The Atopic March & The Unified Airway

Brian McGettigan, MD
Kyle Fisher, MD
The Allergic Rhinitis and Asthma Link: Opportunities for Diagnosis and Treatment

Friday, September 9, 2011
12:15 PM – 2:15 PM

California West, Second Floor
The Westin St. Francis
335 Powell Street
San Francisco, CA 94102
Overview

• Immunology review
• Description of diseases
• Epidemiological considerations
• The Atopic March
• Underlying Mechanisms
• Consequences of Progression
• Interventions
Introduction

• Atopy – genetic predisposition to make IgE in response to allergen exposure

The Atopic March

Atopic dermatitis → Allergic rhinitis → Asthma
Introduction

• Why should we care?
 – Increasing prevalence of atopic disease
 – Huge socioeconomic burden
 – The Unified Airway
 – AD/AR are annoying, but asthma can kill
 – We have a chance to intervene

• These patients are sitting in your waiting area
Immunology

- Type I hypersensitivity
 - IgE-mediated
 - Triggered by an allergen (protein)
 - Early and late phases
Immunology

- Cell types involved in allergic response
 - Antigen presenting cells
 - B cells
 - T cells – Th0, Th1, Th2
 - Mast cells
 - Basophils
 - Neutrophils
 - Eosinophils

[Images of various cell types: lymphocyte, mast cell, dendritic cell, neutrophil, eosinophil, basophil]
Immunology
Immunology

- **Preformed Mediators**
 - Histamine
 - Tryptase
 - Proteoglycans
 - Chemotactic factors

- **Newly Formed Mediators**
 - Arachidonic acid metabolites
 - Leukotrienes
 - COX products
 - Platelet-activating Factor
 - Adenosine
 - Bradykinin

- **Cytokines**
 - IL-4
 - IL-5
 - IL-6
 - IL-13
 - TNF-α
Immunology

• Clinical responses
 – Urticaria/angioedema
 – Atopic dermatitis
 – Allergic rhinitis
 – Allergic asthma
 – Anaphylaxis
Immunology
Immunology

Crystalloid granule protein
- Core: MBP
- Matrix: EPO, ECP, EDN
- Respiratory epithelium desquamation
- M2 receptor dysfunction
- Mast cell and basophil degranulation

Lipid mediators
- LTC4, LTB4, 5-HETE
- PGE1, PGE2, TxB2, PAF
- Increased mucus secretion
- Increased vascular permeability
- Increased adhesion molecules expression
- Bronchoconstriction
- Eosinophil and Neutrophil chemotaxis

Cytokines and Chemokines
- IL-1, IL-2, IL-3, IL-4, IL-5, IL-6,
- IL-8, IL-10, IL-12, IL-16, GM-CSF,
- RANTES, TGF-β, TGF-α, MCP-1, MIP-1α
- Increased Eosinophil survival
- Increased adhesion molecules expression
- Sustained inflammation
- Eosinophil and Neutrophil chemotaxis
- Airway wall remodelling
Atopic Dermatitis

- Intrinsic vs. extrinsic
- Epidemiology
 - 60% present before age 1, 85% by age 5
 - Incidence/Prevalence – increasing worldwide
 - U.S. – up to 20% infants/children, 3% adults
 - International – 2-20% infants/children
 - Highest in developed countries**
 - Estimated direct costs – $1-4 billion
Atopic Dermatitis

- Symptoms = pruritus
 - Itch-scratch cycle
- Findings = eczematous lesions, xerosis, and lichenification
 - Variable location based on age
Atopic Dermatitis

• Diagnosis
 – DDx – contact dermatitis, lichen simplex chronicus, psoriasis, scabies, sebhorreic dermatitis
 – Criteria
 • Pruritus
 • Eczematous changes that vary with age
 • Chronic and relapsing course
 • Atopy (IgE reactivity)
 • Xerosis
 • Personal history of asthma or family history of atopy
 • Onset younger than age 2 years
Atopic Dermatitis

• Prognosis
 – Chronic – intermittent flares/remissions
 – Can be “outgrown”
 • <50% resolution by age 7, 60% resolution by adulthood
 – 30+% develop AR, 30+% asthma
 – Why the variable progression?
Allergic Rhinitis

• Inflammation of the mucous membranes of the nose, eyes, eustachian tubes, middle ear, sinuses, and pharynx

• Epidemiology
 – 20-25% of US population affected (40+ million people)
 – Costs = $5.3 billion per year
 – Onset age 8-11 y/o
 • 80% develop AR by age 20

