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Abstract 

The immuno-modulatory properties of airway smooth muscle have become of 

increasing importance in our understanding of the mechanisms underlying chronic 

inflammation and structural remodeling of the airway wall in asthma and chronic 

obstructive pulmonary disease (COPD).  ASM cells respond to many cytokines, growth 

factors and lipid mediators to produce a wide array of immuno-modulatory molecules 

which may in turn orchestrate and perpetuate the disease process in asthma and COPD.  

Despite numerous studies of the cellular effects of cytokines on cultured ASM, few have 

identified intracellular signaling pathways by which cytokines modulate or induce these 

cellular responses.  In this review we provide an overview of the transcriptional 

mechanisms as well as intracellular signaling pathways regulating cytokine functions in 

ASM cells.  The recent discovery of toll-like receptors in ASM cells represents a 

significant development in our understanding of the immuno-modulatory capabilities of 



ASM cells.  Thus, we also review emerging evidence of the inflammatory response to 

toll-like receptor activation in ASM cells.   
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Introduction 

Cytokines and chemokines play a central role in regulating inflammatory and 

immune responses in chronic lung diseases such as asthma and COPD. Indeed, in vivo 

studies using selective inhibitors as well as neutralizing antibodies against various 

cytokines and chemokines demonstrate their importance in antigen-induced airway 

inflammation (leukocyte infiltration) and hyper-responsiveness in animal models of 

asthma [1-3]. Studies in knock-out or transgenic mice also illustrate the importance of 

cytokines in the abnormal airway changes induced by allergen challenge in sensitized 

animals [4].  A potential site for the deleterious action of many cytokines in airways 

disease is the airway smooth muscle a primary effector tissue historically thought to only 

regulate bronchomotor tone. In human cultured ASM cells that retain physiological 



responsiveness, cytokines alter pro-inflammatory gene expression that in turn may play 

an important role in the pathogenesis of chronic inflammatory airways disease [5].  

Despite numerous studies of the cellular effects of cytokines on cultured ASM, few have 

identified downstream signaling cascades by which cytokines modulate or induce these 

cellular responses.  In this review we discuss the role of three major intracellular 

signaling pathways: Mitogen-Activated Protein Kinase (MAPK), Nuclear Factor-kappa B 

(NF-κB), and Janus kinases and Signal Transducers and Activators of Transcription 

(STATs) in regulating cytokine functions, with a particular focus on inflammatory gene 

expression, in regulating ASM functions.  

The capacity for ASM cells to respond to numerous cytokines has revealed the 

extensive immune-regulatory potential of these cells.  In response to cytokines such as 

IL-1β, TNF-α and IFN-γ, ASM cells can be induced to express a host of cell-adhesion 

and co-stimulatory molecules that allow interactions between the ASM and inflammatory 

cells that infiltrate the airways.  Moreover, ligation of ASM cell-surface molecules such 

as CD40 and OX40L by their respective counter-ligands leads to activation of ASM 

inflammatory responses.  Further advances in understanding the immune-regulatory 

potential of ASM have come with the discovery that cytokines also up-regulate the 

expression of multiple toll-like receptors (TLRs) in ASM cells.  These latter receptors are 

pattern-recognition receptors that mediate innate and adaptive immune and inflammatory 

responses to microbial infection, tissue injury or inflammation.  Emerging evidence now 

suggests a role for TLRs in the development, perpetuation and exacerbation of chronic 

inflammatory airway disease [6].   Thus, we also discuss the potential role of TLRs in the 

amplification of ASM inflammatory responses.  



 

1. MAPKs  

The MAPK signal transduction pathway consists of MAPK, MAPK kinase 

(MEK, MAPKK, or MKK), and MAPK kinase kinase (MEKK, MAPKKK, or MKKK). 

The MAPK cascade activation occurs by sequential phosphorylation of Thr-X-Tyr 

motifs. In mammalian cells, there are five distinct subfamilies including extracellular 

signal-regulated kinase (ERK), p38 MAPK (p38), c-Jun N-terminal kinase (JNK), 

ERK3/4 and ERK5. Among the five distinctive MAPK pathways, ERK, p38 MAPK and 

JNK have been extensively studied in ASM cells [7] (Figure 1).  

 

1.2 MAPK signaling in ASM inflammatory gene expression 

(a) p42/44 ERK 

ERK signaling induces downstream activation of different intracellular 

transcription factors such as Elk-1, c-fos, c-myc, Sap-1, and Tal, and consequently 

modulates DNA synthesis and cell proliferation [8]. In ASM, activation of ERK signaling 

is elicited by various stimuli including platelet derived growth factor (PDGF), epidermal 

growth factor (EGF), basic fibroblast growth factor (bFGF), endothelin-1 (ET-1), 

thrombin, oncostatin M, leukemia inhibitory factor (LIF), insulin-like growth factor I, 

and 5-hydroxytryptamine [9-14].  Cytokines are also important activators of ERK 

signaling.  Phosphorylation of ERK1/2 by IL-1β leads to production of numerous 

inflammatory mediators including prostaglandin-E2 (PGE2), eotaxin, RANTES, and 

GM-CSF [15]. ERK is also involved in mediating ASM eotaxin and IL-8 release in 

response to Th2 cytokines (IL-4, IL-9, IL-13) and the Th17 cytokine IL-17 [16-18].  The 



interleukin-17B receptor (IL-17BR) is also up-regulated in ASM cells in an ERK-

dependent manner [19].   

