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Abstract: Neuroblastoma is a common cancer in children, affected by a number of genes that
interact with each other through intricate but coordinated networks. Traditional approaches can only
reconstruct a single regulatory network that is topologically not informative enough to explain the
complexity of neuroblastoma risk. We implemented and modified an advanced model for recovering
informative, omnidirectional, dynamic, and personalized networks (idopNetworks) from static
gene expression data for neuroblastoma risk. We analyzed 3439 immune genes of neuroblastoma
for 217 high-risk patients and 30 low-risk patients by which to reconstruct large patient-specific
idopNetworks. By converting these networks into risk-specific representations, we found that the
shift in patients from a low to high risk or from a high to low risk might be due to the reciprocal
change of hub regulators. By altering the directions of regulation exerted by these hubs, it may
be possible to reduce a high risk to a low risk. Results from a holistic, systems-oriented paradigm
through idopNetworks can potentially enable oncologists to experimentally identify the biomarkers
of neuroblastoma and other cancers.

Keywords: gene regulatory network; neuroblastoma; idopNetwork; hub; gene co-regulation

1. Introduction

Neuroblastoma, one of the most common cancers in children, is highly complex in terms of
its genetic, physiological and clinical heterogeneity. It is this complexity that makes it extremely
challenging to diagnose when and how neuroblastoma develops and further design the precise
intervention [1,2]. In practice, several clinical parameters, such as age at diagnosis, tumor stage,
genomic amplification of MYCN oncogene, and ploidy, are widely used as the markers of neuroblastoma
risk [3–6]. Increasing studies have attempted to stratify neuroblastoma risk based on the pattern of
differential gene expression [1,4,5,7,8]. Sets of genes of prognostic importance have been identified
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to link with neuroblastoma; for example, Oberthuer et al. [4] established a 144-gene predictor for
classifying the stratification of neuroblastoma patients, Formicola et al. [5] used 18 genes to predict
the outcome of stage 4 patients, and Utnes et al. [6] identified 20 mRNAs and six lncRNAs of clinical
relevance to the prediction of tumor recurrence and response to neuroblastoma therapy.

Existing approaches for gene-based stratification are mostly based on the differential expression
of single genes. As a widely used approach for general cancer research, such reductionist thinking can
simplify the identification of key major genes for neuroblastoma risk [7]. It is becoming increasingly
clear that a deeper understanding of cancer, including neuroblastoma, requires not only a detailed
characterization of individual genes, but also of their interactions, which are encapsulated into an
intricate but highly coordinated network [9,10]. As a complex disease, it is likely that neuroblastoma
involves numerous genes that interact and work together to form a complex cellular network. As such,
by regarding neuroblastoma as a network disease, we can develop and apply a holistic, systems-oriented
approach to better reveal and interpret its genomic causes [11,12].

Computational tools play a critical role in reconstructing gene regulatory networks. Many
approaches can only infer a single context-agnostic interaction network from a large number of samples,
failing to reveal inter-sample heterogeneity [13,14]. Although several approaches have explored the
possibility of reconstructing sample-specific networks [15,16], their application may be impaired by
an incapacity to code a complete set of bidirectional, signed, and weighted interactions into a graph.
Recovering such fully informative networks essentially requires the dynamic fitting of densely spaced
temporal data [17], which are extremely difficult or even impossible to collect in practice; for example,
multiple sampling and monitoring are not logistically permitted for cancer single-cell analysis and
human gut microbiota studies. A majority of genomic studies conducted for cancer dissection in recent
decades only have static data available.

More recently, Chen et al. [18] developed an interdisciplinary framework for reconstructing
informative, dynamic, omnidirectional, and personalized networks (idopNetworks) using steady-state
gene expression data from regular genomic experiments. The idopNetwork model can maximize the
utility efficiency of genomic data to reconstruct biologically meaningful, context-specific, and large-scale
but sparse networks. In clinical studies of graft remodeling, the use of idopNetworks has provided
new insight into the genomic mechanisms of gene co-regulation that determine the success and failure
of surgical operation. In this article, we apply and modify the idopNetwork model to reconstruct
co-regulation networks of immune genes whose function may be related to neuroblastoma formation
and identify which gene interactions determine high vs. low risk of this disease. As the proof of
concept, idopNetworks characterize previously unknown gene interactions that can better serve as the
biomarkers of neuroblastoma risk.