• Prognosis
 – Chronic but can be controlled
 – 30+% will develop asthma
Allergic Rhinitis

• Symptoms
 – Sneezing
 – Itching
 – Rhinorrhea/postnasal drip
 – Congestion
 – Anosmia
 – Headache/earache
 – Tearing/red eyes/eye swelling
 – Fatigue/drowsiness/malaise

• Findings
 – Pale/boggy nasal mucosa, polyps, clear rhinorrhea
 – Pharyngeal cobblestoning
 – Injected sclera
 – Allergic shiners, Dennie-Morgan lines, nasal crease
 – Serous OM
Allergic Rhinitis
Asthma

- Episodic reversible airway obstruction, increased bronchial reactivity, and airway inflammation

- Epidemiology
 - Prevalence
 - U.S. – 8.2% (25 million)
 - International – up to 10% (300 million)
 - 1.5 million ED visits, 500K hospital admissions
 - Costs = $30 billion
Asthma

• Symptoms
 – Cough, wheezing, chest tightness, SOB/respiratory distress
 – Daytime vs. nocturnal

• Findings
 – Often none
 – Diffuse expiratory wheezing, prolonged expiration, signs of distress

• Diagnosis
 – Peak flow
 – Pulmonary function tests
 – Bronchoprovocation
Asthma

- **Classification**

Components of Severity

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Classification of Asthma Severity (Children 5–11 years of age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>intermittent - mild</td>
</tr>
<tr>
<td><2 days/week</td>
<td>>2 days/week but not daily</td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td>≤2x/month</td>
</tr>
<tr>
<td>Short-acting beta_2-agonist use for symptom control (not prevention of EIB)</td>
<td>≤2 days/week</td>
</tr>
<tr>
<td>Interference with normal activity</td>
<td>None</td>
</tr>
<tr>
<td>Lung function</td>
<td>Normal FEV<sub>1</sub> between exacerbations</td>
</tr>
<tr>
<td></td>
<td>FEV<sub>1</sub> = 75–80% predicted</td>
</tr>
<tr>
<td>Exacerbations requiring oral systemic corticosteroids</td>
<td>0–1/year (see note)</td>
</tr>
</tbody>
</table>
Asthma

- Classification

<table>
<thead>
<tr>
<th>Components of Severity</th>
<th>Classification of Asthma Severity (Youths ≥12 years of age and adults)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermittent</td>
</tr>
<tr>
<td>Symptoms</td>
<td>≤2 days/week</td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td>≤2x/month</td>
</tr>
</tbody>
</table>
| Short-acting
 beta2-agonist use
 for symptom control
 (not prevention of EIB) | ≤2 days/week | >2 days/week but not >1x/day | Daily | Several times per day |
| Interference with
 normal activity | None | Minor limitation | Some limitation | Extremely limited |
| Lung function | Normal FEV₁ between exacerbations | FEV₁ >80% predicted | FEV₁ <80% predicted | FEV₁ >60% but <80% predicted | FEV₁ <60% predicted |
| | FEV₁/FVC normal | FEV₁/FVC reduced 5% | FEV₁/FVC reduced >5% | |
| Risk | Exacerbations requiring oral systemic corticosteroids | 0–1/year (see note) | >2/year (see note) | Relative annual risk of exacerbations may be related to FEV₁ |

Consider severity and interval since last exacerbation. Frequency and severity may fluctuate over time for patients in any severity category.
Asthma

• Prognosis
 – Mortality
 • U.S. – 5K deaths/year
 • International – 250K deaths/year
 – Poor control leads to long-term airway remodeling
 – 50% may “outgrow” asthma
 • Less likely with personal/family history of atopy
Why is prevalence increasing?

- Genetic predisposition
 - Significant evidence of heritability
 - Family history
 - Twin studies
 - Gene studies
 - Multiple mutations identified for atopic diseases
 - Many genes on many loci
Why is prevalence increasing?

- Cannot be based on genetics alone
 - Short (20-30 year) period of changes
 - Incomplete penetrance
 - Geographic variability
- Current model – gene dosage effect and environmental dosage effect
Why is prevalence increasing?

• Evidence for the environment – The Hygiene Hypothesis
 – Correlation between ↑ microbial exposure and ↓ allergic sensitization
 – ↓ exposure during infancy results in predisposition to atopic disease
Why is prevalence increasing?

