
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Kanbar College Faculty Papers 

1-15-2020 

Locally Recoverable Codes From Planar Graphs Locally Recoverable Codes From Planar Graphs 

Kathryn Haymaker 
Villanova University 

Justin O'Pella 
Thomas Jefferson University 

Follow this and additional works at: https://jdc.jefferson.edu/kanbarfp 

 Part of the Algebra Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Haymaker, Kathryn and O'Pella, Justin, "Locally Recoverable Codes From Planar Graphs" (2020). Kanbar 
College Faculty Papers. Paper 3. 
https://jdc.jefferson.edu/kanbarfp/3 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Kanbar College Faculty Papers by an authorized administrator of the Jefferson Digital 
Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/kanbarfp
https://jdc.jefferson.edu/kanbarfp?utm_source=jdc.jefferson.edu%2Fkanbarfp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=jdc.jefferson.edu%2Fkanbarfp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


ISSN 2148-838Xhttp://dx.doi.org/10.13069/jacodesmath.645021

J. Algebra Comb. Discrete Appl.
7(1) • 35–53

Received: 13 June 2019
Accepted: 17 August 2019

Journal of Algebra Combinatorics Discrete Structures and Applications

Locally recoverable codes from planar graphs

Research Article

Kathryn Haymaker, Justin O’Pella

Abstract: In this paper we apply Kadhe and Calderbank’s definition of LRCs from convex polyhedra and planar
graphs [4] to analyze the codes resulting from 3-connected regular and almost regular planar graphs.
The resulting edge codes are locally recoverable with availability two. We prove that the minimum
distance of planar graph LRCs is equal to the girth of the graph, and we also establish a new bound
on the rate of planar graph edge codes. Constructions of regular and almost regular planar graphs
are given, and their associated code parameters are determined. In certain cases, the code families
meet the rate bound.

2010 MSC: 94B05, 94B25, 94B65

Keywords: Error-correction, Local recovery, Planar graphs, Availability, Rate bound

1. Introduction

In the classical view of error-correcting codes (ECCs), the central question involves recovering an
original transmitted message from an entire received word, even in the presence of errors or erasures.
The recent rise of distributed storage applications has inspired research on the local erasure-correcting
capabilities of ECCs. A code C is a locally recoverable code (LRC) with locality r if for all codewords
c ∈ C, any erased symbol of c can be recovered by accessing at most r other symbols from c. In [2],
Gopalan, et al. describe the need for efficient erasure coding with small locality to address node failure
in distributed storage networks.

A code C has availability t if for any codeword position i, there are t disjoint recovery sets of sizes
r1, r2, · · · , rt, respectively for position i. Kadhe and Calderbank present a construction of LRCs with
availability two from convex polyhedra, specifically demonstrating the construction with the five examples
of the platonic solids. The authors prove that LRCs from convex polyhedra have length and dimension
given by the number of edges and the number of faces minus one, respectively, of the polyhedra, and
they provide the weight distribution of the codes from the platonic solids [4]. The pre-print [5] is an

Kathryn Haymaker (Corresponding Author); Department of Mathematics and Statistics, Villanova University,
United States (email: kathryn.haymaker@villanova.edu).
Justin O’Pella; Thomas Jefferson University, United States (email: justin.opella@jefferson.edu).

35

https://orcid.org/0000-0001-5965-4197
https://orcid.org/0000-0002-1381-4172


K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

extended version of the conference paper [4] and also contains results on the rate of optimal binary LRCs
with small availability and locality. We direct the reader to [5] and the references therein for additional
background on binary LRCs.

The goal of this paper is to build upon the results in [4] on LRCs generated by convex polyhedra
to classify and construct infinite families of LRCs generated by simple, 3-connected planar graphs. We
prove a relationship between the girth of planar graphs and the minimum distance d of the code. We also
prove a bound on the parameters n, k, and d of an LRC generated by a planar graph using classical facts
about planar graphs. In many cases, the bound is tighter than previously discovered bounds for LRCs
with availability two. We discuss how constructions of j-regular planar graphs (j = 3, 4, 5) yield planar
graph LRCs with recovery set size j − 1. Finally, we present families of almost regular planar graphs.
A graph is a (j, j + 1) almost regular graph if its degree sequence contains only j and j + 1, for some
positive integer j. We determine the code parameters from these graphs and classify the types of graphs
that yield codes meeting the rate bound.

2. Preliminaries

We begin with the necessary definitions and notation. A planar graph is a graph that can be drawn
in the plane with no edges crossing. Let Vi represent the number of vertices with degree i. The maximum
degree of a graph is denoted by ∆.

A wheel graph is a graph that contains a cycle where every vertex on the cycle is connected to a
universal vertex (see the black edges of Figure 8). The girth of a graph is the minimum length of a cycle
contained in the graph. The degree of a face f of a planar graph is the number of edges bordering f .
Figure 1 shows an almost regular (2, 3) graph, with three faces. The outer or infinite face is degree four.
The other two faces are each of degree three. The girth of the graph is three and ∆ = 3. A 3-connected
graph is a graph in which the removal of any collection of two or fewer vertices does not disconnect the
graph.