2. Results

2.1. Power Scaling Law and Functional Modularity

A total of 3439 immune-related genes were profiled for 247 neuroblastoma patients who differ in
demographical and clinical factors, including age, gender, MYCN status, ploidy, stage, and overall (OS)
and event-free survival (EFS). These patients are classified into two groups, high risk (n1 = 217) and low
risk (n2 = 30). Traditional approaches aim to identify those genes that are expressed differentially
between these two groups and use them as biomarkers to predict neuroblastoma risk. We argue that
cancer biomarkers may not only be interpreted as single genes, but also include the pattern of how
each gene interacts with every other gene to form a complex but organized network. Chen et al.’s [18]
idopNetworks are among the most advanced networks to omnidirectionally reveal the topological
differences of gene interactions across spatiotemporal gradients. To reconstruct such idopNetworks
for neuroblastoma risk, we coin the concept of expression index (EI), defined as the total expression
amount of all genes on a patient or sample, and plot the expression of individual genes against the
ordered EI across samples (Figure 1). We found that high-risk patients cover a long range of EI
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from 2.4 × 104 to 2.7 × 104, whereas low-risk patients reside in the upper two-third of the range,
regardless of their demographical and clinical features. This difference suggests that the considerably
low overall expression level of the immune genes can predict high neuroblastoma risk, but their
high-level expression does not necessarily imply the low risk of this cancer. A more precise predictive
model of neuroblastoma risk may require the implementation of gene networks.
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Figure 1. Allometric change in the expression level of four randomly chosen genes, AATK (A), AKAP11
(B), CD8A (C), and CDH9 (D), with expression index (EI) for low-risk (red) and high-risk patients
(green). A dot denotes the observed expression value of a given gene in a sample, plotted over the EI
of the sample, and a line represents the fitness of power equation to the EI-varying pattern of gene
expression. The ticks at the x-axis indicate the EI of samples.

Power equation is shown to broadly fit the trend of how individual genes change their expression
levels over the EI. For example, as illustrated in Figure 1, four randomly chosen genes increase their
expression levels gradually with the EI, but with different slopes of increase. Some genes, such as AATK
and CD8A, display a similarity in EI-varying pattern between high- and low-risk groups (Figure 1A,C),
but the others, e.g., AKAP11 and CDH9, are very group-specific (Figure 1B,D). We calculated the
residuals of each gene and plotted them over the predicted values (Figure S1), whose independence
suggests the statistical robustness of power fitness. We implemented Kim et al.’s [19] functional
clustering to group all genes into 41 functional modules according to their similarity in EI-varying pattern
(Figure 2A). Each module is composed of a different number of genes, and based on gene enrichment
analysis, biological functions for the compositional genes are found to vary from module to module
(Figure 2B). For example, module 2 contains genes that span a wide range of biological functions,
including membrane raft, endocytic vesicle, neutrophil-mediated immunity, leukocyte-mediated
immunity, and myeloid-leukocyte-mediated immunity, among others. Module 18 is composed of
genes that specifically activate and regulate immune response through signal transduction and
signaling pathway. Several modules, such as 3, 4, 9 and 36, include genes whose biological function is
not identified.
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Figure 2. Functional clustering of 3439 genes into 41 distinct modules across 247 samples from high-
(217) and low-risk groups (30) (A). Genes within each of the 41 modules are annotated for their biological
functions (B).

We found that different modules display distinct EI-varying patterns of gene expression across
samples. We show such discrepancies by choosing 10 modules as examples (Figure 3). Most modules,
such as 2, 4, 5, 12, 18, and 32, increase their expression levels with the EI for both high- and low-risk
groups, although the slope of increase depends on group type. Some modules, such as 31 and 36,
slightly decrease their expression levels with the EI. In some modules, gene expression increases with
the EI in one group but decreases in the other group (e.g., module 14 vs. 30). The pattern of how
two groups differ in the amount of gene expression depends on the type of module. Some modules,
like 2 and 4, have a similar amount of gene expression over the EI. The expression amounts of modules
5, 14, and 32 are clearly higher in the low-risk group than in the high-risk group. In these modules,
genes are generally more strongly expressed in low-risk patients than in high-risk patients at a given
EI. We also found a few modules, like 18 and 31, which display a higher expression level in high-risk
than in low-risk patients. Overall, compared with the total expression level of all genes, the expression
pattern of individual modules can more precisely serve as biomarkers of neuroblastoma risk.
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groups (pink). (A) Power fitting of each gene within a module, shown as the change of gene expression
across the EI. Each thin line represents a gene and thick lines stand for the mean fitting of all genes
from the same modules. (B) Observed expression change of genes within a module across the EI (dot),
fitted by the power equation (line).

2.2. Coarse-Grained Idopnetworks

In theory, all genes considered interact with each other to form a 3439-node regulatory network.
However, because of the possible existence of network communities, we need to test whether there
are distinct subnetworks within this large network. Genes within each subnetwork are linked
more tightly and are therefore more similar to each other than those from different subnetworks.
This allows us to detect subnetworks based on modularity analysis. Forty-one modules identified
from functional clustering each represent a subnetwork and, thus, the 3439-node network is composed
of 41 subnetworks or network communities. Different communities may be linked with each other
through their compositional genes to form coarse-grained networks. Accordingly, subnetworks among
genes within modules are called fine-grained networks.