 

(b) p38  

p38 signaling is activated in response to physical and chemical challenges 

including oxidative stress, UV irradiation, hypoxia, ischemia as well as various cytokines 

[20, 21].  The down-stream effectors of this cascade are transcription factors such as Elk-

1, Sap-1, ATF-2, CREB, CHOP, and Max. p38 mediates bFGF-induced ASM 

proliferation [22] and ASM inflammatory gene expression in response to multiple 

stimuli.  Indeed, p38 MAPK mediates IL-17A induced IL-6, IL-8 and eotaxin secretion 

[23-26] as well as bradykinin induced IL-6 secretion [27].  Although there are no 

published reports of the MAPKs regulating IL-5 secretion, p38 regulates expression of 

the IL-5 receptor (IL-5R) in response to IL-1β, TNFα and IFN-γ [28].  p38 MAPK 

appears to have both positive and negative regulatory effects on cytokine-induced 

inflammatory responses in ASM; it acts to augment TNF-α-induced IL-6 and RANTES 

release and IL-1β-induced eotaxin release, but inhibits TNF-α induced ICAM-1 

expression and IL-1β induced GM-CSF release [15, 29].  This suggests a gene specific 

role of p38 MAPK in regulating specific transcriptional outcomes.  

We recently made the novel finding that, under basal conditions, p38 negatively 

regulates IFN-β promoter activity (Damera et al., unpublished data).  In line with this, 

treatment of ASM cells with the p38 inhibitor SB203580 showed a specific reduction in 

tonic p38 activity and enhanced IFN-β transcription and protein secretion. Functional 

studies using an IFN-β neutralizing antibody reversed the inhibitory effect of SB203580 



on TNF-α-induced IL-8 secretion, indicating an important role of autocrine IFN-β in 

regulating p38-dependent inflammatory responses.  

 

(c) c-Jun NH2-terminal kinases (JNK)  

JNK signaling is activated by environmental stress, pro-inflammatory cytokines 

and genotoxic agents. Following activation of JNK, three Jun transcription factors (JunB, 

c-Jun and JunD), which are all members of the AP-1 family, are activated [30].  These 

transcription factors modulate gene expression responsible for many biological responses, 

including migration, proliferation, differentiation and cell death [31].  In murine studies, 

administration of the JNK inhibitor SP600125 after allergen challenge prevents T cell-

mediated inflammation and ASM cell proliferation, indicating a role for JNK signaling in 

allergic airway inflammation and remodeling [32].  Studies using the JNK inhibitor 

SP600125 implicated JNK in the regulation of IL-1β- and TNF-α-induced RANTES, 

GM-CSF, and IL-8 secretion in ASM cells [33].  IFN-γ and TNF-α induced fractalkine 

expression also occurs through JNK dependent mechanisms [34]. 

 

1.2 Implications of MAPK cross-talk in ASM cells 

  While unique stimuli initiate the majority of cellular responses by specific 

signaling cascades, it is not uncommon to derive such responses by multiple and parallel 

signaling cascades. Exogenous addition of TGF-β1 to ASM cultures increases [3H]-

thymidine incorporation and ASM cell proliferation via ERK, p38 and JNK-dependent 

pathways [35].  Similarly, TNF-α-mediated induction of CD38, a potent modulator of 

calcium homeostasis and ASM tone, involves all MAPK cascade components [36].  The 



induction of matrix metalloproteinase-9 (MMP-9) expression by cytokines also involves 

active participation of several MAPK pathways [37, 38].  Interestingly, in some 

instances, the induction of one MAPK pathway may antagonize another. Indeed, LPS-

induced activation of p38 MAPK down-regulates changes in ASM responsiveness and 

IL-6 secretion associated with ERK1/2 activation [39]. 

 

2. NF-κκκκB  

Nuclear factor-kappa B (NF-κB) is a ubiquitously expressed transcription factor 

that mediates the expression of many inflammatory mediators, including cytokines, 

adhesion molecules, chemokines, and growth factors [40].  NF-κB-dependent pro-

inflammatory genes are believed to play a central role in a variety of inflammatory 

diseases including chronic inflammatory airway diseases such as asthma. Increased 

markers of NF-κB pathway activity have been demonstrated in the airways of, or samples 

from, asthma patients [41-45] as well as in rodent models of asthma [46-49].  For this 

reason, the NF-κB signalling pathway is an attractive target for novel asthma therapies.  

Indeed, studies have shown that targeting NF-κB, using various molecular 

methodologies, inhibits aspects of the allergic response in rodent models of asthma [50-

56].  