Figure 1. A planar type (2, 3) graph with V2 = 2, V3 = 2. This graph is not 3-connected, since the
deletion of the two vertices of degree 3 disconnects the graph.

The following bound on the rate of LRCs with availability two is proven in [8] for sequential recovery
codes and in [4] for non-sequential recovery codes.

The rate R of a locally recoverable code with availability two and recovery set sizes at most r satisfies:

R ≤ r

r + 2
. (1)

In [4], Kadhe and Calderbank introduced codes generated by convex polyhedra.

Definition 2.1 (Def. 2, [4]). Consider a convex polyhedron Γ with v vertices, e edges, and f faces. Fix
an arbitrary labeling of its edges 1 through e. Let C be a subset of Fe

2 such that for a vector c ∈ C, every
collection of entries corresponding to edges that meet at a vertex sum to zero over F2. We say that the
code is generated by Γ, and denote it as C(Γ).

Kadhe and Calderbank use properties of convex polyhedra to prove that the dimension of a code
C(Γ) is f − 1.

36



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Lemma 2.2 (Kadhe and Calderbank, [4]). For a convex polyhedron Γ with v vertices, e edges and f
faces, the code C(Γ) generated by Γ is an [e, f − 1] code.

In this paper we restrict our work to 3-connected planar graphs because there is a correspondence
between the embeddings of convex polyhedra and 3-connected planar graphs [10]. Moreover, it is impor-
tant to guarantee that every edge is involved in a cycle that encloses a face so that we can unambiguously
quantify the degree of a face. Throughout, we will use the notion of an LRC generated by a planar graph
introduced in [4], with the additional understanding that all planar graphs considered in this paper are
3-connected.

Definition 2.3 (Def. 7, [4]). Consider a planar graph Γ with v vertices and e edges. Fix an arbitrary
labeling of its edges from 1 through e. Let C be a subset of Fe

2 such that for every vector c ∈ C , the
entries of c corresponding to edges that meet at a vertex sum to zero over F2. We say that the code C is
generated by Γ, and denote it as C(Γ).

We call a code generated by a planar graph in this way an edge code.

Remark 2.4. Edge codes have availability t = 2 since every edge is incident with two vertices that provide
parity checks on the edge. The sizes of the recovery sets for edge {vi, vj} are deg(vi)-1 and deg(vj)-1,
respectively. That is, r ≤ ∆− 1.

Throughout the paper we make use of Euler’s formula for planar graphs: a planar graph with v
vertices, e edges, and f faces satisfies v − e + f = 2.

In the proof of Lemma 2.2, the fact that Γ is a convex polyhedron is used to invoke Euler’s formula.
Since Euler’s formula also applies to 3-connected planar graphs, the proof of Lemma 2.2 implies the
following corollary.

Corollary 2.5. For a 3-connected planar graph Γ with v vertices, e edges and f faces, the code C(Γ)
generated by Γ is an [e, f − 1] code.

Example 2.6. A tetrahedron embedded into the plane contains 4 vertices of degree 3, 6 edges, and 4
faces. The code generated by the tetrahedron is a [6, 3] code with locality r = 2 and availability t = 2.
The tetrahedron embedded in the plane and one example codeword are shown in Figure 2. The examples
constructed in [4] include LRCs from the Platonic solids. Parameters of these codes are summarized in
Table 1.

Figure 2. Tetrahedron with example codeword bits in black, and index positions in red. The
codeword shown is (1, 1, 1, 0, 0, 0).

37



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Table 1. Parameters of codes associated with the Platonic solids [4].

Platonic Solid (n, k) r t

Tetrahedron (6, 3) 2 2
Cube (12, 5) 2 2
Octahedron (12, 7) 3 2
Dodecahedron (30, 11) 2 2
Icosahedron (30, 19) 4 2

3. Parameters of edge codes

We begin by proving that the minimum distance of an edge code is equal to the girth of the planar
graph, which is the same as the smallest degree of a face.

Proposition 3.1. The minimum distance of an edge code generated by a planar graph is equal to the
smallest degree of a face.

Proof. Let C represent the set of edges in a planar graph G corresponding to a smallest face of G.
Then the indicator vector of C, xC, is a codeword, since every vertex in the cycle C has exactly two
incident edges labeled 1, while every vertex outside of the cycle has all incident edges labeled 0.

Next we show that a minimum-weight codeword must contain a cycle from G. Suppose that x is a
nonzero minimum-weight codeword in a code generated by the edges of a 3-connected planar graph G.
Let Gx be the subgraph induced by the edges that correspond to the support of x. Consider an edge e
corresponding to a position in the support of the codeword x.

Seeking a contradiction, suppose that the connected component of Gx containing e is a tree. Then
there must be at least two leaf vertices, each of which has exactly one neighboring edge labeled 1, and
therefore these leaf vertices represent unsatisfied parity checks. This contradicts the assumption that x
is a codeword.

Next we use facts about planar graphs to prove the following rate bound.

Theorem 3.2. An [n, k, d] edge code generated by a 3-connected planar graph G with v ≥ 3 satisfies the
following bound:

k

n
≤ 2

d
− 1

n
. (2)

Proof. Note that for any simple planar graph, the sum of the degrees of all faces is equal to twice the
number of edges. Let d be the smallest degree of a face in G. More formally,

∑
i fi = 2e, and therefore:

3f ≤
∑
i

fi = 2e.