We constructed coarse-grained idopNetworks at the module level for high- and low-risk groups,
respectively (Figure 4). We found that such idopNetworks are strikingly different in topological
architecture between two groups (Figure 4A). In the high-risk network, module 20 and 38 are hub
regulators that are linked to many different regulated modules, but they become peripheral in the
low-risk network, where modules 29 and 34 are hub regulators. From GO analysis, we did not identify
known biological functions of genes involved in these hub modules (Figure 2B), suggesting that these
genes as regulators promote or inhibit other genes that exert more direct impacts on a variety of
biological processes. We found that the number of links for all 41 modules, except for 20, 38, 29 and
34, is broadly similar between the high- and low-risk networks (Figure 4B). This suggests that the
difference in the qualitative structure of these two types of networks is determined by these hub
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modules. By testing the distribution of the total number of interactions using the power law, we found
that the networks identified may be scale-free in both high- and low-risk groups. The pattern of
interactions among modules is predominated by directional synergism and directional antagonism,
which is consistent with widely identified cyclic synergism or antagonism (e.g., cyclic dominance)
in nature [20].
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Figure 4. idopNetworks identified at the module level. (A) Networks among 41 modules for high- and
low-risk groups. Arrowed red and blue lines denote promotion and inhibition, respectively, with the
thickness of lines being proportional to the strength of promotion or inhibition. (B) The distribution
of the total number of interactions, the number of directional synergism, the number of directional
antagonism, and the hubness across modules for high- (upper) and low-risk groups (lower). Red and
blue bars denote outgoing links (regulators) and incoming links (regulated genes), respectively.

In a regulatory network, hub genes are thought to play a central role in coordinating gene-gene
interrelationships. We create the concept of quantitative hubness to describe the degree with which
any specific gene can serve as a hub. As expected, the hub modules display remarkable differences in
hubness between the high- and low-risk networks. However, it is interesting to find that the hubness of
non-hub modules varies considerably from low-risk to high-risk groups. Taken together, the high-risk
network distinguishes from the low-risk network in not only their qualitative structure, determined
by a few mainstays, but also their quantitative organization, established jointly but differently by
all components.
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2.3. Dissection of Observed Expression Profiles

Traditional approaches can only compare the overall differentiation of gene expression between
different regimes, but idopNetworks dissect the overall expression of any gene into its two underlying
components: independent and dependent. By choosing three modules, we analyze these two
components and show how each of them contributes to differentiated expression between high- and
low-risk groups (Figure 5). Module 2 displays a similar overall amount and trend of EI-varying
expression between two groups, but its independent component is expressed more increasingly
with the EI in low-risk than high-risk groups (Figure 5A). For low-risk patients, the total dependent
component of module 2 is negative because it is consistently inhibited by modules 29 and 31. For this
reason, the observed expression level of module 2 in the low-risk group is lower than the degree with
which this module can be expressed when it is isolated from modules 29 and 31. For high-risk patients,
module 2 is inhibited by module 38 but also consistently promoted by another module 20, making its
total dependent component a near-zero value.Cancers 2020, 12, x  8 of 19 
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The independent component of module 4 has a sharper slope of EI-increasing gene expression
curve in low-risk than high-risk group (Figure 5B). However, because this module is inhibited by
other modules, to a greater extent in the low-risk than in the high-risk group, its overall expression
amount, observed to be lower than its independent component, tends to be similar between the
two groups. Genes in module 36 are observed to be more strongly expressed on low-risk than high-risk
patients (Figure 5C), but their independent components vary dramatically between the two groups,
with a sharp decrease curve for low-risk patients but a slight increase curve for the high-risk group.
This difference is due to different patterns of interactions that are at play between these two groups.
The expression of module 4 is promoted by module 29 in low-risk patients, and promoted by modules
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20 and 38, but heavily inhibited by module 30. Taken together, if we predict neuroblastoma risk based
on the expression level of module 36, as observed from its remarkable difference between low-risk
and high-risk patients (Figure 5C), we should incorporate the impacts of modules 29, 20, 38, and 30
because these regulators contribute strikingly to low-risk vs. high-risk divergence in various ways.
It should be noted that many of these regulators may also affect other modules, e.g., 2 (Figure 5A) and
4 (Figure 5B). If these regulated modules serve as regulators, we need to consider a complete network
of interactions as a biomarker of neuroblastoma risk.

To show how regulators affect other modules differently between the two risk groups, we draw
the EI-varying curves of these regulators and their influences (Figure 6). In the high-risk network,
modules 20 and 38 are two hub regulators (Figure 3), each of which promotes or inhibits the expression
of many other modules, including modules 29 and 31, whereas, in the low-risk network, modules
20 and 38 are subordinates, regulated by module 29 (Figure 6A,B). Modules 29 and 31 are hub
regulators in the low-risk network, but they are regulated by modules 20 and 38 (Figure 6C,D). Taken
together, the reciprocal change in hubs as leaders may be a driver of differences between high- and
low-risk networks. The hubs of one network are reciprocally regulated by their subordinates in the
other network.
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Modules 20 (A) and 38 (B) as hubs in the high-risk network regulate many other modules through
positive promotion (purple lines) or negative inhibition (blue lines), but become regulated (inhibited,
blue line) in the low-risk network. Lower two panels: Modules 29 (C) and 31 (D) as hubs in the low-risk
network regulate many other modules through positive promotion (purple lines) or negative inhibition
(blue lines), but become regulated (promoted, red line; inhibited, blue line) in the high-risk network.
The direction at which one module regulates other module(s) is indicated by arrows. Green lines and
red lines denote the expression change of hub modules in the high- and low-risk networks across the
EI, respectively. For those regulated hub modules, the difference between their overall expression and
independent expression is indicated.