 

2.1 NF-κκκκB signaling cascade 

NF-κB is activated in response to a number of stimuli, including physical and 

chemical stress, lipopolysaccharide (LPS), double-stranded RNA, T- and B-cell mitogens 

and pro-inflammatory cytokines [57]. NF-κB induced gene expression is controlled by a 



complex series of enzymatic signalling events at multiple levels. An overview of the NF-

κB activation cascade is depicted in Figure 2. 

NF-κB is made up of a hetero- or homodimer of members of the DNA-binding 

Rel family of proteins which contains five known mammalian members: p50 (NF-κB1, 

precursor of which is p105), p65 (Rel A, NF-κB3), p52 (NF-κB2, precursor of which is 

p100), c-Rel and Rel B.  The p65 and p50 subunits are ubiquitously expressed, whereas 

p52, c-Rel and Rel B are restricted to specific differentiated cell types [58]. In resting 

cells, the majority of NF-κB is bound to I-κB inhibitory protein, which holds the complex 

in the cytoplasm. Upon cellular stimulation, the I-κB protein is phosphorylated, 

ubiquinated, and degraded by the proteosomal pathway.  With the I-κB removed, NF-κB 

translocates to the nucleus and mediates gene transcription [59] 

I-κB phosphorylation and activation of Rel proteins can occur via the classical 

(canonical) or non-classical (non-canonical) pathway.  In the classical pathway, a critical 

phosphorylation of the I-κB protein is performed by the I-κB kinase (IKK) complex, 

which consists of at least three subunits, including two catalytic subunits IKK-α and -β, 

also known as IKK-1 and -2, and one regulatory subunit IKK-γ (also known as NEMO) 

[57]. Of the two catalytic subunits, IKK-β is 20 fold more active than IKK-α in the 

phosphorylation of I-κB [60].  It is also thought that IKK-β, not IKK-α, is critical for NF-

κB activation [61-64] and hence attempts to target this pathway for therapeutic 

intervention have focused on inhibitors of this subunit [65, 66]. Stimuli of the classical 

pathway include the TLR/IL-1R family members, ligation of the T-cell receptor (TCR), 

and TNFR signalling [59](Figure 2). IKK-2 has been shown to be critical in NF-κB 

activation in ASM cells [67, 68].   



In addition to the classical pathway, an alternative (non-canonical) pathway has 

been described mainly in B cells. This latter pathway can be activated by different stimuli 

such as lymphotoxin β, CD40 ligand, and receptor activator of NF-κB ligand [69, 70] 

The alternative NF-κB pathway is characterised by the inducible phosphorylation and 

processing of p100 to p52, and subsequent nuclear translocation of the heterodimer 

p52:Rel B is independent of IKKγ and IKKβ and only requires the IKKα subunit [71]. 

This pathway is believed to play key roles in adaptive immunity [72]. 

The NF-κB pathway can be further controlled by post translational modifications, 

including the modulation of Rel protein interactions with other components of the 

transcriptional machinery. Altered activation of NF-κB can occur via its phosphorylation 

status, for example the phosphorylation of p65 enhances transcription, yet 

phosphorylation of p105 can reduce its processing into p50 and hence reduce activation 

[73].  Acetylation of the Rel proteins also play a key role [74, 75]. Additionally, covalent
 

modifications of the chromatin environment which regulates the access of transcription 

factors to gene promoters alter NF-κB-dependent transcription. This control is achieved 

by recruitment
 

of protein complexes that alter chromatin structure via enzymatic
 

modifications of histone tails and/or nucleosome remodelling.
 
NF-κB activation requires 

several cofactor histone acetyltransferases, including CBP,
 
p300, p/CAF, and SRC-1, of 

which p/CAF appeared to be relatively
 
more important [74, 76]. 

 

2.2 NF-κκκκB signaling in ASM inflammatory gene expression 

A multitude of studies in ASM cells implicate a role for NF-κB in the regulation 

of inflammatory chemokines, cytokines, and adhesion molecules. Indeed, NF-κB is 



involved in IL-17-induced IL-8 release [23, 77]; IL-1β and TNF-α-induced GRO-α 

release [78]; neutrophil-derived elastase-induced TGF-β expression [79]; in the 

expression of cell adhesion molecules such as ICAM-1 and VCAM-1 induced by TNF-α, 

IL-1β and LPS [80-82].  As stated above, IKK-2 plays a crucial role in the classical NF-

κB pathway and for this reason there has been considerable interest in studying and 

developing ways to manipulate this kinase in order to identify new therapeutics for the 

treatment of asthma. Data from ASM cells demonstrate that  inhibition of IKK2 using the 

small molecule inhibitors TPCA-1, PS-1145 and ML120B, or molecular intervention 

using adenoviral approaches to knock down IKK2, demonstrate a role for this kinase in 

the expression of ICAM-1, cyclooxygenase-2, IL-6, IL-8, GM-CSF, RANTES, monocyte 

chemotactic protein-1 (MCP-1), GRO-α, neutrophil-activating protein-2 (NAP-2), and 

epithelial neutrophil activating peptide 78 (ENA-78), some of which are upregulated and 

play a role in asthma pathogenesis [67, 68].  Similarly, in rodent models of asthma, 

modulation of IKK-2 using parallel molecular techniques, have shown positive disease 

modifying data [83-86]. These data suggest that inhibition of IKK2 and hence the NF-κB 

pathway may have therapeutic implications for asthma treatment. 