Since d is the smallest degree of a face in G, df can replace 3f in the inequality as follows:

df ≤ 2e.

Therefore we obtain
f − 1

e
≤ 2

d
− 1

e
.

Applying Corollary 2.5, we have established that R ≤ 2
d −

1
n .

38



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Remark 3.3. A graph in which every face has degree d would result in equalities in the steps of the proof,
producing a code whose rate meets the bound. In Section 5.1, we use this fact to classify almost regular
planar graphs whose corresponding codes meet the rate bound.

Notice that the smallest degree of a face in G is also the girth of the graph, so Bound 2 can also be
stated in terms of the girth. The cases in this paper include many codes with d = 3. Figure 3 shows a
comparison of Bound 1 and Bound 2 for different recovery set sizes and d = 3. For cases where r ≥ 4,
Bound 2 is tighter than Bound 1. When r = 3, Bound 2 is tighter than Bound 1 for n < 15. In the case
where r = 2, Bound 2 is tighter than Bound 1 for n < 6. For codes generated by planar graphs with
d > 3, Bound 2 is tighter than Bound 1.

Figure 3. Bound comparison for edge codes: Bound 1 and Bound 2, for d = 3.

We will repeatedly make use of the following well-known fact about planar graphs, so we include a
brief proof.

Fact 1. The average degree of a planar graph is strictly less than 6.

Proof. Considering that 3f ≤ 2e for a planar graph and substituting this into Euler’s formula gives:

∑
i

di ≤ 6v − 12.

Therefore the average vertex degree is at most 6− 12
v .

4. j-regular planar graphs

Regular planar graphs of degree 3, 4, or 5 can yield LRCs with availability two, where every recovery
set has the same size, ∆− 1. Relaxing the regularity condition can still yield codes that meet Bound 2,
so we also explore the expanded class of almost regular planar graph constructions in Section 5.

39



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Using the website [7], with information from [6], we determine the parameters of LRCs from small
3-regular planar graphs of girth at least 5 in Table 2. The graph with v = 20 is the dodecahedron edge
code that was presented in [4, 5].

Table 2. 3-regular planar graphs of girth at least 5 and their edge code parameters. All codes
have minimum distance at least 5. Bound 3 assumes d = 5. Rate and Bound 3 rounded
to 4 decimal places. There are three non-isomorphic graphs with 28 vertices.

v e f Code parameters Rate Bound 3
20 30 12 [30, 11] .3667 .3667
24 36 14 [36, 13] .3611 .3722
26 39 15 [39, 14] .3590 .3744
28 42 16 [42, 15] .3591 .3762

We now summarize some constructions of infinite families of 3, 4, and 5-regular planar graphs and
give their corresponding edge code parameters. There are no j-regular planar graphs for j > 5 by Fact 1.
We concentrate on girth 3, 4, and 5 to obtain LRCs with minimum distance at most 5. Bound 2 shows
that larger minimum distance results in low code rates (R < 1

3 ), and therefore we do not consider d > 5
in this paper.

The proof of Bound 2 shows that a planar graph with all faces of degree g for a planar graph of girth
g yields an LRC with rate meeting Bound 2. The graphs in which every face has the same degree are
called triangulations (g = 3), quadrangulations (g = 4), and pentangulations (g = 5), and the j-regular
versions of these are precisely the platonic solids (see [4]).

Case 1: 3-regular planar graphs
Define the operation of splitting a face of a planar graph as adding a vertex to each of two distinct edges
of the face and joining the two new vertices by an edge. Steinetz (edited by Rademacher) showed that
3-regular planar graphs can be generated by “adding edges" to the tetrahedron [10], including by splitting
faces. This process is also called adding handles or adding ears. The face splitting operation increases the
number of vertices in the graph by two, increases the number of edges by three, and increases the number
of faces by one. The degree of all vertices remains three. Therefore, starting with the tetrahedron with
v = 4, e = 6, f = 4, the splitting process at iteration i results in a graph with v = 4+2i, e = 6+3i, f = 4+i.
The resulting family of edge codes has parameters: [6+3i, 3+i, 3], with rate Ri = 3+i

6+3i , which approaches
1
3 from above as i increases. The rate can be improved by adding edges between existing vertices, but
this process destroys the 3-regularity of the graph, which would also negatively impact the small locality
of the resulting LRC. Face splitting is the only edge-addition operation that preserves 3-regularity, and
the cost is that every operation that splits a face adds at least one additional non-triangular face to the
graph.

Case 2: 4-regular planar graphs
Broersma, et al. detailed a process of generating all 3-connected 4-regular planar graphs from the
octahedron [1]. Inserting a new triangle into an existing triangular face of the octahedron is one method
that results in an infinite family of 4-regular planar graphs. See the yellow edges being inserted into
the red triangle in Figure 15 for an example. On iteration i of this process, the resulting graph has
v = 6 + 3i, e = 12 + 6i, f = 8 + 3i. The resulting family of edge codes has parameters [12 + 6i, 7 + 3i, 3],
with rate Ri = 7+3i

12+6i , which approaches 1
2 from above as i increases. As in Case 1, adding edges could

increase the rate at the cost of the graph regularity and the small locality of the edge code.

