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RESEARCH Open Access

The human platelet: strong transcriptome
correlations among individuals associate weakly
with the platelet proteome
Eric R Londin1, Eleftheria Hatzimichael1, Phillipe Loher1, Leonard Edelstein2, Chad Shaw3, Kathleen Delgrosso4,
Paolo Fortina4,5, Paul F Bray2, Steven E McKenzie2 and Isidore Rigoutsos1*

Abstract

Background: For the anucleate platelet it has been unclear how well platelet transcriptomes correlate among
different donors or across different RNA profiling platforms, and what the transcriptomes’ relationship is with the
platelet proteome. We profiled the platelet transcriptome of 10 healthy young males (5 white and 5 black) with no
notable clinical history using RNA sequencing and by Affymetrix microarray.

Results: We found that the abundance of platelet mRNA transcripts was highly correlated across the 10
individuals, independently of race and of the employed technology. Our RNA-seq data showed that these high
inter-individual correlations extend beyond mRNAs to several categories of non-coding RNAs. Pseudogenes
represented a notable exception by exhibiting a difference in expression by race. Comparison of our mRNA
signatures to a publicly available quantitative platelet proteome showed that most (87.5%) identified platelet proteins
had a detectable corresponding mRNA. However, a high number of mRNAs that were present in the transcriptomes of
all 10 individuals had no representation in the proteome. Spearman correlations of the relative abundances for those
genes represented by both an mRNA and a protein showed a weak (~0.3) connection. Further analysis of the
overlapping and non-overlapping platelet mRNAs and proteins identified gene groups corresponding to distinct
cellular processes.

Conclusions: The results of our analyses provide novel insights for platelet biology, show only a weak connection
between the platelet transcriptome and proteome, and indicate that it is feasible to assemble a platelet mRNA-ome
that can serve as a reference for future platelet transcriptomic studies of human health and disease.

Reviewed by: This article was reviewed by Dr Mikhail Dozmorov (nominated by Dr Yuri Gusev), Dr Neil Smalheiser and
Dr Eugene Koonin.

Background
Platelets circulate in the blood and are involved in cen-
tral physiological processes such as hemostasis, wound
healing and host defense. Following their release into
the blood stream from the megakaryocytes in the bone
marrow, platelets from healthy individuals have an aver-
age lifespan of seven to ten days. Through their interac-
tions with leukocytes and endothelial cells, platelets play
an important role in angiogenesis, the storage of bio-
active molecules, and the production and secretion of

pro- and anti-inflammatory molecules [1]. Abnormal
platelet number and function cause or contribute to a
variety of diseases including hemorrhagic diseases,
pathologic thrombosis, atherosclerosis, and cancer me-
tastases. Despite many advances in elucidating platelet
biology, gaps in our understanding of the molecular
mechanisms underlying platelet function persist.
Although much of the platelet transcriptome is inher-

ited from the megakaryocyte from which they derive [2],
platelets can actively splice and post-transcriptionally
regulate mRNAs [3] and translate proteins [4-8]. Given
the presence of proteins and the absence of active tran-
scription, the concordance or lack thereof between the
platelet’s transcriptome and proteome has been a topic
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of long-standing research focus. Based on a limited
number of platelet proteomic [9] and transcriptomic
[6,10] studies, a correlation between the two has yielded
contradictory results and the issue remains controversial
[11,12]. Having a more complete understanding of the
relationship between the two will aid in our understand-
ing of platelet biology.
Next-generation sequencing (NGS) of platelets has en-

abled unprecedented characterization and quantification
of the platelet transcriptome and revealed an unexpect-
edly diverse repertoire of mRNAs, microRNAs (miR-
NAs), other non-coding RNAs (ncRNAs) [6,10]. These
initial transcriptome profiles were generally in agree-
ment with earlier microarray-based efforts [13,14]. We
are aware of RNA-seq experiments on only five platelet
samples: a pool of two healthy donors [6] and four
healthy white males [10]. We now report the largest
series to date using both RNA-seq and microarray tech-
nologies to characterize the platelet transcriptome. We
also report on the use of the obtained RNA-omes in
gauging the extent of inter-individual correlations. Add-
itionally, we examined the existence of expression links
across the two racial groups. Lastly, we carried out and
report on comparative analyses of the various subsets of
mRNAs that are concordant and discordant with the re-
cently reported quantitative proteome [15].