Factors favoring the Th1 phenotype
- Presence of older siblings
- Early exposure to day care
- Tuberculosis, measles, or hepatitis A infection
- Rural environment

Factors favoring the Th2 phenotype
- Widespread use of antibiotics
- Western lifestyle
- Urban environment
- Diet
- Sensitization to house-dust mites and cockroaches

Th1
Protective immunity

Cytokine balance

Th2
Allergic diseases including asthma
Why is prevalence increasing?

• Reidler et al. (2001) – Allergy and Endotoxin Study
 – Cross-sectional survey of 2,618 children (6-13 y/o)
 – Rural environment – farm vs. non-farm
 – Lower frequencies of AD, AR, and asthma in farming children

• Nowak et al. (1996)
 – Children living in West vs. East Germany
 • > exposure to mold/pollution, > # siblings in East
 – Higher incidence of atopic disease in West
Why is prevalence increasing?

- von Hertzen et al. (2007) – compared geographically distinct but genetically related populations (Finland, Russia)
 - Similar climate, large socioeconomic difference
 - GNP per capita in U.S. $ - Finland = 33K, Russia = 4K
 - Poorer hygiene, ↑ infection exposure, ↑ microbial content in water in Russia
 - ↓ allergen-specific IgE levels and ↑ microbial Ab levels in Russia
Tse et al. (2008)
Progression of the Atopic March

- AD is a major risk factor for the development of asthma
- AD is a major risk factor for the development of AR
Progression of the Atopic March

• van der Hulst et al. (2007)
 – 13 prospective cohort studies
 – Odds ratio for risk of asthma w/ or w/o AD = 2.14 (95% CI, 1.67-2.75)
 – ~30% asthma prevalence at age 6

• Kapoor et al. (2008)
 – Cross-sectional study of 2270 children with AD
 – 66% with AR +/- asthma by age 3
 – ↑ risk with poor AD control
Progression of the Atopic March

- Gustafsson et al. (2000)
 - prospective study of 94 children with AD followed to age 7
 - 82/94 showed improved AD
 - 43% developed asthma, 45% developed AR
- ↑ risk with hereditary, early-onset AD
Progression of the Atopic March

• Illi et al. (2004)
 – prospective study of 1314 children with AD followed to age 7
 – ↑ asthma risk w/severe AD, parental h/o atopy and early-onset sensitization
• 70% severe, 30% mild, 8% general pop.
Progression of the Atopic March

• AR is a risk factor for the development of asthma
• Leynaert et al. (2004)
 – Cross-sectional study of young adults
 – Symptom reports, PFTs, skin tests
 – Asthma prevalence 6x higher in subjects with AR
 – Subjects with asthma reported more symptomatic AR
Underlying Mechanisms

• Genetic and environmental factors
 – Changes in adaptive immune system
 – Role of skin
Underlying Mechanisms

• Threshold event – primary epithelial defect
 – Epidermis – occlusive defense barrier
 • Restricts pathogen entry
 • Restricts water loss
 – ↑ transepidermal water loss in AD
Underlying Mechanisms
Underlying Mechanisms

• Genetic predisposition to barrier dysfunction
 – ↑ production of stratum corneum chymotryptic enzyme

• Premature desmosome breakdown, ↑ desquamation
 – ↓ lipid production – “leaky cement”
Underlying Mechanisms

– Filaggrin mutation
 • Filament-associated protein, bind to keratin fibers in epithelial cells
 • Key for barrier function
 • Loss = major risk for extrinsic AD
 – O’Regan et al. (2009) – LOF mutation in >50% of patients with AD
Underlying Mechanisms

• Mareholz et al. (2006) – filaggrin mutation strongly associated with AR and asthma but:
 – Only in patients with AD
 – Not expressed in nasal/bronchial epithelium
 – Support AD as first step in march
• Gene expression down-regulated by IL-4/IL-13 – acquired defect
Underlying Mechanisms

• Environmental factors impacting barrier
 – Trauma to stratum corneum
 • Scratching
 • Repeated washing
 • Soaps/detergents
 – Exogenous proteases
 • House dust mite exposure
 • Staph colonization
AR and Asthma – The Unified Airway

• Consequences of the March – endpoints of progression
• “One airway, one disease”
• AR is a major risk factor for asthma
• Similar immunologic mechanisms, cellular/tissue changes
• Nasal symptoms, airflow, and markers of inflammation correlate with lower airway involvement
• Poor control of AR = poor control of asthma
AR and Asthma – The Unified Airway

• Epidemiology
 – Settipane et al. (1994) – 23 yr-long study
 • Patients with AR 3x more likely to develop asthma
 – Anderson et al. (1992)
 • Development of asthma 7 years after dx of AR – OR 7.1
 – Burgess et al. (2007) – Tasmanian Asthma Study
 • Childhood AR = 2 to 7-fold ↑ risk for adolescent/ adult-onset asthma
 • 3-fold risk of persistent asthma
AR and Asthma – The Unified Airway