Case 3: 5-regular planar graphs
Families of 5-regular simple planar graphs are generated in [3]. An infinite family D1, D2, . . . is given in
[3] where D1 is the icosahedron planar embedding. D2 is formed by splitting an edge of D1, duplicating
the graph and gluing the split edges back together. See [3], page 420 for the first few examples in this
infinite family. The graph Di has v = 12i, e = 30i, f = 18i + 2. The resulting edge code family has
parameters [30i, 18i + 1, 3] and rate Ri = 18i+1

30i .

40



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Section 5.3 contains another approach to constructing an infinite family of 5-regular planar graphs.

Dropping the strict regularity condition and considering almost regular graphs in the next section in
some cases yields improved code rates and more flexible constructions, without a large difference in the
local erasure correction capabilities of the codes.

5. Almost regular type (j, j + 1) planar graphs

Almost regular type (j, j + 1) planar graphs will be considered for j ∈ {3, 4, 5}. Values of j ∈ {1, 2}
are not considered due to the resulting small locality. Since the average degree of a planar graph is strictly
less than 6 (Fact 1), j cannot be greater than 5.

A type (j, j + 1) graph has Vj + Vj+1 vertices. The number of edges e can be calculated as follows:

e =
jVj + (j + 1)Vj+1

2
. (3)

We use Euler’s formula to find the number of faces f and the code rate for all codes in this section.

5.1. Almost regular graphs attaining the bound

First we consider graphs that yield codes that meet Bound 2, with minimum distance d = 3. That
is, we assume the graphs are triangulations since every face must have degree 3 to meet Bound 2 with
d = 3.

Theorem 5.1. There are no infinite families of planar graphs with vertices of degree 3, 4, or 5 that are
triangulations. The finite list of such graphs is given in Table 3.

Proof. The number of vertices V in an almost regular graph with only vertices of degree 3, 4, and
5 can be restated as V = V3 + V4 + V5. The number of edges is e = 3

2V3 + 2V4 + 5
2V5. Note a graph

that generates a code with d = 3 will attain Bound 3 when every face of the graph is degree 3. More
formally, the bound is attained if 3f = 2e. Substituting this information into Euler’s Formula allows for
an algebraic solution.

v − e + f = 2

3v − 3e + 3f = 6

3v − e = 6

3V3 + 3V4 + 3V5 −
3

2
V3 − 2V4 −

5

2
V5 = 6

3

2
V3 + V4 +

1

2
V5 = 6.

There are a finite number of combinations of non-negative integers that satisfy the equation above.
In [9], Schmeichel and Hakimi determine which almost regular degree sequences are planar graphical.
Table 3 contains the list of 11 combinations of V3, V4, V5 that are planar graphical.

Notice that some of the cases listed in Table 3 are regular graphs, some are almost regular graphs,
and some contain other combinations of vertex degrees (such as only degree 3 and degree 5 vertices, for
example).

Figure 6 shows all type (4, 5) planar graphs whose corresponding codes are rate optimal according
to Bound 2.

Next we consider the cases d = 4 and d = 5. We first present two iterative constructions of almost
regular (3, 4) planar graphs whose codes meet Bound 2. Both constructions begin with one of the platonic
solids.

41



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Table 3. Graphs that generate codes attaining Bound 3. Code rate rounded to 4 decimal places.
Codes possess minimum distance d = 3.

V3 V4 V5 Code Rate
0 0 12 .6333
0 2 8 .6250
0 3 6 .6190
0 4 4 .6111
0 5 2 .6000
0 6 0 .5833
1 3 3 .6000
2 0 6 .6111
2 2 2 .5833
2 3 0 .5556
4 0 0 .5000

Construction 1. The starting point of this construction is the Cube graph—a 3-regular planar graph
with faces of degree 4, shown on the left in Figure 4. The first iteration in the construction is to insert
a copy of the black edges and vertices into any face in the graph that has all vertices of degree 3. In
Figure 4, the new vertices and edges are inserted into the center face. There will be at least one face
incident with all degree-3 vertices on every iteration because the inner-most face being inserted always
has this property. On iteration i, the graph has V3 = 8, V4 = 4i, with 6 + 4i faces, and all faces of degree
4. The code parameters at the ith iteration are [12 + 8i, 5 + 4i, 4], and the rate meets Bound 2.

Figure 4. The Cube and the first iteration of Construction 1.

Construction 2. This construction begins with the planar embedding of the Dodecahedron—a 3-regular
planar graph with faces of degree 5, shown in Figure 5. The first iteration of the construction takes a
copy of the edges and vertices in black in the figure, and inserts them into any face that is incident with
only vertices of degree 3. Like in Construction 1, there will always be a face incident with vertices of
degree 3, since there are several such faces being inserted at each iteration.

At iteration i, the graph has V3 = 20 + 10i, V4 = 5i, with 12 + 10i faces, each of degree 5. The code
at iteration i has parameters [30 + 25i, 11 + 10i, 5], and the rate meets Bound 2.