Methods
Samples, DNA, and RNA preparation
The study was approved by the Institutional Review Board
of Thomas Jefferson University and informed consent was
obtained for all participants. Peripheral blood samples
were collected from 10 healthy males with no previous his-
tory of thrombosis or history of bleeding who were taking
no anti-platelet medications (see Additional file 1 for
demographics information). DNA was extracted from the
buffy coat preparations of the subjects using the Gentra
Puregene Blood Kit (Qiagen, Netherlands). DNA was hy-
bridized to the HumanOmni5 array (Illumina Inc, San
Diego, CA) at the laboratory for Translational Genomics
at the Baylor College of Medicine. RNA was extracted
from highly purified leukocyte-depleted platelets (LDPs)
using magnetic beads (Miltenyi Biotec) against CD45 for
leukocyte depletion as previously described [16]. Each of
10 individuals was genotyped with the help of 2 million
genome-wide markers [17]. In addition, each individual
self-identified himself racially. Our analyses show complete
agreement between each subject’s self-identified race and
genotype Additional file 2).

RNA sequencing
We have shown that ribosomal RNA (rRNA) depletion
from platelet RNA preparations impacts adversely and
non-uniformly on the relative abundance of transcripts

[10]. Consequently, we sequenced total RNA to avoid
skewing of the estimates of relative abundance of the
various molecular categories. Total RNA sequence li-
brary construction, emulsion PCR, and sequencing runs
were performed following the Applied Biosystems/Life
Technologies protocols, and sequencing was performed
on the SOLiD 5500xl platform. The total RNA was size
selected and for each sample, RNA libraries between 150
and 500 nucleotides (nts) were generated (referred to
throughout as “long RNA” to distinguish from small
RNA libraries that query microRNA, for example) and
50 nt reads were sequenced using a single-end approach.
No multiplexing was used.

Read mapping
Sequence reads were mapped onto the human genome
assembly hg19 using the Short Read Mapping Package
(SHRiMP) [18]. Prior to mapping, quality-based trim-
ming was performed on the sequence reads using the
cutadapt tool [19]. During mapping we allowed mis-
matches (replacements) that comprised not more than
4% of a given read’s length; we did not permit any inser-
tions or deletions. This stringency is aimed at minimiz-
ing the instances of falsely mapped reads, i.e. of reads
mapping to regions to which they do not belong. Also,
mapped reads shorter than 16 nts were discarded and
not considered further. For our analyses, we only used
reads that mapped uniquely to the genome under these
conditions. Those sequence reads that could not be
mapped to the genome at all were also excluded from
further analysis.

Annotation of mapped reads
The genomic regions to which the sequenced reads
mapped were analyzed using genomic annotations ob-
tained from several public repositories. For protein-coding
genes, pseudogenes, and lncRNAs, we used the annota-
tions contained in the ENSEMBL database (http://www.
ensembl.org/). We also considered the 14 classes of repeat
elements and ncRNAs used by RepeatMasker [20]: DNA
and RNA repeats, long interspersed nuclear elements
(LINEs), short interspersed nuclear elements (SINEs), long
tandem repeats (LTRs), RCs, Simple Repeats, ribosomal
RNAs (rRNAs), Satellites, small cytoplasmic RNAs
(scRNAs), small nuclear RNAs (snRNAs), signal recogni-
tion particle RNAs (srpRNAs), transfer RNAs (tRNAs),
and the class “Others or Unknown”. The genomic coordi-
nates for these genomic features were extracted from the
Tables of the UCSC human genome browser (http://gen-
ome.ucsc.edu). For our analysis, we stringently defined
‘purely intronic regions’ to be “those segments of known
unspliced pre-mRNA that remain after removing all
known genomic features that are sense to the pre-
mRNA such as exons, miRNAs, repeat elements, etc.”
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Analogously, we stringently defined ‘unannotated inter-
genic regions’ to be “those segments of the genome that
remain after removing all protein coding loci as well as
all other already-characterized genomic features”.

