A Phase I Study of Ad5-GUCY2C-PADRE in Stage I and II Colon Cancer Patients

Adam E. Snook
Thomas Jefferson University

Trevor R. Baybutt
Thomas Jefferson University

Michael J. Mastrangelo
Thomas Jefferson University

Nancy L. Lewis
Thomas Jefferson University

Scott D. Goldstein
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/petposters

Let us know how access to this document benefits you
Authors

This poster is available at Jefferson Digital Commons: https://jdc.jefferson.edu/petposters/2
A Phase I Study of Ad5-GUCY2C-PADRE in Stage I and II Colon Cancer Patients

Departments of 1Pharmacology & Experimental Therapeutics, 2Medical Oncology, 3Surgery, 5Dermatology & Cutaneous Biology, and 6Microbiology & Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
4Department of Biostatistics & Bioinformatics, Duke Cancer Institute, Duke University, Durham, NC 27710

Abstract
Background
Ad5-GUCY2C-PADRE is a replication-deficient human adenovirus 5 recombinant adenovirus (Ad5) vector encoding guanylate cyclase C (GUCY2C) fused to the Poly-E (PADRE). GUCY2C, a paracrine hormone receptor producing the second messenger cyclic GMP (cGMP), is selectively expressed by intestinal epithelial cells and a subset of hypothalamic neurons, but not other tissues. Importantly, GUCY2C is up-regulated in nearly all primary and metastatic human colorectal tumors. Preclinical tests in mice demonstrated selective tolerance of GUCY2C-specific CD4 T cells, but not CD8 T cells, recognizing inclusion of the wongame CD4 T helper cell epitope PADRE to maximize GUCY2C-specific CD8 T-cell responses and tumor efficacy, without autoimmunity.

Methods and Patients
This is an open-label, single arm "proof-of-concept" study evaluating a single dose level of Ad5-GUCY2C-PADRE as a vaccine for surgically-treated, node-negative colon cancer subjects (NCT01972737). Patients received a single intramuscular administration of Ad5-GUCY2C-PADRE. Safety and immunomonitoring were examined at 8, 16, and 24 weeks following vaccination.

Primary objectives were to determine the safety, tolerability, and efficacy of Ad5-GUCY2C-PADRE and to determine whether Ad5-GUCY2C-PADRE induces GUCY2C-specific immune responses. Results from the planned interim analysis following enrollment of 15 subjects.

Results
The vaccine was well tolerated, producing only mild adverse events (AEs). Short-lived injection site pain/swelling, body aches, and chills were the most common observed AEs and occurred in 30-40% of subjects. GUCY2C-specific antibodies and T-cell responses were observed in a subset of subjects. Consistent with preclinical mouse data, T-cell responses were composed of CD8+, but not CD4+ T cells. Importantly, GUCY2C-specific responses occurred only in subjects with low Ad5 neutralizing antibody (NAbs) titer at the time of vaccination, suggesting that pre-existing Ad5 immunity limits Ad5-GUCY2C-PADRE immunogenicity.

Conclusions
Interim analysis of 10 subjects receiving Ad5-GUCY2C-PADRE demonstrates proof-of-concept that GUCY2C is immunogenic in humans and that Ad5-GUCY2C-directed vaccination is safe. Moreover, the presence of GUCY2C-specific antibody and CD8+ T-cell, but not CD4+ T-cell responses is consistent with selective CD4+ T-cell tolerance observed in mouse models. These data establish GUCY2C as a safe and immunogenic target for immunotherapy in cancer patients.

Subject Demographics, AE and Immune Response

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>Age</th>
<th>CEC</th>
<th>CRC</th>
<th>Colon</th>
<th>Rectum</th>
<th>Liver</th>
<th>Lung</th>
<th>Peritoneal</th>
<th>Stomach</th>
<th>Pancreas</th>
<th>Other</th>
<th>Days Post Vaccination</th>
<th>NAbs Prior to Vaccination</th>
<th>CD8+ GUCY2C Antibody Responses</th>
<th>CD8+ GUCY2C T-cell Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>63</td>
<td>I</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>M</td>
<td>54</td>
<td>I</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>M</td>
<td>67</td>
<td>I</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>M</td>
<td>51</td>
<td>I</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>M</td>
<td>66</td>
<td>I</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Ad5 Neutralizing Abs Limit GUCY2C Responses in Mice

A) Prior exposure to Ad5 virus produces Ad5-specific neutralizing antibodies (NAbs) in mice, quantified as the dilution of serum that produces 50% inhibition of GFP expression by Ad5-GFP transduced A549 cells in vitro. B) GUCY2C-specific T-cell responses are eliminated in mice with Ad5 NAb titers of <1/1000. T-cell responses were quantified by IFNγ ELISpot. ** P < 0.01, T-test.

Ad5 Neutralizing Abs Limit GUCY2C Responses in Humans

A) Quantification of Ad5 NAb's in pre-vaccination blood samples revealed Ad5 NAb titters of <1/100 in 50% of subjects (Ad5 NAb Low) and >1/1000 in the remaining subjects (Ad5 NAb High). Quantification of GUCY2C-specific (B) and PADRE-specific (C) T-cell responses in subjects separated by Ad5 NAb titers revealed Ad5 Nabs as a barrier to Ad5-GUCY2C-PADRE vaccination in colorectal cancer patients. T-cell responses were quantified by IFNγ ELISpot.

Conclusions
• GUCY2C-directed vaccination is safe in colorectal cancer patients.
• GUCY2C is immunogenic in humans.
• Responses are consistent with selective CD4+ T-cell tolerance observed in mouse models.
• Together, these data establish GUCY2C as a safe and immunogenic target for immunotherapy in cancer patients.

Acknowledgments

Financial support was provided by: NIH (R01 CA170533 to SAW; R31 CA171672 to MMR); Targeted Diagnostic and Therapeutics Inc. (to SAW); PhRMA Foundation (to AES); and Margaret Q. Lindenberger Research Foundation (to AES). SAW is the Samuel M. Hamilton Professor of Thomas Jefferson University. This project was funded, in part, by a grant from the Pennsylvania Department of Health (SAP #1400051733). The Department specifically disclaims responsibility for any analyses, interpretations, or conclusions. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Thomas Jefferson University