• Nasal-bronchial reflex
 – Common epithelial lining with similar innervation
 – Corren et al. (1992) – nasal provocation ↑ bronchial responsiveness to methacholine
 – Nolte et al. (1983) – acute nasal provocation, acute ↑ airway resistance
 • Blocked by anticholinergic drug
 • Not seen post-laryngectomy
AR and Asthma – The Unified Airway

• Similar immunologic response
 – Large population of mast cells
 – Common associated lymph tissue – MALT
 – Early and late phase allergic response seen in nasal and bronchial tissue
 • Vignola et al. (1993) – ↑ ICAM expression in bronchial brushing of asthmatic patients
 • Ciprandi et al. (1994) – ↑ ICAM expression in nasal secretions of AR patients
 • Braunstahl et al. (2001) – nasal provocation induces ↑ tissue eosinophilia in nasal and bronchial mucosal bx
AR and Asthma – The Unified Airway

• Similar immunologic response
 – Bhimrao et al. (2011) – nasal and bronchial biopsies from 10 patients with AR and asthma
 • Significant and equal levels of eosinophils, neutrophils, and mast cells
AR and Asthma – The Unified Airway

- Similar immunologic response
 - Ciprandi et al. (2004)
 - Upper/lower airway function and nasal inflammation
 - Adults with moderate/severe AR and asthma
 - Functional parameters and immunologic markers
 - ↑ nasal eosinophils/Th2 cytokines, ↑ nasal obstruction, ↓ FEV1
AR and Asthma – The Unified Airway

• AR and asthma control
 – Multiple studies – ↑ hospitalizations/primary care visits with concomitant AR/asthma than asthma alone
 – Valovirta et al. (2006) – 813 adults w/asthma, 806 parents of children w/asthma, w/concominant AR
 • 73% had AR when dx with asthma
 • 79% reported worse asthma symptoms during AR flares
 • 70% reported impaired QOL - ↓ sleep, ↓ concentration, ↓ activity-participation
AR and Asthma – The Unified Airway

• AR and asthma control
 – Stelmach et al. (2005) – DB study of 74 patients with AR and asthma
 • Nasal or inhaled steroid alone or in combo
 • Compared nasal/pulmonary symptoms, pulmonary function, bronchial hyperreactivity
 • Nasal steroid improved symptom control and pulmonary function, ↓ asthma morbidity
 – Watson et al. (2003) – RDBPCT of patients with AR and asthma treated w/intranasal steroids
 • Improved asthma symptoms (nocturnal)
 • ↓ bronchial hyperreactivity
AR and Asthma – The Unified Airway

• AR and asthma control
 – Moller et al. (2001)
 • 205 children, 3 years of immunotherapy
 • 20% with asthma at start of therapy
 • Early recognition of AR in children and tx with allergen-specific immunotherapy ↓ asthma severity and development of asthma
Sinusitis and Asthma – The Unified Airway

- Frequent coexistence of chronic sinusitis and asthma – 20%
 - w/polyps - ↑ to 50%
- Similar effects of chronic inflammation – BM thickening, goblet cell hyperplasia, cellular edema
 - Irreversible remodeling
- Severity of asthma influenced by severity of sinus disease
- Tx of sinus disease via FESS – improves symptoms, QOL, pulmonary function, level of asthma control
Interventions

- Symptom management – AD
 - Environmental control
 - Moisturizers
 - Topical steroids
 - Antihistamines
 - Immunomodulators

All studied, minimal effect on progression of March
Interventions

• Symptom Management – AR
 – Environmental control
 – Pharmacotherapy
 • Antihistamines – oral/intranasal
 • **Steroids – oral/intranasal**
 • Decongestants – oral/intranasal
 • Anticholinergics
 • And others
Interventions

ARIA (2008)

Step 1
Preferred: SABA PRN
Alternative: Cromolyn, LTRA, Nedocromil, or Theophylline

Step 2
Preferred: Low-dose ICS
Alternative: Medium-dose ICS + LABA

Step 3
Preferred: Medium-dose ICS + LABA
Alternative: High-dose ICS + either LTRA or Theophylline

Step 4
Preferred: High-dose ICS + LABA
Alternative: High-dose ICS + either LTRA or Theophylline

Step 5
Preferred: High-dose ICS + LABA + oral systemic corticosteroid
Alternative: High-dose ICS + either LTRA or Theophylline + oral systemic corticosteroid