Gene expression
For RNA-seq data, gene expression levels were approxi-
mated using the RPKM (reads per kilobase per million
mapped reads) measure [21] and further normalized
using the β-actin transcript (ENSEMBL identifier EN-
ST00000331789). As we showed previously the resulting
expression estimates correlate very well with qRT-PCR
across a very wide dynamic range [10]. We employed very
stringent abundance thresholds and only considered tran-
scripts whose expression was ≥ 1/10,000 of β-actin’s ex-
pression (~13 PCR cycles): using our approach, our least
abundant transcripts across the 10 datasets have RPKM
values that are higher than the 0.3-0.5 RPKM thresholds
used in similar studies. Our analyses are therefore more
stringent in that they are confined to sets of mRNAs that
are more abundant than what is typically considered. For
microarray data, gene expression levels are estimated
using the Affymetrix GeneChip and associated manufac-
turer software. Microarray data were further normalized
using robust multichip averaging (RMA), background-
corrected, quantile-normalized and log2-transformed.

Determination of feature enrichment
For genomic regions belonging to a given category (i.e.
‘exon’, ‘rRNA’, ‘miRNA’, etc.) we calculated enrichment as
the ratio of bases in the category that are covered by
mapped reads (“observed”) over the bases that would have
been covered by the mapped reads if this were a random
process (“expected”). We calculated P-values by shuffling
multiple times the genomic locations of the category
under consideration and generating a distribution of the
enrichments for the shuffled regions; a minimum of 1,000
reshufflings were performed in each case. Elements were
considered enriched if they displayed an enrichment of at
least a ±1.5 fold change and had a P-value < = 0.05.

Platelet proteome
We used the quantitative proteome set that was reported
recently [15]. We pre-processed the original set of ~4200
entries keeping only those that had a reported confidence
estimate of 99% or 100%. We also removed duplicate
entries keeping only the most abundant among the
duplicates. We did not consider the more recent addition
of 24 entries [12] in order to facilitate comparisons with
other reports [11,12]. The resulting set contained 3544
unique UNIPROT identifiers. We used the recent quanti-
tative proteome data together with data from two earlier
reports [9,22] to facilitate identification of qualitative
relationships.

Statistical analyses
Pair-wise Pearson correlations were calculated using the
normalized expression levels of the various features (e.g.
mRNAs, pseudogenes, etc.) between two individuals. To
compare the transcriptome vs. the proteome, a ranked
Spearman correlation was used to compare the abun-
dances of the overlapping expressed features.

Gene ontology analyses
Gene ontology (GO) analyses were carried out using
DAVID [23,24] (http://david.abcc.ncifcrf.gov/). For these
analyses, we enforced very stringent settings for “ease”
(Ease = 0.00001), P-value (≤ 0.00001), and “false discov-
ery rate” (≤ 0.01) together with a minimum fold enrich-
ment of 1.7.

Principal components analysis (PCA)
We carried out PCA of the 2 million genome-wide
genotype markers in the 10 subjects. To this end, we
used the Eigenstrat software package [25] to compute
the PCA transformation, excluding ethnicity information
from the analysis.

Data access
The RNA-seq and microarray data that we have gener-
ated for the 10 individuals are available through GEO
ids SRP028846 and GSE50858 respectively. The mapped
RNA-seq data can also be explored interactively at
https://cm.jefferson.edu/platelets_2014/

Results
The Platelet Transcriptomes of 10 healthy donors by
RNA-Seq
RNA-seq was performed on total RNA from highly puri-
fied platelets from 10 healthy male donors (see Additional
files 1 and 2 for subject demographics). Across all 10 indi-
viduals, we generated nearly 1.6 billion sequence reads
(long RNA-seq) with an average of 158 million reads per
sample (Additional file 3). Approximately 41% of the reads
that were sequenced mapped unambiguously to the hu-
man genome, a rate typical for whole genome RNA-seq. A
combined total of ~650 million uniquely mapped se-
quence reads were used in subsequent analyses.