2.4. Fine-Grained IdopNetworks

We reconstructed 41 fine-grained subnetworks each for a different module. The qualitative
difference of coarse-grained networks between two types of patients includes the reciprocal change in
the leadership of modules 20 and 29 and their regulatory relationship. We choose these modules to
characterize and interpret how fine-grained idopNetworks vary between low-risk and high-risk groups
(Figure 7). Genes interact with each other in ways that are extremely different between two types of
patients. The network of module 20 is structurally much simpler for low-risk than high-risk patients;
the low-risk network contains only one regulator FCN2 that plays a dominant role in promoting or
inhibiting all genes, whereas the high-risk network is constituted by multiple regulators, such as
PTGES2, ENTPD2, SERPINF2, and GZMM, and many followers, such as TIMM50, GLI2, ZNF219,
ENDOG, and XRCC1, which are affected simultaneously by several regulators (Figure 7A). It is likely
that this difference leads the high-risk network to be more stable than the low-risk network for module
20, which thus explains why this module serves as a leader in the high-risk coarse-grained network
but a subordinate in the low-risk coarse-grained network (Figure 6A). Being a regulator of the lectin
complement pathway, FCN2 contributes to innate immune response and is expressed at low levels
in ovarian tumors compared to normal ovaries [21]. However, for high-risk patients, FCN2 loses its
readership, and is heavily regulated by PTGES2 and ENTPD2. In the meantime, PTGES2 activates
the ENDOG gene implicated in cancer, aging, and neurodegenerative diseases [22] and ENTPD2
activates the ZNF219 gene as a member of the Sox9-assembled transcriptional factory participating in
chondrocyte differentiation [23].

Risk-specific difference in the structure of fine-grained subnetwork for module 29 supports
the postulation above, i.e., this module as a leader of low-risk coarse-grained network (Figure 6B)
involves multiple regulators and multiple followers, whereas it, as a follower in the high-risk network,
is dominated only by a single regulator (Figure 7B). DARL1 is a dominant regulator of the high-risk
subnetwork, widely inhibiting the expression of many immune genes. This regulator encodes the first
member of the ARF-like protein subfamily in the secretory pathway, found to be lethal if it is deleted in
Drosophila [24]. In the low-risk subnetwork, DARL1 is inhibited and activated by two major regulators,
TULP1 and AKAP4, respectively, thus its overall expression is determined by the relative strength of
inhibition and activation. Both SART3 and CPLX4 are jointly inhibited by AKAP4, DSG4, and CIB4.
SART3 is a gene encoding an RNA-binding nuclear protein that is a tumor-rejection antigen containing
tumor epitopes [25]. Because of its capability to induce HLA-A24-restricted and tumor-specific cytotoxic
T lymphocytes in cancer patients, this antigen is used for specific immunotherapy. The protein encoded
by CPLX4 may be involved in synaptic vesicle exocytosis [26]. Taken together, complex relationships
among genes from module 29 may be related to low neuroblastoma risk.

Some modules contain many genes, e.g., there are as many as 761 genes in module 2. Thanks to
its statistical power, the idopNetwork model can still reconstruct a large-scale subnetwork for these
modules. Figure S2 illustrates 761-node subnetworks of module 2 for low-risk and high-risk patients,
where risk-specific differences in the structure and organization of gene interactions can be identified.
Figures S3 and S4 show the subnetworks of modules 38 and 31, respectively, for patients at low- and
high-risk levels.
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Figure 7. Voronoi treemaps that visualize fine-grained idopNetworks among genes from module 20 (A)
and 29 (B) for high-risk and low-risk patients. Each polygon area (node) is represented by a gene
(with its name shown), with the color metric being proportional to the overall expression level of this
gene. Activation and inhibition are denoted by arrowed red and blue lines, respectively, with the
thickness of lines being proportional to the strength of gene–gene interactions.