Of interest, TNF-α but not IL-1β activation of NF-κB signaling involves 

recruitment of the downstream transducer protein TRAF2 by TNF-α receptor 1 (TNFR1) 

via the receptor-associated death domain protein, TRADD [87, 88].  Similar findings 

were also reported in ASM cells from guinea pigs where TNFR1 activation with 

agonistic antibodies also induced NF-κB activation [89]. 

Recent work investigating pro-inflammatory stimuli on NF-κB activity with 

regard to phosphorylation and chromatin remodeling in ASM cells has emerged.  TNF-α 



has been reported to phosphorylate both IKK-β [90] and the p65 subunit at Ser276 and 

Ser536 in ASM cells [91]. In the latter study, the authors also demonstrated that TNF-α 

recruits the histone acetyl-transferase p/CAF to the CCL-11 (eotaxin) promoter to 

increase NF-κB mediated transactivation of this gene [91]. p300/CBP acetylation is also 

required for NF-κB mediated TNF-α-induced VCAM-1 and ICAM-1 induction in ASM 

cells [80, 92, 93].  

 

3. JAK/STATs  

The classical components of the IFN signaling cascade include the Janus tyrosine 

kinases and signal transducers and activators of transcription (STATs) factors. Activation 

of each IFN receptor complex stimulates different receptor-associated tyrosine kinases, 

namely, JAK1 and Tyk2 by IFN-α/β (type I), or JAK1 and JAK2 by IFN-γ (type II) [94].  

JAKs-mediated phosphorylation of STAT proteins results in STAT assembly in dimeric 

or oligomeric forms, which translocate to the nucleus, where they can regulate gene 

expression via DNA binding motifs called either γ-activated sequence (GAS) elements 

(recognized by STAT1 homodimers) or IFN-stimulated response element (ISRE, 

recognized by STAT1-STAT2 heterodimers) [95, 96].  Up-regulation of STAT1 and 

STAT1-dependent genes such as ICAM-1 and IFN regulatory Factor-1 (IRF-1) are 

observed in asthmatic airways suggesting the potential contribution of IFN-associated 

JAK/STATs in the regulation of immuno-modulatory genes associated with asthma [97]. 

 

3.1 Modulation of ASM synthetic functions by IFNs. 



IFNs regulate many cellular responses in human ASM cells: IFN-γ induces the 

expression of ICAM-1 and VCAM-1 [98], the CysLT1 receptor [99] and the secretion of 

nerve growth factor in ASM cells [100].  IFN-γ also synergizes with TNF-α to augment 

expression of CD38 [101] and several chemokines including RANTES, IP-10 and 

fractalkine [34, 102, 103].  Most studies that used a combination of IFN-γ and TNF-α 

showed that the synergistic action involves several molecular mechanisms. In some 

instances, their co-operativity may be explained by the IFN-γ-induced up-regulation of 

TNF-α receptors [104] or vice-versa [105] (Figure 3). Furthermore, both cytokines may 

collaborate at the gene level by increasing promoter activation through a synergistic 

interaction between transcription factors activated by IFN-γ (STATs, IRF-1) and TNF-α 

(NF-κB) [106, 107] (Figure 3). These amplifying properties of IFN-γ may explain, at 

least in part, why viral infection, which increases production of IFNs, is an important 

trigger for asthma and chronic obstructive pulmonary disease exacerbation [108].  

Another mechanism of co-operation could be secondary induction of IFN-β, which has 

been shown to mediate TNF-α induced RANTES and CD38 expression [101, 109] 

(Figure 3) (see below).  

In some instances, however, IFNs may antagonize TNF-α inflammatory 

responses by inhibiting the NF-κB pathway.  Indeed, Keslacy and colleagues recently 

reported that IFN-γ potently inhibits TNF-α-induced NF-κB-dependent genes including 

IL-6, IL-8 and eotaxin in ASM cells [90]. Multiple mechanisms underlying IFNs 

inhibitory effect on NF-κB pathways have been proposed including inhibition of NF-κB 

DNA binding, prevention of IκB degradation, or regulation of TNF-α receptor 1 via 



STAT interaction [110].  Specifically, in ASM cells, IFN-γ inhibits the transcriptional 

activity of NF-κB by reducing the acetylation level of p65 [90].  

3.2 Autocrine IFN-ββββ regulates pro-asthmatic gene expression in ASM cells.  

In ASM cells, TNF-α is able to activate JAK1 and Tyk2, and STAT1- and 

STAT2-dependent gene expression via the autocrine action of IFN-β [109].  Indeed, 

autocrine IFN-β regulates i) TNF-α-induced inflammatory gene expression, by 

suppressing IL-6 and promoting RANTES secretion and ii) TNF-α-associated airway 

hyper-responsiveness, by potentiating the ability for TNF-α to enhance GPCR-dependent 

contractile responses [111, 112].   