Protein-coding mRNAs
Of the uniquely mapped long RNA-seq reads ~43.0%
are accounted for by genomic loci that correspond to
the mRNAs of protein coding genes, ~36.6% map to
rRNA, 14.0% to unannotated intergenic space, and the
remaining ~6.0% to non-protein-coding loci (Figure 1A).
For the stringent abundance thresholds that we use
(≥ 1/10,000th of β-actin – see Methods), we find that
the transcripts from the 10 individuals represent a
combined total of 10,079 distinct protein-coding
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genes, i.e. more than half of the known human protein
coding genes. Of these genes, roughly 50% (5,592,
Table 1, Additional file 4) of these genes are present in
all 10 individuals (Figure 1B, and the data can also ex-
plored at https://cm.jefferson.edu/platelets_2014/).
The number of shared expressed genes increases when
considering smaller subsets of the 10 individuals. For
example, ~7,000 of the 10,079 genes (~69%) are
expressed in platelets from seven or more of the 10 in-
dividuals (Figure 1B). The entries in Figure 1B indicate

that the number of mRNAs that are expressed by any
two of the 10 individuals is high.

Inter-individual correlations of mRNA transcripts
Next, we computed the inter-individual (pair-wise)
Pearson correlations using the normalized RNA-seq ex-
pression of mRNA transcripts shared between any two
individuals. We found the mRNA transcriptome profiles
of the 10 individuals to be very highly correlated
(Figure 2A). This result in conjunction with the results

Figure 1 Reads, genes and the genome. A) Percentage of mapped reads across annotated genomic regions. Shown is the average percentage
of uniquely mapped reads (long RNAs) that land on different genomic regions for the 10 samples. B) Table showing how many individuals share
how many of the sequenced mRNAs (RNA-seq) and proteins (proteome reported in Burkhart et al [15]).
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of Figure 1B indicates that for a large fraction of the
captured mRNA profiles the composition and relative
abundance of the corresponding mRNA transcripts are
consistently similar across the 10 individuals. To ensure
that the observed high correlations are not related to
the employed technology, we also profiled the mRNAs
of the same 10 individuals using a gene expression
microarray. As in the case of RNA-seq, microarray pro-
filing revealed high inter-individual Pearson correlation
of the mRNA transcripts (Figure 2B). The very high cor-
relations shown in Figures 2A and 2B did not materially
change when we analyzed only the subset of genes for
which a protein was identified by Burkhart et al. [15].
Finally, we computed intra-individual Spearman corre-
lations of the mRNA abundances determined by the
two technologies (RNA-seq and Microarray) and found
them to be very strongly correlated (Figure 2C). In Fig-
ures 2A through 2C, we have indicated in the labels the
ethnic group of each individual – W (White), B (Black) –
and placed individuals from the same ethnic group in
neighboring rows/columns. As can be seen, the observed
high inter-individual mRNA transcript correlations are in-
dependent of ethnic origin or of the technology used.

Other categories of transcripts with high inter-individual
correlations
In view of the very high inter-individual correlations that
we observed for the mRNA transcripts, we sought to deter-
mine whether other categories of transcripts exhibit similar
behavior. To this end, we first examined the various cat-
egories of ncRNAs to which reads were mapped uniquely
(Figure 1, Table 1) to determine those categories that are
enriched in the 10 RNA-seq samples as well as statistically
significant. Despite their overall low representation among
the sequenced reads (Figure 1A), and in all 10 samples,
several transcript categories including pseudogenes, rRNA,
snRNAs, srpRNAs, tRNAs, scRNAs, and RNA-repeats ex-
hibit statistically significant over-representation compared
to a random selection of transcripts (Figure 3A). Subse-
quent computation of pair-wise Pearson correlations only
for transcripts belonging to each of these seven categories
also revealed high inter-individual correlation values
(Additional file 5), similar to those shown in Figures 2A
and 2B. Just as in the case of the protein coding genes,
the high-concordance in expression patterns of these
categories of ncRNAs, suggest that these transcripts re-
flect marshaled events.