3. Discussion

Differentiated expression of genes has been widely used as an approach for stratifying
neuroblastoma risk. Although single gene analysis has proven its power for risk stratification,
we argue that neuroblastoma risk includes multiple genes that interact with each other through
intricate but coordinated interaction networks. Traditional approaches for inferring informative
networks, i.e., those coded by bidirectional, signed, and weighted interactions, rely on high-density
temporal data which are hardly available in most cancer studies. These approaches can also
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only reconstruct context-agnostic networks, failing to reveal the change in network structure in
response to environmental and developmental signals. We implement and modify Chen et al.’s [18]
networking model to recover informative, dynamic, omnidirectional, and personalized networks
(idopNetworks) from static expression data and compare how idopNetworks vary structurally and
organizationally over biological and environmental regimes. By incorporating functional clustering
and variable selection, idopNetworks can be identified at any dimension and scale and with any
topological complexity. All these advantages are especially essential and of the utmost importance for
neuroblastoma-gene networking because this disease involves multitudinous genes interacting in a
complex, dynamic manner.

As the proof of concept, we analyzed publicly available data containing 3439 genes expressed in
neuroblastoma patients to show the potential of idopNetworks as a predictive biomarker of genomic
differences between high- and low-risk patients. In reconstructing idopNetworks, we found that
neuroblastoma risk can be predicted at three levels. First, the premise of reconstructing idopNetworks
is to define the concept of expression index defined as the total amount of gene expression in a
sample. We found that the expression index of low-risk patients spans the upper two-third of high-risk
patients (Figure 1), showing the possibility to assess those in the lower one third of expression index
as high-risk patients. Second, among a total of 41 distinct gene modules classified by functional
clustering, we found that some modules change their expression pattern over expression index
differently between two groups of patients (Figure 2). As thus, these modules can be potentially used
to predict neuroblastoma risk.

Third, relative to the two biomarkers above, idopNetworks provide a more precise predictor
of neuroblastoma risk. We dissect a 3439-node network into 41 subnetworks based on module
classification. The network of these subnetworks reflects how gene modules interact with each other to
form a coarse-grained network, while each subnetwork characterizes interactions among individual
genes within a fine-grained network. We found that directional synergism and directional antagonism
overwhelmingly dominate both coarse- and fine-grained networks. Evolutionary studies suggest
that commensalism (analogous to directional synergism) and amensalism (analogous to directional
antagonism) are the two most economic strategies for animals to interact with others in nature [20].
We speculate that this phenomenon may also occur for genes to choose their interaction strategies in a
regulatory network.

We found that both coarse- and fine-grained networks show dramatic structural and organization
differences between low- and high-risk patients. We characterized the role of key hub regulators in
driving how high-risk patients differ from low-risk patients. These regulators promote or inhibit the
expression of numerous genes that are directly involved in immunity processes towards neuroblastoma
pathogenesis. We identified different hubs that mediate low- and high-risk networks. For example,
modules 29 and 31 are hubs in the low-risk network, whereas hubs in the high-risk network become
modules 20 and 38. It is interesting to find that hubs in one coarse-grained network are reciprocally
regulated by those in the other coarse-grained network, showing that the leadership change may be
an important driver of neuroblastoma risk. The detailed biological functions of these hubs deserve
further investigation.

Through idopNetworks, we can determine how gene–gene interactions can be used to serve as a
predictor of neuroblastoma risk. For example, module 2 shows no difference in the dynamic pattern
of gene expression between two groups of patients (Figure 5A), suggesting that this module cannot
serve as a biomarker. Yet, by decomposing the overall expression of this module into its independent
and dependent components, we found that the independent component increases its expression with
expression index much more strikingly for low-risk than for high-risk patients. Thus, the dynamic
pattern of the independent component can be potentially used to predict neuroblastoma risk. In practical
clinics, neuroblastoma risk can be reduced by designing target interventions to obstruct the expression
of modules 29 and 31 that inhibit module 2. Similarly, the independent component of module 36 is
associated with reduced neuroblastoma risk, which can be strengthened by artificially inhibiting the
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expression of module 29 that activates module 36. Taken together, the multiplayer game model derived
from idopNetworks may provide a more precise predictive means of neuroblastoma risk and solid
scientific guidance on drug design for neuroblastoma control.

We reconstructed neuroblastoma-related idopNetworks based on gene expression data.
These networks may serve as a starting point to explore the biological and functional relevance
of key gene-gene interactions for neuroblastomas. Although GO analysis shows the biological relevance
of some gene interactions detected by the model, close collaboration with experimental oncologists is
crucial for not only further justifying the model but also making novel discoveries. In addition, mounting
evidence indicates that, in addition to transcriptional dysregulation, cancer may also be predicted by
epigenetic, protein, or metabolite biomarkers [27,28]. By incorporating these omics data, idopNetworks
can be extended to infer multiscale and hierarchic networks, which can better interrogate the biological
mechanisms that drive neuroblastoma. This work focuses on the comparison of idopNetworks
between different neuroblastoma risks, but it should be expanded to compare network differences
determined by other biological or environmental regimes, such as death vs. survival. In idopNetwork
inference, we combine patients from the same group, thus neglecting genetic differences among
patients. As cancer cells hosted on patients, neuroblastoma may not only be controlled by host genetics,
but also somatic mutations of tumor cells. While many studies have identified a number of host loci
for cancer based on GWAS, Sang et al. [29] developed a micro-GWAS model to detect mutation loci
that affect tumor phenotypes. The integration of idopNetwork and Sang et al.’s [29] micro-GWAS will
shed light on why and how neuroblastoma is formed, knowledge that can greatly facilitate the design
of personalized neuroblastoma therapies.