The putative implication of IFN-β in lung diseases is supported by the heightened 

expression of IFN-β in the airways in mouse models of allergic asthma [111].  We 

therefore propose that the functional cross talk between type I and II IFNs and TNF-α in 

lung structural cells, particularly the ASM, is a novel axis in the pathogenesis of lung 

diseases, although a similar phenomenon could also occur in other cell types (such as 

hemopoieitic cells). A recent study by Ivashkiv and colleagues recently confirmed the 

inflammatory potential of IFN-β/TNF-α interaction in macrophages [113].  This elegant 

study showed that IFN-β-mediated autocrine loops were essential for maintaining TNF-

α-induced inflammatory genes that prime macrophages for augmented responses to 

additional stimulation by cytokines and toll-like receptors agonists.  In previous studies 

performed in 3T3-L1 adipocytes, TNF-α was shown to induce phosphorylation of 

STAT1 by directly interacting with both JAK1 and JAK2 [114], whereas in Hela cells, 

STAT1 was shown to physically interact with TNFR1 and the adaptor proteins TNF 



receptor–associated death domain (TRADD), but not TRAF-2 [115].  TNF-α also 

induces STAT1 phosphorylation at serine 727 in macrophages.  

In Summary, ASM-derived IFN-β is a novel signaling component of TNF-α 

inducible genes involved in airway inflammation (Figure 3) and regulation of airway 

hyper-responsiveness [111].   

3.3 IFNs interference with ASM steroid responsiveness 

Most anti-inflammatory effects of steroids are mediated via the glucocorticoid 

receptor alpha isoform (GRα), which suppresses expression of inflammatory genes 

through mechanisms known as transactivation or transrepression [116].  As a result of 

alternative splicing mechanisms, another glucocorticoid receptor isoform, namely GRβ, 

has been described [117].  We and others recently showed that treatment of ASM cells 

with the specific combination of IFNs with TNF-α impairs the ability of steroids to 

inhibit the expression of various pro-inflammatory genes such as CD38, RANTES and 

ICAM-1 by a mechanism involving the up-regulation of GRβ isoform [118].  

Interestingly, steroids augment IFN-γ/TNF-α induced fractalkine and TLR2 expression in 

ASM [34, 119]: whether this involves similar mechanisms involved in the attenuation of 

corticosteroid activity by IFN-γ/TNF-α remains to be established. Although the 

pathological role of the GRβ isoform is not well understood, previous reports 

demonstrate a strong correlation between steroid resistance in individuals with asthma 

and the expression levels of GRβ [120].  More importantly, increased GRβ in the airways 

has been detected in patients who died of asthma [121].  Indeed, by its ability to act as a 

dominant-negative inhibitor of steroid action in other cell types [122], GRβ has been 

associated with steroid resistance in different inflammatory diseases [123]. GRβ over-



expression in ASM cells also prevents the capacity for steroids to induce transactivation 

activity and inhibit cytokine-induced pro-inflammatory gene expression [118]. 

Interestingly, short-term treatment of ASM cells with IFNs and TNF-α inhibits, in 

a GRβ-independent manner, the capacity for steroids to induce transactivation partially 

through the cellular accumulation of IRF-1 [124].  IRF-1 is an early response gene 

involved in diverse transcriptional regulatory processes [125].  Interestingly, a strong 

association was found between IRF-1 polymorphism and childhood atopic asthma [126].  

Early steroid dysfunction seen after short incubation with IFNs and TNFα could be 

reproduced by enhancing IRF-1 cellular levels using constitutively active IRF-1 which 

dose-dependently inhibited glucocorticoid response element (GRE)-dependent gene 

transcription [124].  Consistently, reducing IRF-1 cellular levels using siRNA approach 

in TNF/IFN-treated ASM cells significantly restored steroid transactivation activities. 

These findings demonstrate for the first time that IRF-1 is a novel alternative GRβ-

independent mechanism mediating steroid dysfunction induced by pro-inflammatory 

cytokines. The fact that different studies showed that the expression of IRF-1 was largely 

increased after viral infections [127] combined with the suppressive effect of IRF-1 on 

steroid signaling in ASM cells [124], may explain the reduced steroid responsiveness 

seen in asthmatic patients experiencing viral infections [128]. 

 

4. TLRs in chronic inflammatory airways disease 

TLRs may be considered as a ‘sensing’ system that protects the host from 

infectious and non-infectious tissue injury and inflammation.  TLRs also serve a 

homeostatic role to maintain tissue integrity and regeneration.  TLRs ‘sense’ diverse 



molecules including microbial products and endogenous ligands generated in response to 

cell stress or injury.  Currently, there are 10 known human TLRs named TLR1 through 

TLR10.  TLR2 and TLR4, which primarily mediate recognition of bacterial cell wall 

components (eg LPS – the major ligand for TLR4) and endogenous ‘danger signals’ (eg 

heat shock proteins, extracellular matrix fragments) are the best studied of this receptor 

family.  TLR3, TLR7 and TLR8 mediate recognition of viral RNA whilst TLR9 mediates 

recognition of bacterial DNA containing CpG motifs.  Activation of TLRs triggers the 

activation of immune and inflammatory responses through NF-κB, IRF3/7 and MAP 

kinase dependent signaling pathways [6]. 