The same argument as Theorem 5.1 can be applied with 4f = 2e and 5f = 2e to gain insight into
the possible parameters of rate optimal codes with d = 4 and d = 5, respectively. The resulting equations
are V3 − V5 = 8 for d = 4 and V3

2 − V4 − 5V5

2 = 10 for d = 5.

For d = 4, Construction 1 gives an infinite family of (3, 4) almost regular planar graphs in which
every face has degree 4 and whose resulting code rates meet Bound 2. There are no type (4, 5) almost
regular graphs satisfying the d = 4 equation. Furthermore, the resulting equation gives a necessary
condition for a rate optimal type (3, 5) graph to exist.

42



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 5. The Dodecahedron with black edges and vertices denoting the portion of the graph
that should be copied and inserted into a face bordered by vertices of degree 3 for each
iteration of Construction 2.

The results for d = 5 do not provide a finite list of cases that meet the bound but, rather, show
necessary conditions for a rate optimal code to exist. These observations are in Table 4.

Table 4. Necessary existence conditions for number of vertices needed for a rate optimal code
to exist with d = 5.

Graph Degrees (Type) Necessary Conditions
(3, 4) V3 ≥ 22, V4 ≥ 1

(4, 5) Does not exist
(3, 5) V3 ≥ 30, V5 ≥ 2

(3, 4, 5) V3
2
− V4 − 5V5

2
= 10

5.2. Type (3, 4) planar graphs with girth 3

Since Theorem 5.1 establishes that there are no infinite families of (3, 4) almost regular planar graphs
that are triangulations, in this section we present alternative graph constructions which contain some
faces of degree four.

Algorithm 5.2. This algorithm subdivides the edges of a triangle embedded into a plane with new vertices
to form a planar graph with V2 = 2, V3 = 2, V4 = k, and f = k + 3 for any non-negative integer k. See
Figure 7 for an example.

Begin with a planar 2-regular graph with 3 vertices labeled 1, 2, and 3.

1. Subdivide edge v1v2 by inserting vertex i = 4.

2. Insert edge v3v4.

3. If this is the desired number of V2, V3 and V4, stop. Else, continue to step 4.

4. Set i = i + 1.

5. Subdivide edge vi−2v2 by inserting vertex i.

6. Insert edge vi−1vi. Return to step 3.

In steps 1-3, an initial graph with V2 = 2, V3 = 2, V4 = 0, and f = 3 is constructed. For each
iteration of steps 3-6, a vertex of degree 4 is added to the degree sequence and another face is bounded.

43



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

(a) (b)

(c) (d)

Figure 6. All rate optimal type (4, 5) planar graphs. Degree 5 vertices in black. (a) [5, 5, 4, 4,
4, 4, 4] (b) [5, 5, 5, 5, 4, 4, 4, 4]; (c) [5, 5, 5, 5, 5, 5, 4, 4, 4]; and, (d) [5, 5, 5, 5, 5, 5, 5,
5, 4, 4].

Figure 7. A graph with V2 = 2, V3 = 2, V4 = k = 1, and f = k + 3 = 4. Vertices and edges added
through the steps of Algorithm 5.2 in red.

Algorithm 5.2 can be generalized to cases where a triangle is present in a larger graph so the initial
degree of vertices 1, 2, and 3 depends on the total edges incident with those vertices.

Construction 3. This construction (Figure 8) generates an infinite family of type (3, 4) planar graphs
with V3 = 4, V4 = k and f = k + 4 for all k ∈ Z+. Begin with a wheel graph with 5 vertices. Select
a triangle in the graph and implement Algorithm 5.2. Note that the universal vertex cannot be labeled
vertex 3.

The rate of the code in Construction 3 simplifies to 1
2 for any value of k, thus any combination of

V3 and V4 that can be attained in Construction 3 yields the same code rate.

44



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 8. A graph with V3 = 4, V4 = k = 5, and f = k + 4 = 9. Vertices and edges added through
the steps of Algorithm 5.2 in red.

Construction 4. This construction generates an infinite family of type (3, 4) planar graphs with V3 = 2,
V4 = k and f = k + 3 for k ∈ Z+, k ≥ 3. Consider the type (3, 4) graph generated by Construction 3.
Insert an edge between vertex 2 and another vertex of degree 3 on the original “wheel” that is not already
neighbors with vertex 2 (see Figure 9). Return to step 3 of Algorithm 5.2.

Figure 9. A graph with V3 = 2, V4 = k = 7, and f = k + 3 = 10.

As degree 4 vertices are added in Construction 4, the code rate decreases. The degree of the infinite
face increases and since 3 is the minimum number of edges needed to form a closed face, it is an expensive
face with respect to edges. Similarly, the degree of the face with vertices 1 and 2 that is incident with
the face where Algorithm 5.2 takes place increases and becomes an expensive face with respect to edges.
As the number of degree 4 vertices becomes larger, the constants in the code rate become less significant
and the code rate approaches 1

2 .

Algorithm 5.3. Algorithm 5.3 subdivides the edges of a rectangle with new vertices to form a new planar
graph with V2 = 4, V3 = 2k, and f = k + 2 for any k ∈ Z+. See Figure 10.