4. Methods

4.1. Design of Genomic Experiment for Neuroblastoma Risk

Consider a set of n sampled neuroblastoma patients, sorted into two prognostic subgroups
with expected high and low risk of death from disease. These samples are stratified according to
demographical and clinical factors, such as age, gender, MYCN status, ploidy, stage, and overall (OS)
and event-free survival (OS). Suppose a total of m genes are profiled and measured for their expression
amounts on all samples. Let gi j denote the expression level of gene j on sample i (i = 1, . . . , n).
We consider each sample as an ecosystem composed of m interacting genes. Thus, we define the total
expression of all genes on a sample, i.e., Ei =

∑m
j=1 gi j, as its expression index (EI) that reflects the

sample’s capacity to carry essential resources for the simultaneous expression of all genes. Based on the
definition, gi j and Ei establish a part-whole relationship across samples and, thus, gi j can be understood
as a function of Ei, which is equivalently denoted as g j(Ei). This part-whole relationship theory forms
an analytical basis for reconstructing regulatory networks for high- vs. low-risk neuroblastoma.

4.2. Modularity Detection by Power Law-Based Functional Clustering

Modular organization is a generic property of gene networks, recognized as a design principle
of biological systems. A module or community is a subset of nodes that are more densely connected
with each other than with those nodes from the remaining network [30]. Modules, as function units,
are pervasive in a range of biological processes, such as cell differentiation, metabolism, cell cycle,
and signal transduction. Evidence shows that modularity structure enhances the adaptability and
robustness of biological systems to perturbations. The existence of gene modules alerts us not to
attempt to link each pair of genes in the network, but to detect gene subnetworks or communities.
The modularity theory avoids computational prohibition when the number of genes considered is
very large.

We develop a top-down approach for modularity detection by breaking down a whole network
into its compositional subnetworks in a reverse engineering fashion. This approach is based on
the functional clustering of all genes into different modules according to their EI-varying functional
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similarity. As stated above, g j(Ei) is part of Ei, whose relationship is thought to obey the power
law, as universally observed in nature [31–33]. Thus, how g j(Ei) scales with Ei across samples is
mathematically described as

g j(Ei) = α jE
β j

i (1)

where α j and β j are the constant and allometric exponent for gene j that changes its expression level
with EI. We incorporate Equation (1) into a mixture functional clustering algorithm [19] by which
we cluster all m gene into different modules. The EI-varying pattern of gene expression is more
similar within than between modules, leading genes within modules to be densely linked but those
between modules to be sparsely linked. We implement an information criterion, such as AIC or BIC,
to determine the optimal number of modules (denoted as L) for a given set of genes.

With the information about gene modules, we will reconstruct coarse-grained regulatory networks
among genes from between modules, and fine-grained regulatory networks among genes within
modules. We cluster genes based on how they are expressed differently across a full range of samples
from both risk groups. It is possible that these two groups change their expression across samples in a
different manner. Thus, we need to reconstruct different types of networks each for a risk group.

4.3. Game-Theoretic Modeling of Gene Interactions

The integration of the part-whole relationship theory and the mathematical aspect of evolutionary
game theory allows us to characterize how each gene interacts with every other gene across samples
by formulating a system of ordinary differential equations (ODEs). Suppose we want to reconstruct
L-node coarse-grained networks at the module level. For a particular group of neuroblastoma risk
k (k = for low and 2 for high), such an L-dimensional system of ODEs can be written as

g′k(Ei) =


dg1k(Ei)

dEi
...

dgLk(Ei)
dEi

 =


Q1k(g1k(Ei) : θ1k) +
∑L

j=2 Q1 jk(g jk(Ei) : θ1 jk)
...

QLk(gLk(Ei) : θLk) +
∑L−1

j=1 QLjk(g jk(Ei) : θLjk)

 (2)

where g1k(Ei) is the expression level of gene j on sample i (here i = 1, . . . , nk) from risk group k,
and the derivative of expression of each gene j is partitioned into the independent component that
occurs if this gene is assumed to be in isolation and dependent component that is the aggregated effect
of the influence of all other genes on this gene. Function Q jk(g jk(Ei) : θ jk), specifies how gene j is
expressed independently as a function of EI and is determined by parameters θ jk, whereas function
Q j j′k(g j′k(Ei) : θ j j′k), describes how gene j′ affects the expression of gene j as a function of EI and is
determined by parameters θ j j′k ( j′ = 1, . . . , j − 1, j + 1, . . . , L). Unlike classic ODEs with respect to time,
ODEs in Equation (1) are specified by the EI derivative, which are thus called quasi-dynamic ODEs
(qdODEs) [18].