Step 6
Step up if needed
(first, check adherence, inhaler technique, environmental control, and comorbid conditions)
Assess control
Step down if possible
(and asthma is well controlled at least 3 months)

Each step: Patient education, environmental control, and management of comorbidities.
Steps 2-4: Consider subcutaneous allergen immunotherapy for patients who have allergic asthma (see notes)

Quick-Relief Medication for All Patients
- SABA as needed for symptoms. Intensity of treatment depends on severity of symptoms: up to 3 treatments at 20-minute intervals as needed. Short course of oral systemic corticosteroids may be needed.
- Caution: Increasing use of SABA or use >2 days a week for symptom relief (not prevention of EIB) generally indicates inadequate control and the need to step up treatment.
Interventions

Components of Severity

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Intermittent</th>
<th>Mild</th>
<th>Persistent</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>≤2 days/week</td>
<td>>2 days/week but not daily</td>
<td>Daily</td>
<td>Throughout the day</td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td>≤2x/month</td>
<td>3–4x/month</td>
<td>>1x/week but not nightly</td>
<td>Often 7x/week</td>
</tr>
<tr>
<td>Short-acting beta₂ agonist use for symptom control (not prevention of EIB)</td>
<td>≤2 days/week</td>
<td>>2 days/week but not daily</td>
<td>Daily</td>
<td>Several times per day</td>
</tr>
<tr>
<td>Interference with normal activity</td>
<td>None</td>
<td>Minor limitation</td>
<td>Some limitation</td>
<td>Extremely limited</td>
</tr>
</tbody>
</table>

Lung Function

- Normal FEV₁ between exacerbations
- FEV₁ >80% predicted
- FEV₁/FVC >85%

Exacerbations requiring oral systemic corticosteroids

<table>
<thead>
<tr>
<th>Risk</th>
<th>0–1/year (see note)</th>
<th>>2/year (see note)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider severity and interval since last exacerbation. Frequency and severity may fluctuate over time for patients in any severity category. Relative annual risk of exacerbations may be related to FEV₁.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended Step for Initiating Therapy

- **Step 1:**
 - In 2–6 weeks, evaluate level of asthma control that is achieved, and adjust therapy accordingly.

- **Step 2:**
 - Step 3, medium-dose ICS option, or Step 4, and consider short course of oral systemic corticosteroids.

Classification of Asthma Severity (5–11 years of age)

- **Persistent**
 - Moderate
 - Severe

ARIA (2008)
Immunotherapy

• Administration of increasing concentrations of antigen-specific extracts to produce changes in the immune system
• Goal – alleviate/reduce symptoms in response to natural exposure
• Utilizes adaptability of immune system
• Changes in immune system down-regulate immunologic response to allergen
• The key to stopping the Atopic March
Immunotherapy

- Efficacy for AR symptoms
- Efficacy for AD symptoms
 - Bussman et al. (2007) – 25 children with severe AD
 - SCIT x 6 months
 - Significant ↓ in symptom scores
Immunotherapy

• Efficacy for asthma symptoms
 – Niu et al. (2006) – DBRCT 24 weeks SLIT vs. placebo
 • 97 children w/DM allergy and mild/mod asthma
 • ↓ symptoms scores, improved PFTs
 – Ozdemir et al. (2007) – DBRCT SLIT/ICS vs. ICS
 • 62 children w/DM allergy and mild/mod asthma
 • q3 month symptom eval and PFTs
 • ↓ dose/duration of ICS usage
 • ↑ rate of ICS discontinuation
Immunotherapy

• Marogna et al. (2008) – RCT
 – 216 children w/AR +/- intermittent asthma
 – AR meds vs. SLIT/AR meds x 3 years
 – Followed PFTs, methacholine challenge, skin testing
 – Results
 • SLIT ↓ onset of persistent asthma
 • SLIT ↓ bronchial hyperreactivity
 • SLIT ↓ onset of new sensitizations
Immunotherapy

- Ozdemir et al. (2007) – retrospective study
 - 39 children w/AR and asthma – SLIT x 3 years
 - ↓ number of acute attacks
 - 95% with clinical remission of asthma
Conclusions

• Atopic diseases are common and have a huge socioeconomic burden
• Atopic diseases affect QOL, but asthma alone can be deadly
 – Prevalence is increasing
• AD is considered the 1st step – may not be a linear progression
• The upper and lower airways are intimately related and immunologically similar
• Halting the Atopic March is paramount, and immunotherapy is the key