Epidemiological studies suggest that genetic polymorphisms in TLR genes, 

together with early-life exposure to environmental TLR stimulants (e.g. LPS in house 

dust, microbial exposure associated with certain farming activities, respiratory viral 

infections) are likely to be important, but also very complex, determinants of asthma 

incidence and severity.  On the converse, emerging evidence shows that allergic airway 

inflammation impairs innate host-defense mechanisms, including TLR function, which 

results in impaired bacterial clearance [129, 130].  This may offer some explanation for 

increased bacterial colonization in asthmatic lungs and also provides some basis for 

infective exacerbations of asthma.  Emerging evidence also indicates a role for TLR4 in 

the airway inflammatory response to cigarette smoke exposure, the primary causative 

factor of COPD [131-133].  

The demonstration of functional TLR expression in human ASM cells over the 

past few years adds to the growing body of evidence of the immuno-modulatory 

capabilities of ASM cells.  This has wide-ranging implications for the disease process in 



asthma and COPD, as activation of TLRs in ASM may exacerbate airway inflammatory 

responses by inducing expression of cell adhesion molecules and release of cytokines 

and chemokines, and may also amplify ASM-inflammatory cell interactions. 

 

4.1 TLR expression in ASM cells 

Human ASM cells in culture express TLR1 through TLR10 mRNA under basal 

conditions.  TLR2, TLR3 and TLR6 are the most highly expressed, whilst TLR4 is the 

least expressed [119].  Interestingly, in one study, constitutive expression of TLR7 or 

TLR8 was not demonstrated [134].  Whether this was due to cell donor differences, type 

of ASM cells used (eg tracheal vs bronchial; distal vs proximal) or methodological issues 

remains to be resolved. In addition to evidence of TLR gene expression, cell surface and 

intracellular protein expression for both TLR2 and TLR3 has also been demonstrated 

[119, 135].  TLR2, TLR3 and TLR4 expression in ASM cells is up-regulated in response 

to inflammatory cytokines including IL-1β, TNF-α and IFN-γ, and microbial products 

including LPS and dsRNA.  Combined stimulation with IFN-γ and TNF-α has 

synergistic and additive effects on TLR2 and TLR4 mRNA expression, respectively 

[119, 135].   

 

4.2 TLR activation and ASM inflammatory gene expression 

Evidence of TLR expression in ASM has fuelled recent interest in ASM cell 

inflammatory responses to TLR ligands.  Stimulation of ASM cells with synthetic TLR2 

ligands, LPS or poly IC induces the production of various cytokines and chemokines [39, 

119, 134-136]; Pam3CSK4 (a synthetic bacterial lipopeptide) and FSL-1 (S-(2,3-



bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Ser-Phe), which activate 

TLR2/TLR1 and TLR2/TLR6 heterodimers, respectively, induce IL-8 release; LPS 

induces expression of IL-6, IL-8 and eotaxin; and polyriboinosinc-polyribocytidylic acid 

(poly IC) induces expression of IL-6, IL-8, eotaxin, RANTES and IP-10.  Stimulation of 

ASM cells with poly IC together with IL-1β or TNF-α has synergistic effects on IL-6, 

IL-8, IP-10 and RANTES release.  Interestingly, poly IC induced eotaxin expression is 

inhibited in the presence of IL-1β or TNF-α, but is augmented by the Th2 cytokine IL-4.  

The specific activation of TLR2 in mediating IL-8 release has not been confirmed 

in ASM cells, although anti-TLR2 or transfection with a dominant negative mutant form 

of TLR2 inhibits ERK1/2 signaling in response to the microbial derived TLR2 ligand 

lipoteichoic acid (LTA), thus providing functional evidence of TLR2 activation in ASM 

cells [137].  Although ASM cells express TLR3 on the cell surface and in intracellular 

endosomes, specific activation of endosomal rather than surface TLR3 was shown to be 

responsible for poly IC mediated eotaxin release [135].  The specific activation of TLR4 

in mediating LPS-induced cytokine and chemokine release in ASM cells remains to be 

established.  

 In addition to inducing ASM cell cytokine and chemokine release, activation of 

TLRs in ASM cells may also amplify airway inflammatory responses by facilitating 

ASM-inflammatory cell interactions.  This is demonstrated by studies showing that 

addition of TLR2, TLR4, TLR7 or TLR8 ligands to ASM cells in co-culture with 

peripheral blood mononuclear cells (PBMCs) leads to greater release of IL-6, IL-8 and 

CCL2 compared to TLR-activation of either cell type alone [134, 138].  IL-1β produced 

by LPS-activated monocytes was shown to be responsible, to some extent, for 



amplification of ASM-PBMC inflammatory responses [138].  Poly IC and LPS may also 

promote ASM-inflammatory cell interactions via inducing the expression of cell adhesion 

molecules such as ICAM-1 and VCAM-1, respectively [134].  Indeed, LPS has been 

shown to mediate VCAM-1-induced neutrophil adhesion in ASM cells [81]. 