4.4. Variable Selection

Network theory states that there is a cognitive limit to the number of links an individual can
stably maintain in a cohesive network [34]. This so-called Dunbar’s law, originally observed in primate
societies, can be explained to be due to the limit of the volume of the neocortex. We argue that Dunbar’s
law may also be at play in the network constituted by other biological entities, such as cells and genes.
The limit to the number of gene–gene interactions exists in living cells, because it is unlikely that each
gene interacts with all other genes to form a completely linked network.

To detect a subset of the most significant genes that interact with a focal gene, we implement
LASSO-based variable selection. Let y jk(Ei) denote the observed expression level of gene j on sample
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i from risk group k. A regression model of gene j on other genes as predictors, implemented with
qdODEs of Equation (2), can be formulated as

y jk(Ei) = P jk(Ei) +
L∑

j′=1, j′, j

P j j′k(Ei) + e jk(Ei), (3)

where the first two terms at the right side characterize the independent and dependent expression
components of gene j as a function of Ei for risk group k, and e jk(Ei) is the residual error of gene j
on sample i from risk group k, obeying a multivariate normal distribution with mean vector 0 and
sample-dependent covariance matrix Σ jk for gene j. We assume that the residual errors of gene
expression are independent among samples so that Σ jk is structured as Σ jk = σ2

jkInk where σ2
jk is the

residual variance of gene j at the same sample and Ink is the identity matrix.
We use power Equation (1) to model the independent expression component, specified by

parameter vector θ jk, and a non-parametric approach to model the dependent expression component,
specified by parameter vector θ j j′k. We implement group LASSO [35] and adaptive group LASSO [36]
to select the most significant genes that link with gene j for each risk group. After variable selection,
the number of genes that are involved in the dependent component of gene j will reduce from L to
D jk, making full qdODEs of Equation (2) become sparse ones. We pose a constraint on the number of
regulated genes by a regulator but no constraint on the number of regulators. Through reconstructing
high-dimensional but sparse networks by the sparse qdODEs, this gives us a full capacity to identify
all possible regulators.

4.5. Likelihood and Test

We formulate a likelihood of expression data of L modules from two risk groups, as a function
of qdODE parameters and residual (co)variances. Assuming that residual errors are independent
between the two risk groups, this likelihood is written as

L1 =
2∏

k=1

fk
(
y1k, . . . , yLk

∣∣∣µ1k, . . . ,µLk; Σk
)

(4)

where vector y jk = (y jk(E1), . . . , y jk(Enk))denotes the observed expression levels of gene j (j = 1, . . . , L)
on nk samples from risk group k, and fk(·) is the multivariate normal probability density function with
mean vector (µ1k, . . . ,µLk) (with µ jk = (µ jk(E1), . . . , µ jk(Enk))) and covariance matrix Σk for risk group
k. Here, we assume that microarray gene expression data follow a normal distribution, but other
forms of distribution, such as Poisson or negative binomial for RNA-seq expression data, can also be
considered. By implementing sparse qdODEs to model the mean vector, we obtain the maximum
likelihood estimates (MLEs) of risk-specific ODE parameters θ jk and θ j j′k (j = 1, . . . , L; j′ = 1, . . . , j − 1,
j + 1, . . . , D jk) for each gene for risk group k.

We develop a statistical procedure for testing whether gene networks can explain differences
between high and low neuroblastoma risks. Under the assumption of no risk-specific difference,
we formulate the likelihood as follows

L0 = f
(
y1, . . . , yL

∣∣∣µ1, . . . ,µL; Σ
)

(5)

where vector y j = (y j(E1), . . . , y j(En)) denotes the observed expression levels of gene j (j = 1, . . . , m)
on all n mixed samples from two risk groups. Similarly, by implementing sparse qdODEs to model
the mean vector, we obtain the MLEs of risk-agnostic ODE parameters θ j and θ j j′ (j = 1, . . . , L; j′ = 1,
. . . , j − 1, j + 1, . . . , D j) for each gene. Note that D j is the number of regulated genes by gene j as a
regulator, which is determined through variable selection on a regression model of gene j on all other
L − 1 genes across n samples.
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By plugging in the MLEs of model parameters into likelihoods (4) and (5), we obtain the likelihood
values Ĺ1 (assuming that there is a risk-specific difference) and Ĺ0 (assuming that there is no risk-specific
difference), respectively. We further estimate the log-likelihood ratio

LR = −2 log
(
Ĺ0 /Ĺ1

)
(6)

as a statistic used to test if n samples should be sorted into C contexts. By reshuffling n samples
randomly into two risk groups, we calculate the LR value. If this permutation procedure is repeated
1000 times, we obtain the 95th percentile from 1000 LR values and use it as a critical threshold.

