as well as all 128 uniquely expressed genes (not in PEx
vs. end of treatment) belonging to Streptococcus salivarius have
the potential to have contributed negatively and/or positively.
While it has been linked in some studies to PEx (when it was
the predominant species in the CF lung), its higher relative
abundance has also correlated with less severe lung disease
than other pathogenic species known to inhabit the CF lung
microbiome (48).

There are a few limitations to note with this study. First,
it was a single center study and limited to children and young
adults who could spontaneously produce sputum at PEx onset.
Thus, the total number of study participants is small and
skews toward those with more symptomatic disease, which may
impact the generalizability of these results. Second, the data was
collected around a single PEx and not longitudinal in nature.
A longer longitudinal study could have provided more insight
into these metabolic markers as predictors for future PEx events.

In summary, around 5% of bacteria species observed had
a differential gene abundance across clinical states. Three of
these species, Staphylococcus aureus, Streptococcus salivarius,
and Veillonella atypica, accounted for the most change. Further,
several of the metabolic pathways identified in our dataset
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have been previously shown to affect lung function and lung
inflammation. Taken together, these data suggest the metabolic
potential of bacterial species can provide more insight into
changes across clinical states than the relative abundance
of bacteria alone.
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