Begin with a planar 2-regular graph with 4 vertices. Label the vertices 1, 2, 3 and 4 with edges v1v2,
v1v3, v2v4 and v3v4.

1. Subdivide edge v1v3 and v2v4 by inserting vertex i = 5 and i + 1 = 6, respectively.

2. Insert edge v5v6.

3. If this is the desired number of V2 and V3, stop. Else, continue to step 4.

4. Set i = i + 2.

45



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 10. A graph with V2 = 4, V3 = 2k = 2(3) = 6, and f = 3 + 2 = 5.

Figure 11. A graph with V3 = 2(9) = 18, V4 = 2, and f = 9 + 4 = 13

5. Subdivide edges vi−2v3 and vi−1v4 with vertex i and i + 1, respectively.

6. Insert edge vivi+1. Return to step 3.

Algorithm 5.3 can be applied to cases where a rectangle is present in a larger graph so the initial
degree of vertices 1, 2, 3 and 4 depends on the total edges incident with those vertices.

Construction 5. This construction generates an infinite family of type (3, 4) planar graph with v vertices
and V3 = 2l, V4 = 2 and f = l + 4 for any l ∈ Z+, l ≥ 3. See Figure 11.

• Embed a rectangle into the plane with vertices a, b, c, and d and edges vavb, vavd, vbvc, vcvd.

• Add two vertices, u and v, to the infinite face and edges vavu, vbvu, vcvv, vdvd.

• Subdivide vavb and vcvd with w and z, respectively, and add edges vuvw, vvvz, and vwvz.

• Set va = 1, vw = 2, vd = 3, and vz = 4 and implement Algorithm 5.3 throughout.

Construction 5 utilizes Algorithm 5.3 to add edges, vertices, and faces to a graph. Each iteration of
Algorithm 5.3 adds a face of degree 4. The rate of the code generated by this graph decreases as more
degree 3 vertices are added since the degree of each new face is 4. As the number of degree 3 vertices
becomes larger, the constants in the code rate become less significant and the code rate approaches 1

3 .

46



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 12. A graph with V3 = 2(9) = 18, V4 = m = 6, and f = 9 + 6 + 2 = 17

Construction 6. This construction generates an infinite family of type (3, 4) planar graph with V3 = 2l
and f = l + 4 for any l ∈ Z+, l ≥ 3 can have V4 = m for any m ∈ Z+, m ≥ 2. The number of faces can
be restated as f = l + m + 2. See Figure 12.

• Construct a graph using Construction 5.

• Select a triangle and implement Algorithm 5.2. Note: A vertex of degree 4 cannot be labeled 3 in
Algorithm 5.2.

The rate of the code generated by the graph in Construction 6 increases as degree 4 vertices are
added before reaching a limit that does not attain the bound shown earlier in the paper. While fixing
the number of degree 3 vertices, as the number of degree 4 vertices added becomes larger, the code rate
approaches 1

2 . For larger values of l, the code rate approaches 1
2 at a slower rate since the constants have

a larger impact in the calculation.

Taking Constructions 3, 4, 5, and 6 it is possible to construct a type (3, 4) planar graph with V3 = 2a
and V4 = b such that V3 + V4 ≥ 5 for any a, b ∈ Z+. Table 5 includes a summary of code rates for these
constructions. All of the code families in Table 5 have minimum distance 3.

The code rates for type (3, 4) graphs constructed in Section 5.2 are shown in Figures 13 and 14.

5.3. Type (4, 5) planar graphs with girth 3

Next we construct infinite families of type (4, 5) almost regular graphs. The following operations
will be used sequentially in the construction and are demonstrated in Figure 15.

Definition 5.4 (Operation A). Let Operation A be defined as an operation performed on a planar graph
with a face f , where the degree of f is 3 and each e ∈ f is incident with another face of degree 3 such
that every pair of vertices of f does not share a common neighbor.

1. Label the vertices of f as v1, v2, and v3

2. Subdivide v1v2, v1v3, and v2v3 with v4, v5, v6, respectively.

3. Add edges v4v5, v4v6, and v5v6

Definition 5.5 (Operation B). Let Operation B be defined as an operation performed after Operation A
has been applied. The labeling of the vertices for Operation B follows from Operation A. Label the vertices
adjacent to v1 and v2, v1 and v3, and v2 and v3 as v7, v8, and v9, respectively.

47



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Table 5. Performance of Families of Codes Generated by Graph Constructions. The constructions
with an (*) meet rate Bound 2. All codes have availability t = 2.