Table 1 Categories of platelet transcripts

Category Average number of expressed
elements

Number of elements in intersection of all
10 samples

Number of elements in union of all 10
samples

Protein coding
genes

7,590 5,592 10,079

pseudogenes 1,275 706 2,356

lncRNAs 151 80 287

DNA repeats 1,986 223 3,833

LINE 5,012 591 8,545

Low complexity
repeats

1,613 310 4,079

LTR repeats 2,725 508 3,676

Other repeats 24 9 16

RC repeats 8 2 14

RNA repeats 34 9 1,522

Simple repeats 2,846 410 9,980

rRNA repeats 213 135 268

Satellites 15 4 23

scRNA 447 272 574

SINE 10,319 911 13,782

snRNA 60 18 113

srpRNA 260 124 275

tRNA 123 47 253

Unknown repeats 32 6 56

(Purely) Intronic 28,636 4,323 161,826

(Unannotated)
Intergenic

9,876 2,208 41,666
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Differences in platelet pseudogene transcript expression
between the two ethnic groups
As mentioned above, the two racial groups do not show
any differences in their mRNA profiles (Figure 2). Neither
do they show any differences when comparing their foot-
prints along the rRNA, snRNAs, srpRNAs, tRNAs,
scRNAs, and RNA dimensions (Additional file 5). How-
ever, when we compared the transcript expression of their
pseudogenes (one of the seven statistically significant
enriched classes of ncRNAs) we observed a very clear dif-
ference between the two groups (Figure 3B). Within each
ethnic group the inter-individual Pearson correlations
were very high; however, across ethnic boundaries there
was no correlation. It is important to emphasize that this
difference arises when looking at the aggregate expression
levels of the pseudogene transcripts as a group rather than
specific differentially expressed genes. The use of DEseq
[26] reveals only a handful of statistically-significant pseu-
dogenes, including the pseudogenes for mitochondrial

genes MTND4P12, MTND1P23 and MTND4P24, and the
histone cluster genes HIST1H2BPS2 and HTATSF1P2
(Additional file 6) as well as a few others. As shown in
Additional file 1, the only difference we observe between
Whites and Blacks is in the amount of hemoglobin. Even
though we cannot exclude the possibility of a link between
hemoglobin expression and the expression of pseudogenes
in platelets such a connection seems unlikely as platelets
do not express hemoglobin.

Correlations between mRNA transcripts and their
corresponding proteins
Having established a high concordance in the composition
and abundance of the transcriptome profiles across plate-
lets from different individuals, we sought to characterize
the relationship between the platelet transcriptome and
the platelet proteome. It is important to note here that
such cross-platform comparisons of platelets from differ-
ent individuals typically present inherent limitations (see

Figure 2 Inter- and intra-individual correlations. A) Heatmap of the inter-individual correlation of all mRNA transcripts (RNA-seq). B) Heatmap
of the inter-individual correlation of all mRNA transcripts (microarray). C) Heatmap of the intra-individual correlation of all mRNA transcripts
(RNA-seq vs microarray). The sample IDs are labeled with a W (White) or B (Black).
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Discussion below). We are aware of only a single report
that has queried the platelet proteome in a quantitative
manner [15] – this is the proteome that we use for our
comparisons. From the perspective of the proteome, 3,112
(=3,544-432) or 87.8% of the 3,544 identified proteins have
the cognate mRNA present in at least 1 transcriptome,
whereas 66% have the cognate mRNA present in all 10
transcriptomes (Figure 4A and Additional file 5. The
remaining 12.2% (432) of the identified proteins had no
counterpart mRNA transcript in any of the 10 RNA-seq
datasets. In contrast, of the 10,002 unique mRNAs present
in one or more of the 10 RNA-seq transcriptomes, 3,226
(32%) have no corresponding proteome entry. The
availability of a quantitative profile for platelet proteins
[15] allowed comparison of the relative abundances of
platelet mRNA transcripts with the relative abundances of
platelet proteins (i.e. Spearman rank correlation). We car-
ried out this computation for the 2,338 genes that were

represented in both the platelet transcriptome and the
platelet proteome and observed a very weak correlation
between the two: for RNA-seq the Spearman correlation
equaled r = 0.311 (p-value = 2.2E-10) and for microarray
data r = 0.312 (p-value = 2.6E-16). See Additional file 7 for
the Spearman correlation values of each of the 10 individ-
ual transcriptomes. In a separate comparison, if we extend
the Spearman computation to the 5,564 mRNAs that are
present all 10 transcriptomes and the 3,544 proteins that
are present in the proteome, the observed value indicates
a poor correlation between the transcriptome and the
proteome with r = 0.223 (p-value = 2.1E-11).