 In vitro infection of human ASM cells with respiratory viruses such as rhinovirus 

or respiratory syncytial virus leads to production of several cytokines and chemokines 

including IL-1β, IL-6, IL-8 and IL-11 [139-141].  The role of TLRs in mediating these 

responses has not as yet been addressed, although it is likely that viral-sensing TLRs as 

well as other intracellular viral recognition proteins such as protein kinase R, and cell-

surface molecules such as ICAM-1 (which is a receptor for rhinovirus) are involved.  

Whether infection of ASM cells with respiratory viruses, or indeed other microbial 

pathogens that colonize the lungs in asthma and COPD, occurs in vivo is an important 

area of further investigation; especially given the potential impact of microbial-TLR 

interactions on ASM inflammatory responses.  

Activation of TLRs in ASM occurs not only in response to microbial-derived 

products but may also occur in response to endogenous molecules present within the 

inflammatory milieu.  Recently, it was shown that neutrophil-derived elastase (NE) 

activates ASM cells to synthesize TGF-β via a mechanism involving TLR4 and its 

associated down-stream signaling cascade.  However, stimulation of TGF-β synthesis by 

NE was only partially inhibited by a TLR4-blocking antibody indicating that other 

mechanisms or perhaps TLRs may be involved.  Interestingly, TLR4 protein expression 

on ASM was reduced following treatment with NE, indicating that NE-dependent TLR4 

responses may require internalization of the receptor [79].  



 Although our understanding of the role of TLRs in the pathogenesis of asthma 

and COPD is only just evolving, evidence of their pro-inflammatory functions in ASM 

further extends the role of ASM as a critical mediator of the airway inflammatory 

response, potentially having the capacity to respond to environmental as well as 

endogenous molecules involved in the perpetuation and exacerbation of airway 

inflammatory disease.  Studies of the expression and function of TLRs in ASM cells in 

vivo is an important area of future research. 

 

Conclusions  

Cytokines play a principal role in modulating inflammatory as well as immune 

responses in chronic inflammatory diseases such as asthma and COPD.  Pro-

inflammatory and immuno-modulatory cytokines activate multiple signaling cascades in 

ASM cells that lead to amplification of ASM inflammatory responses.  Research over the 

past decade has taken us forward in our understanding of MAPK, NF-κB and JAK/STAT 

signaling mechanisms involved in regulating ASM inflammatory gene expression and 

studies in animal models show that specific targeting of these pathways offer therapeutic 

potential for the treatment of chronic inflammatory airways disease [32, 68, 142-144].  

Whilst there is some advantage in targeting these signaling pathways in isolation, further 

understanding of the cross-talk mechanisms and pathway interactions that exacerbate 

inflammatory responses or impair steroid responsiveness in ASM cells may provide 

novel targets or approaches for the future therapy of chronic inflammatory airways 

disease.   



TLR ligands represent potentially exciting new therapeutic approaches for the 

treatment of asthma.  Indeed, several studies published in the last five years demonstrate 

protective effects of TLR2, TLR3, TLR4, TLR7/8 and TLR9 ligands against allergic 

airway inflammation, airway hyperreactivity and airway remodeling in animal models of 

asthma [145-152].  The mechanisms that underlie protection against asthma in these 

models are slowly being unraveled and studies so far have focused on delineating 

immuno-modulatory pathways.  However, evidence that the synthetic TLR7/8 ligand R-

848 imparts some of its protection against airway remodeling by inhibiting ASM 

proliferation [152] indicates that the ASM is a potential target of immuno-modulatory 

therapy.  An understanding of the signaling pathways regulating TLR-dependent 

inflammatory responses in ASM is an important area of further investigation.  
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Figure Legends 

Figure 1. Schematic overview of MAPK pathways regulating airway smooth muscle 

functions  A variety of external stimuli activate immune cells or airway epithelial cells to 

release a variety of biological mediators. These mediators transduce their effects through 

ERK, p38 or JNK signaling cascades leading to expression of genes that modulate airway 

smooth muscle contractile, proliferative and secretory responses. 

Figure 2. NF-κκκκB signal transduction pathways. In resting cells, the majority of NF-κB 

is bound to I-κB inhibitory protein, often IκBκ, which masks the nuclear localisation 

sequence (NLS) and holds the complex in the cytoplasm. In the ‘conical’ or ‘classical’ 

NF-κB activation pathway, ligand binding to a cell surface receptor (e.g. tumor necrosis 

factor-receptor (TNFR) or Toll-like receptor) recruits adaptors (e.g., TRAFs and RIP) 

leading to the recruitment of an IKK complex directly onto the cytoplasmic adaptors, 

activating the IKK complex. IKK then phosphorylates IκB at two serine residues, which 

leads to its ubiquitination and degradation by the proteasome. NF-κB then enters the 

nucleus to turn on target genes. TNFR activation can also lead to the phosphorylation of 

p65 at Ser 276 and 536, and recruitment of cofactors such as p/CAF (via PKCβ) to 

heighten transcription. TCR engagement leads to recruitment and activation of receptor-

associated tyrosine kinases of the Src and Syk families. The latter phosphorylate 

phospholipase C and phosphatidylinositol 3-kinase (PI3K). Phosphorylation of 

phosphoinositides by PI3K leads to membrane recruitment and activation of PDK1, 

which may directly phosphorylate and activate PKCθ to control further recruitment of 

CARMA1 into the signaling complex. Assembly of these molecules into lipid rafts and 



PKCθ-dependent phosphorylation of CARMA1 initiate recruitment of BCL10 and 

MALT1 and possibly TRAF6 and TAK1, leading to IKK activation. The general model 

shown here for TCR signaling can also be applied to BCR signaling, although a role of 

PDK1 in this pathway needs to be demonstrated and instead of PKCθ, it involves PKCβ. 