4.6. idopNetwork Recovery

If the risk group is tested to be significantly different from one another, we use the MLEs of θ jk
and θ j j′k to estimate the integrals of Q jk(g jk(Ei) : θ jk) and Q j j′k(g j′k(Ei) : θ j j′k), denoted as P jk(Ei) and
P j j′k(Ei) (j = 1, . . . , L; j′ = 1, . . . , j – 1, j + 1, . . . , D jk), respectively. We encapsulate P jk(Ei) as nodes and
P j j′k(Ei) as edges into a graph as an L-dimensional gene regulatory network G(Ei). This network can
capture all three possible features of gene interactions—bidirectional, weighted, and signed—because
P j j′k(Ei) can characterize the strength and sign (promotion vs. inhibition) with which gene j′ affects j,
and also because P j j′k(Ei) and P j′ jk(Ei) can describe and compare how genes j and j′ are reciprocally
affected. Relative to most existing networks that do not meet these three features simultaneously, G(Ei)
is regarded as being fully informative.

G(Ei) is a function of Ei, suggesting that we can reconstruct a network for each sample, i.e., patient.
To the end, we can reconstruct n personalized networks and compare how the networks vary
structurally and functionally from one patient to next. If the same patient is transcriptionally monitored
at multiple timepoints and/or under multiple treatments, we can reconstruct spatiotemporal network
for this specific patient. Increasing evidence shows that a complex disease is controlled by a full
set of genome-wide genes [37], indicating the necessity of reconstructing an omnigenic network.
Although it is highly challenging to reconstruct large networks, Chen et al. [18] has integrated
developmental modularity and Dunbar’s law, which enables them to reconstruct G(Ei) from high- or
even ultrahigh-dimensional data of genes. Taken together, we will reconstruct informative, dynamic,
omnidirectional, and personalized networks (idopNetworks).

4.7. Neuroblastoma Expression Data

We downloaded 23,434-gene expression data of neuroblastoma patients from TARGET website [38].
The data include 247 patients, of whom 217 and 30 belong to high- and low-risk groups, respectively.
For each patient, age, gender, MYCN status, PLOIDY, stage, race, risk, overall survival and event free
survival are provided. In this study, we focus on the investigation of how immune genes interact
with each other to cause risk-specific discrepancies. Although the model can analyze any number of
genes, as the proof of concept, we chose 3439 genes that are shown to display various immune-related
functions from InnateDB [39]. Using these genes, we reconstructed immune-related idopNetworks for
neuroblastoma risk.

4.8. Data and Code Availability

Uploaded at [38–40].

5. Conclusions

We have developed a computational model to reconstruct and implement fully informative gene
networks (idopNetworks) as the biomarkers of neuroblastoma risk. The major advantage of this model
lies in its capacity to encapsulate all possible genes into well-organized networks and characterize
how gene interaction architecture alters in response to developmental and environmental regimes to
regulate biological processes underlying neuroblastoma. The new model may overcome an intrinsic
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limitation of using individual genes to classify and predict a human disease that virtually includes a
number of interactive genes. The technical merit of the new model is to infer context-specific networks
from static gene expression, thus greatly facilitating the widespread use of the model to disentangle
the complexities of neuroblastoma. As a proof of concept, we used this model to analyze a published
transcriptional dataset for 247 patients at high- and low-risk levels of neuroblastoma, from which
several important gene modules and interactions were identified to distinguish between these two
risk levels. We confirmed the biological relevance of known genes, and also characterized previously
unknown gene functions. These unknown genes may potentially provide candidates oncologists use
to further investigate the genomic underpinnings of neuroblastoma.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2086/s1,
Figure S1: Plots of residuals from the fitting of the power equation vs. predicted values for of four randomly
chosen genes, AATK (A), AKAP11 (B), CD8A (C), and CDH9 (D), with expression index (EI) for low-risk (red) and
high-risk patients (green). The ticks at the x-axis indicate the expression indices of samples, Figure S2: Voronoi
treemaps that visualize fine-grained idopNetworks among genes from module 2 for high-risk and low-risk
patients. Each polygon area (node) is represented by a gene (with its name shown), with the color metric being
proportional to the overall expression level of this gene. Activation and inhibition are denoted by arrowed red
and blue lines, respectively, with the thickness of lines being proportional to the strength of microbial interactions,
Figure S3: Voronoi treemaps that visualize fine-grained idopNetworks among genes from module 38 for high-risk
and low-risk patients. Each polygon area (node) is represented by a gene (with its name shown), with the color
metric being proportional to the overall expression level of this gene. Activation and inhibition are denoted by
arrowed red and blue lines, respectively, with the thickness of lines being proportional to the strength of microbial
interactions, Figure S4: Voronoi treemaps that visualize fine-grained idopNetworks among genes from module 31
for high-risk and low-risk patients. Each polygon area (node) is represented by a gene (with its name shown),
with the color metric being proportional to the overall expression level of this gene. Activation and inhibition are
denoted by arrowed red and blue lines, respectively, with the thickness of lines being proportional to the strength
of microbial interactions.
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