Several identifiable groups of platelet genes and their
“Gene Ontology” analysis
We were struck by the substantial number of non-
overlapping genes between the transcriptome and prote-
ome, and considered whether this apparent discrepancy

Figure 3 Enriched elements and pseudogenes. A) Enrichment analysis of the expressed genomic elements. Shown is the average enrichment for
the 10 sequenced samples for various categories of annotated transcripts. The x-axis is the genomic element and the y-axis is the average enrichment
value (log2) for each category. Values are averaged across all ten samples. Those categories reaching significant enrichments (P-value < = 0.05) are
indicated with a “*”. B) Pseudogenes. Heatmap of the inter-individual Pearson correlations of pseudogene transcripts (RNA-seq). The sample IDs are
labeled with a W (White) or B (Black).
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might be attributed, in part, to different functional or
cellular classes of platelet genes among the various sub-
groups. For this analysis, we focused on the following
three non-overlapping groups: 1) genes represented by
transcripts in all 10 RNA-seq profiles and present in the
reference proteome; 2) genes represented by transcripts
in all 10 RNA-seq profiles and absent from the reference
proteome; and, 3) genes present in the proteome but not
in the transcriptome of any of the 10 RNA-seq profiles
(Figure 4A). Given that the proteome was reported using
UNIPROT identifiers, we first converted the ENSEMBL
identifiers of the RNA-seq datasets into UNIPROT: this
had the practical consequence of mapping multiple
ENSEMBL entries onto a single UNIPROT identifier –
in these instances, we paired up the UNIPROT id with
the most abundant of the ENSEMBL entries. The UNI-
PROT ids of each group were analyzed using DAVID,
and included the Gene Ontology (GO) terms for
biophysical processes (GO_BP_FAT), pathway entries
(KEGG), and tissue information (UP_TISSUE). Figure 4B
lists the top few entries for each group, in order of

ascending p-value: for the complete list see Additional file
8. As can be seen, each of the groups of genes in Figure 4
has a distinct profile. We have also extended the analyses
and considered two additional gene groups, for a total of
five groups: 4) genes represented in the RNA-seq profiles
of 1-9 individuals and absent from the proteome, and 5)
genes present in the proteome and in the RNA-seq pro-
files of 1-9 individuals (but not in all 10 individuals). See
Additional file 9 for the five gene groups and Additional
file 8 for a complete list of the associated terms.

Discussion
As a first step to understanding the genetic and molecu-
lar causes of inter-individual variability in human platelet
reactivity, it is important to define the variability in the
repertoire of platelet genes. RNA-seq is the most
technologically advanced approach to characterizing
transcriptomes, but has been applied to human platelets
in a rather limited manner. In this report, we present
the largest series of human platelet RNA-seq data to
date. Using platelets from healthy donors, our major

Figure 4 Three groups of platelet genes. A) Venn iagram showing the number of genes contained in each of the three shown categories of
genes. Note that the five categories are non-overlapping. B) Top entries of DAVID analysis for the GO, KEGG pathway, and UP_TISSUE terms
corresponding to the genes contained in each of the categories shown in the A) panel.

Londin et al. Biology Direct 2014, 9:3 Page 8 of 12
http://www.biologydirect.com/content/9/1/3



findings are: 1) a very high correlation of both protein-
coding transcript composition and abundance among
different subjects, a result that is independent of race
and of the employed technology; 2) a consensus plate-
let transcriptome that identifies mRNAs for most
biochemically-identified platelet proteins; and, 3) a racial
difference among expressed pseudogenes. Furthermore,
analysis of the RNA-seq-identified platelet transcriptome
that we report and of the mass spectrometry-identified
platelet proteins reported by Burkhart et al. revealed the
following: 1) most identified proteins had a corresponding
mRNA; 2) more than half of the identified platelet mRNAs
lacked a corresponding protein; and, 3) the 2,338 genes
that are represented in both the platelet transcriptome
and the platelet proteome exhibited a very weak but
statistically-significant rank correlation. Our data suggests
that those mRNAs without a corresponding protein en-
code proteins with different functions than those that have
a corresponding protein in the steady state. These find-
ings, together with the consensus transcriptome from this
cohort of healthy males provide an important framework
for future patient studies and for new research directions
in platelet biology.
Our findings are strengthened by having carefully se-

lected a cohort of 10 males within a narrow age-range
and no notable clinical history. Of the 10 individuals,
five self-identified as White and five self-identified as
Black; in all instances, the self-identification was con-
firmed independently through genotyping. Moreover, all
long RNAs from their platelets’ total RNA were se-
quenced using a single platform (Life Technologies
SOLiD 5500xl). These choices were meant to narrow the
range of profile variations and to minimize the impact of
potential contaminating events (other cell types, foreign
RNA), the latter being stochastic in nature.
Comparisons of the transcript levels obtained with