The non-canonical or non-classical pathway differs from the canonical pathway in that 

only certain receptor signals (e.g., Lymphotoxin B (LTb), B-cell activating factor 

(BAFF), CD40) activate this pathway and because it proceeds through an IKK complex 

that contains two IKKα subunits (but not NEMO). In the noncanonical pathway, receptor 

binding leads to activation of the NF-κB-inducing kinase NIK, which phosphorylates and 

activates an IKKα complex, which in turn phosphorylates two serine residues adjacent to 

the ankyrin repeat C-terminal IκB domain of p100, leading to its partial proteolysis and 

liberation of the p52/RelB complex. This complex then enters the nucleus to turn on 

target genes. Figure adapted from Edwards et al., 2008 [66]. 

Figure 3. Schematic overview of the mechanism underlying TNF-α and IFN-γ 

synergism IFN-γ and TNF-α synergistically modulate the expression of different 

inflammatory genes such ICAM-1, RANTES, IL-8 and CD38. Their cooperativity may 

be explained at the receptor level by the IFNγ-induced up-regulation of TNF-α receptors 

or vice-versa. Alternatively, both cytokines may collaborate at the gene level by 

increasing promoter activation through a synergistic interaction between transcription 

factors activated by IFN-γ (STATs, IRF-1) and TNF-α (NF-κB). Another mechanism 

underlying such cooperation could be the induction of defined genes by TNF-α via 

activation of the autocrine action of IFN-β. 



List of Abbreviations  

ASM    Airway Smooth Muscle 

ATF-2    Activating Transcription Factor-2 

bFGF    Basic fibroblast growth factor 

CBP    CREB binding protein 

COPD    Chronic obstructive pulmonary disease 

CREB    cAMP response element-binding protein 

DsRNA   Double-stranded RNA 

EGF    Epidermal growth factor receptor 

ERK    Extracellular signal-regulated kinase 

ENA-78   Epithelial Neutrophil Activating Peptide-78 

ET-1    Endothelin-1 

FSL-1 S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-

Pro-Ser-Phe, TLR2 ligand 

GAS    Gamma-activated sequence 

GM-CSF   Granulocyte colony-stimulating factor 

GRE    Glucocorticoid response element 

GROα    Growth-related oncogene protein-alpha 

ICAM-1   Intercellular Adhesion Molecule-1 

IFN    Interferon 

IKK    IκB kinase 

IL    Interleukin 

IL-5R    Interleukin 5 receptor 



IL-17BR   Interleukin 17B receptor 

IRF    IFN-regulatory factor 

ISRE    IFN-stimulated response element 

JAK    Janus kinase 

JNK    C-Jun N-terminal kinase 

LPS    Lipopolysaccharide 

LTA    Lipoteichoic acid 

MAPK    Mitogen-activated protein kinase 

MCP-1    Monocyte chemotactic protein-1 

NE    Neutrophil-derived elastase 

NEMO    NF-kappaB Essential Modulator 

NF-κB    Nuclear factor-kappa B 

ML120B N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-

methylnicotinamide, a potent and selective small molecule 

inhibitor of IKK2.NAF-2 Neutrophil Activating 

Protein-2 

Pam3CSK4   Synthetic bacterial lipopeptide 

p/CAF    p300-CBP coactivated factor 

PDGF    Platelet-derived growth factor 

Poly IC    Polyriboinosinic polyribocytidylic acid 

PS1145 N-(6-Chloro-9H-pyrido[3,4-b]indol-8-yl)-3-

pyridinecarboxamide dihydrochloride, selective inhibitor of 

IB kinase. 



RANTES   Regulated on Activation, Normal T Expressed and Secreted 

RIP    Fas/TNFα related receptor interacting protein 

siRNA    Small interfering RNA 

SRC    Steroid receptor coactivator 

STAT    Signal Transducers and Activators of Transcription 

TAK1    TGFbeta1-activated kinase 1 

TCR    T cell receptor 

TLR    Toll-like receptor 

TNFR1   TNF receptor 1 

TPCA-1 IKK2 inhibitor: 2-[aminocarbonyl)amino]-5-(4-

fluorophenyl)-3-thiophenecarboxamide) 

TRADD   TNFR1-associated death domain 

TRAF2   TNF receptor-associated factor 2 

VCAM-1   Vascular cell adhesion molecule-1 
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