Graph Type Code Rate Rec. Set Size(s) Min. dist. d
Case 1 (3-reg) 3+i

6+3i
, i ∈ Z+ 2 3

Case 2 (4-reg) 7+3i
12+6i

, i ∈ Z+ 3 3
Case 3 (5-reg) 18i+1

30i
, i ∈ Z+ 4 3

Construction 1∗ (type (3,4)) 5+4i
12+8i

, i ∈ Z+ {2, 3} 4

Construction 2∗ (type (3,4)) 11+10i
30+25i

, i ∈ Z+ {2, 3} 5

Construction 3 (type (3,4)) k+3
2(k+3)

= 1
2

{2, 3} 3

Construction 4 (type (3,4)) k+2
2k+3

for k ∈ Z+, k ≥ 3 {2, 3} 3
Construction 5 (type (3,4)) l+3

3l+4
for l ∈ Z+, l ≥ 3 {2, 3} 3

Construction 6 (type (3,4)) l+m−1
3l+2m

, for l,m ∈ Z+, l ≥ 3, m ≥ 2 {2, 3} 3
Construction 7 (type (4,5)) 9p+3m+1

3(2m+5p)
for m ∈ {1, 2}, p ∈ Z+ {3, 4} 3

Construction 8∗ (type (5,6)) 19+6k
3(10+3k)

for k ∈ Z+ {4, 5} 3

Figure 13. Code rates generated by type (3, 4) graphs in Constructions 3, 4, and 5 compared to
Bound 2.

1. Add edges v4v7, v5v8, and v6v9.

Construction 7. Consider the graph G created by embedding the octahedron into the plane so that V4 = 6
and there are 8 faces.

1. Select any face of degree 3 that is not incident with the infinite face to implement a series of
Operations A and B. Perform Operation A followed by Operation B. If this is the desired number
of V4 and V5, stop. Else, continue to step 2.

2. Perform Operation A on degree 3 face added in previous iteration of Operation A then perform
Operation B.

48



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 14. Code Rate Generated by Graph from Construction 6 Compared to Bound 2 for
Varying Levels of l.

3. Perform Operation A on degree 3 face added in previous iteration of Operation A. If this is the
desired number of V4 and V5, stop. Else, continue to step 4.

4. Perform Operation A on degree 3 face added in previous iteration of Operation A. If this is the
desired number of V4 and V5, stop. Else, continue to step 5.

5. Perform Operation A on degree 3 face added in previous iteration of Operation A then perform
Operation B. If this is the desired number of V4 and V5, stop. Else, return to step 2.

The octahedron is a 4-regular graph with 6 vertices. Each application of Operation A increases V4

by 3. Each application of Operation B decreases V4 by 6 and increases V5 by 6. Letting a and b represent
the number of applications of Operations A and B, respectively, V4 = 6 + 3a− 6b and V5 = 6b. Applying
Operations A and B in construction 5 leads to V4 = 3m for m ∈ {1, 2} and V5 = 6p for p ∈ Z+.

Figure 16 shows the code rate as the number of degree 5 vertices increases. The code rate is highest
when V4 = 3 and V5 = 6 after step 1 in Construction 7. This is the only instance when every face of
the graph has degree 3 and the bound is attained. All future steps involve at least one face of degree 4.
While fixing m at either 1 or 2, as the number of degree 5 vertices are added, the constants in the code
rate become less significant and the code rate approaches 3

5 .

Remark 5.6. It is possible to generate an infinite family of 5-regular planar graphs with V5 = 12i for
i ∈ Z+ using the steps in Construction 7 by removing the stopping criterion from steps 1, 3-5 and adding
an option to stop after step 2. The 5-regular graph generated by this construction produces a code with
rate 18i+1

30i , matching the code rate generated by the 5-regular graph is Case 3 of Section 4.

5.4. Type (5, 6) planar graphs with girth 3

The final type of almost regular planar graph to consider is type (5, 6). We construct infinite families
of almost regular (5, 6) planar graphs and determine the code parameters of the resulting edge codes.
The following construction results in graphs that are triangulations.

49



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 15. Operations A and B on f . f in red. Operation A in gold. Operation B in blue.

Algorithm 5.7. For a graph G with face f where the degree of f is 3 and each edge e ∈ f is incident
with another face of degree 3 such that every pair of vertices in f do not share a common neighbor, the
number of vertices, faces, and edges of a graph G can be increased by 3, 6, and 9, respectively, for i
iterations, where i ∈ Z+.

The following steps are shown in Figure 17. Begin with a 2-regular planar graph with 3 vertices v1,
v2, and v3. Add three disconnected vertices to the outside face labeled v4, v5, and v6. Add the following
edges to the graph: v1v4, v1v6, v2v4, v2v5, v3v5, v3v6. Note that the graph constructed is in the appropriate
form required for the algorithm.

1. Subdivide edges v1v2, v1v3, and v2v3 with new vertices v7, v8, and v9, respectively, then add edges
v7v8, v7v9, and v8v9.

2. Insert edges v4v7, v5v9, and v6v8.

3. If this is the desired graph, stop. Else, relabel the vertices as follows: vertices v4, v5, and v6 become
unlabeled, and the rest are relabeled v1 → v6, v2 → v4, v3 → v5, v7 → v1, v8 → v3, v9 → v2. Return
to step 1.

Construction 8. This construction generates an infinite family of type (5, 6) planar graphs with V5 = 12
and V6 = 3k for all k ∈ Z+. Consider the graph G created by embedding the icosahedron into the plane
so that there are 12 vertices of degree 5 and 20 faces. The structure of G allows for Algorithm 5.7 to
be used. Any face of degree 3 may be chosen to initialize vertices 1, 2, and 3 for Algorithm 5.7. See
Figure 18, for example.