RNA-seq revealed very high inter-individual (Pearson)
correlations for mRNA (Figure 2), pseudogenes, rRNA,
snRNAs, srpRNAs, tRNAs, scRNAs, and RNA repeat el-
ements (Additional file 5). The high correlations of the
mRNA profiles were also recapitulated using Affymetrix
microarrays, indicating that they are not a function of
the employed technology. The concordance of mRNA
composition and abundance across 10 different individ-
uals suggests a structured and well-coordinated process.
Unexpectedly, although pseudogene expression was highly
correlated within each of the two racial groups, it was not
correlated across the groups (Figure 3B). There is little ap-
preciation for racial differences in pseudogene expression,
although this has been reported for DHFRP1 [27]. Pseudo-
gene expression can regulate expression of protein-coding
transcripts, and perhaps the differences we observed may
contribute to racial differences in platelet function. As we
mentioned above, Additional file 1 indicates that the only

difference we observe between Whites and Blacks is in
the amount of hemoglobin: even though there remains
the formal possibility of a link between hemoglobin ex-
pression and the expression of pseudogenes in platelets,
such a connection seems unlikely as platelets do not ex-
press hemoglobin.
There has been a lack of clarity regarding the correlation

between the platelet transcriptome and proteome, which
was recently highlighted after the first quantitative prote-
ome was reported [11,12,15]. Having produced a reason-
able first draft of a reference human platelet transcriptome,
we had an opportunity to shed additional light on the rela-
tionship between platelet mRNAs and proteins. Although
there are limitations (described below) in comparing across
platforms that use fundamentally different protocols and
chemistries, we were able to confirm that a large portion
of the reported platelet proteins (2,338 of 2,770 [83.4%])
had a corresponding reference transcript among those that
were common to (i.e. intersection) all 10 sequenced indi-
viduals. However, we observed a poor correlation in the
level of expression among these 2,338 “overlapping”
mRNAs/proteins (Spearman rank correlation r = 0.311;
p-value = 2.6E-10). Importantly, these genes fell into
functional categories of well-established features of
platelet physiology (Figure 4, middle list; Additional file
9), such as vesicle trafficking. These analyses provide a
high level of confidence that the 2,338 “overlapping”
genes (Additional file 8) are authentic to and commonly
expressed in human platelets.
We were intrigued by the large number of platelet

mRNAs that were present in all 10 studied individuals but
for which no corresponding protein was identified (3,226
of 5,564 [57.9%]; Figure 4, left list; Additional file 9; and,
Additional file 8). The presence of untranslated RNAs and
the exquisitely consistent abundances measured by RNA-
seq across the 10 individuals suggest that regulation
through mRNA degradation is either limited or controlled,
despite the presence of high amounts of platelet miRNAs
that has been documented by us [10] and others [14,28].
Potentially, this group of mRNAs could represent mRNAs
that: 1) are vestigial megakaryocyte mRNAs with little or
no physiologic consequence in peripheral blood platelets;
2) undergo transfer via exosomes or microparticles to
other vascular locations (as has been shown for miRNAs
[28]); or, 3) will not be translated until they are needed in
hemostasis or inflammation. The first possibility may be
particularly relevant for those untranslated RNAs present
in very low levels in our healthy group of subjects. We ex-
pect that the future application of both proteomic and
RNA-seq technologies to platelets isolated from the same
individuals in both healthy and diseased states will help
clarify this picture.
We also found that 16.6% of the reported proteome

lacked a corresponding reference mRNA. Analysis of
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this category of genes (Figure 4, right list; Additional file
8; and, Additional file 9) is most consistent with either
platelet endocytosis (e.g. fibrinogen and immunoglobu-
lin) or platelet preparations contaminated with plasma
proteins. Finally, we would point out that this emerging
picture gets more complicated when considering the
inter-individual variation in transcriptomes. Additional
file 9 illustrates this point: when we considered tran-
scripts present in only 1-9 of our subjects (but not in all
10), we find an additional 3,634 transcripts that lack a
corresponding protein and an additional 774 proteins
that lack a corresponding mRNA transcript.
As mentioned above there are limitations to our tran-

scriptome and proteome analyses. The proteome reported
by Burkhart et al. was based on a single quantitative mass
spectrometry experiment from a pool of 4 platelets [15].
In addition, the reproducibility of proteomic analyses is

estimated to be ~65% [15]. Figure 5 describes in more de-
tails the relationship between the platelet transcriptome
and the platelet proteome. Lastly, the transcriptome-
proteome comparisons we carried out unavoidably in-
volved mRNAs and proteins sourced from different indi-
viduals. Despite these limitations, it was intriguing to
find that the GO term analyses of the different identifiable
gene groups correspond to distinct biological categories
(Figure 4; Additional file 8), thus providing support for the
biologic validity of the relationships we have uncovered.
Given the limited overlap that the proteomics findings
detailed in the study by Burkhart et al. has with the earl-
ier proteomics reports by Qureshi et al. [9] and by
Dowal et al. [22] – detailed in Table S3 of Burkhart
et al. – it will be important to focus future efforts on
quantitative analyses with technical and biological repli-
cates: it will be particularly illuminating to determine

Figure 5 Relationships between the platelet transcriptome (left) and proteome (right). The entries comprise some of the known causes
that may underlie the observed discordance between platelets mRNAs and platelet proteins
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whether the high-inter-individual mRNA correlations
carry over to analogous correlations between the plate-
let proteomes of different individuals.

Conclusion
Summarily, the very high inter-individual correlations of
the transcriptome signatures across 10 different subjects
representing two ethnic groups together with the results
of our analyses indicate that it is feasible to assemble a
platelet mRNA-ome that can serve as a reference for fu-
ture platelet transcriptomic studies of human health and
disease.

Reviewers comments
Reviewer #1 (Dr Neil Smalheiser)
I thought this paper was convincing and well written. It
provides a good systems biology contribution to platelet
biology. I only have one minor comment/question. On
p. 9, you mention certain Spearman correlations in the
0.3 range as modest and significant, yet later in the same
paragraph you have another correlation listed as r =
0.223 as "no correlation" even though the p-value shows
extremely high significance. Please clarify and revise
what you mean.
Response: We thank the Reviewer for pointing this out –

it has been corrected in the final version.

Reviewer #2 (Dr Mikhail Dozmorov - nominated by
Dr Yuri Gusev)
The manuscript by Londin et al. addresses an important
topic of investigating human platelets transcriptome
among individuals and ethnicities. Moreover, the authors
performed correlation of the transcriptome with publicly
available proteome dataset, and report several interesting
observations. The manuscript is very well written, clear
and concise in each and every part. All potential ques-
tions that come up during reading the manuscript are
answered either later in the text, or in supplementary
material. The methods are flawless, and also original, as
the authors describe their technique of not just annotat-
ing genes in the transcriptome, but also consider repeat
elements, non-coding regions, and distinguish between
intronic and intergenic regions. All data are prepared to
be made available upon publication.
The manuscript is recommended for publication with-

out revisions.

Reviewer #3 (Dr Eugene Koonin)
This is a very interesting, very clearly written paper that
demonstrates the robustness of the up to date RNAseq
protocols and reveals remarkable features of the platelet
transcriptome and proteome. Probably, the most import-
ant observation reported here is the very strong inter-
individual correlation between the transcriptomes. This

finding lends confidence to other observations. Among
these, it is notable that the union of the transcripts de-
tected in platelets from 10 individuals accounts to about
half of the entire set of human protein-coding genes
which is an unexpectedly large number. It is of further
interest that over half of these transcripts are untrans-
lated or at best weakly translated. This work clearly pro-
vides a platform for probing the biology of platelets and
a template for analogous studies on other cell and tissue
types.
minor comments not for publication:
When comparing the black and white cohorts, the au-

thors speak of "ethnic groups" under Results and "races"
under Discussion. On this sensitive issue, it is advisable
to use a uniform and most broadly accepted termin-
ology, whatever that is.
Response: We have changed all instances of “races” to

“ethnic groups” throughout the manuscript.
“(≤ 1/10,000 the of β-actin)” isn't this supposed to be >1/

10,000 the of β-actin
Response: This should have been “≥1/10,000” and has

been corrected.
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schematic representation of Venn diagrams of the potential overlaps of
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Spearman correlations of the genes expressed in the transcriptome and
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