The code generated by the graph in Construction 8 is rate optimal by Bound 2. All faces of the
graph are degree 3 at any iteration of Algorithm 5.7. The code approaches the graph theoretic bound of
2
3 (for d = 3) as the number of iterations of Algorithm 5.7 go to infinity.

50



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 16. Type (4, 5) Construction 7 Code Rate

Figure 17. An iteration of Algorithm 5.7. New edges added in red. Face f in yellow.

6. Conclusion

An edge code generated by a planar graph has minimum distance d equal to the smallest degree of
a face, and availability t = 2. The recovery set size for a type (j, j + 1) planar graph is at most r = j. In
this paper we proved that the minimum distance of an edge code coincides with the girth of the planar
graph, and that the code rate satisfies a bound that depends on the length and minimum distance of
the code. We applied expansion constructions of j-regular planar graphs to compute the parameters
of infinite families of edge codes. We classified the type (3, 4) almost regular graphs whose code rates
meet Bound 2 and proved that there are no infinite families of this type that achieve the bound. For
d = 3, 4, 5 we presented constructions of codes that meet the rate bound (see Table 5). We also presented
constructions of type (3, 4) almost regular planar graphs with V3 = 2a and V4 = b for any a, b ∈ Z+

such that V3 + V4 ≥ 5. Operations A and B were presented to construct infinite families of type (4, 5)
almost regular planar graphs. Finally, type (5, 6) planar graphs that generate rate-optimal LRCs were
presented. The family of (5, 6) almost regular edge codes approach the graph theoretic bound of R = 2

3

51



K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

Figure 18. Algorithm 5.7 implemented on the Icosahedron. Edges added in the first iteration of
the algorithm in red. Edges added in the second iteration of the algorithm in green.
Vertices of degree 6 are shown in white.

as the number of iterations of operations goes to infinity.

Potential future work includes codes generated by different families of almost regular planar graphs,
or of 2-connected planar graphs. Graphs that are “almost” almost regular could also be explored, although
a larger difference in recovery set sizes might negatively impact the code rates. Codes generated by graphs
embedded on other surfaces may also lead to additional constructions of LRCs from graphs.

Acknowledgment: The authors would like to thank the referees for their helpful suggestions.

References

[1] H. J. Broersma, A. J. W. Duijvestijn, F. Göbel, Generating all 3-connected 4-regular planar graphs
from the octahedron graph, J. Graph Theor. 17(5) (1993) 613–620.

[2] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, On the locality of codeword symbols, IEEE Trans.
Inform. Theory 58(11) (2012) 6925–6934.

[3] M. Hasheminezhad, B. D. McKay, T. Reeves, Recursive generation of simple planar 5-regular graphs
and pentangulations, Journal of Graph Algorithms and Applications 15(3) (2011) 417–436.

[4] S. Kadhe, R. Calderbank, Rate optimal binary linear locally repairable codes with small availability,
In 2017 IEEE International Symposium on Information Theory (ISIT) (2017) 166–170.

[5] S. Kadhe, R. Calderbank, Rate optimal binary linear locally repairable codes with small availability,
arXiv preprint, arXiv:1701.02456, 2017.

[6] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theor. 30(2)
(1999) 137–146.

[7] M. Meringer, Regular planar graphs, available online at http://www.mathe2.uni-bayreuth.de/
markus/reggraphs.html, accessed 2009.

[8] N. Prakash, V. Lalitha, P. Vijay Kumar, Codes with locality for two erasures, In 2014 IEEE
International Symposium on Information Theory (2014) 1962–1966.

[9] E. F. Schmeichel, S. L. Hakimi, On planar graphical degree sequences, SIAM J. Appl. Math. 32(3)

52

https://doi.org/10.1002/jgt.3190170508
https://doi.org/10.1002/jgt.3190170508
https://doi.org/10.1109/TIT.2012.2208937
https://doi.org/10.1109/TIT.2012.2208937
http://dx.doi.org/10.7155/jgaa.00232
http://dx.doi.org/10.7155/jgaa.00232
https://doi.org/10.1109/ISIT.2017.8006511
https://doi.org/10.1109/ISIT.2017.8006511
https://doi.org/10.1002/(SICI)1097-0118(199902)30:2%3C137::AID-JGT7%3E3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0118(199902)30:2%3C137::AID-JGT7%3E3.0.CO;2-G
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
https://doi.org/10.1109/ISIT.2014.6875176
https://doi.org/10.1109/ISIT.2014.6875176
https://doi.org/10.1137/0132048
https://doi.org/10.1137/0132048


K. Haymaker, J. O’Pella / J. Algebra Comb. Discrete Appl. 7(1) (2020) 35–53

(1977) 598–609.
[10] E. Steinitz, Vorlesungen über die Theorie der Polyeder: unter Einschluß der Elemente der Topologie,

volume 41, Springer-Verlag, 2013.

53

https://doi.org/10.1137/0132048
https://doi.org/10.1137/0132048

	Locally Recoverable Codes From Planar Graphs
	Let us know how access to this document benefits you
	Recommended Citation

	Introduction
	Preliminaries
	Parameters of edge codes
	j-regular planar graphs
	Almost regular type (j, j+1) planar graphs
	Conclusion
	References

