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RESEARCH Open Access

Thermodynamic analysis of DNA binding by a
Bacillus single stranded DNA binding protein
Esther E Biswas-Fiss1,2, Jirayu Kukiratirat1 and Subhasis B Biswas1*

Abstract

Background: Single-stranded DNA binding proteins (SSB) are essential for DNA replication, repair, and
recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA
polymerase.

Results: We have cloned and purified SSB from Bacillus anthracis (SSBBA). In the absence of DNA, at concentrations
≤100 μg/ml, SSBBA did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein.
Fluorescence anisotropy studies demonstrated that SSBBA bound ssDNA with high affinity comparable to other
prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding.
FRET analysis of oligo(dT)70 binding suggested that SSBBA forms a tetrameric assembly upon ssDNA binding. This
report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation
of a transient tetrameric structure.

Conclusions: Unlike other prokaryotic SSB proteins, SSBBA from Bacillus anthracis appeared to be monomeric at
concentrations ≤100 μg/ml as determined by SE-HPLC. SSBBA retained its ability to bind ssDNA with very high
affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSBBA appears
to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple
key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer
formation. The structural features of SSBBA could promote facile assembly and disassembly of the protein-DNA
complex required in processes such as DNA replication.

Keywords: Single-stranded DNA binding protein (SSB), DNA replication, Fluorescence anisotropy, ssDNA binding,
Protein-DNA complex

Background
Nearly all cellular nucleic acid transactions, including
DNA replication, repair and recombination require the
activity of a single stranded DNA binding protein (SSB)
[1-7]. SSB proteins and are found throughout nature and
their functional importance is underscored by their pres-
ence in prokaryotes, archaea, and eukaryotes including
mammals [1]. Among its multifaceted roles, upon bind-
ing to ssDNA, SSB prevents the reformation of duplex
DNA making it possible for other enzymes such as DNA
polymerase to use ssDNA as substrate. In addition, the
binding of SSB-type proteins protects the ssDNA

molecules from attack by intracellular nucleases. Al-
though not possessing intrinsic enzymatic activity in and
of themselves, SSB proteins are known to influence the
activities of many enzymes as well as to organize the
multi-protein complexes required for processes such as
DNA replication, recombination and DNA repair [8-11].
The function of SSB during DNA replication has been

extensively studied in E. coli, which serves as the proto-
typical model system for prokaryotes and eukaryotes alike.
In E. coli, the large nucleoprotein replication initiation
complex is stabilized by single stranded DNA binding pro-
tein, following which DNA is unwound by the DnaB heli-
case protein. Efficient DNA unwinding activity of DnaB
protein in progression of the replication fork in E. coli is
strongly dependent on the continued action of a cognate
SSB [12,13]. SSB works in concert with DnaB helicase,
DNA primase, and DNA polymerase III holoenzyme
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during E. coli DNA replication [5,9,12,14,15]. Phage λ DNA
replication requires the participation of host E. coli SSB as
well [16,17]. In archaea and eukaryotes, its functional
homolog, Replication Protein A (RPA), carries out the role
of organizing and stabilizing the replisome during DNA
replication [1,3,10,18-21].
Vital to its function in DNA metabolism is the struc-

ture of SSB. In the Gram-negative bacteria, SSB is homo-
tetrameric, with each monomer contributing a single
ssDNA-binding domain to the functional form. The
eukaryotic RPA is composed of three subunits (RPA70,
RPA32, and RPA14) and functions as a heterotrimer
through the use of four ssDNA-binding domains [2,3,18].
Unlike E. coli SSB, single stranded DNA binding pro-

tein from bacteriophage T4, the gene 32 protein, is a
monomer. T4 gene 32 protein can form multimers at
high concentration induced by high salt and high pH
[22]. Kim and Richardson demonstrated that the bac-
teriophage T7 SSB, the gene 2.5 protein, is a dimer [23].
The T7 gene 2.5 SSB appears to bind DNA as a dimer.
The ssDNA binding affinities of both T4 and T7 SSBs
are lower than that observed with E. coli SSB. Despite
these differences, ssDNA binding of SSB proteins using
OB fold-domains (oligosaccharide/oligonucleotide bind-
ing domains) appears to be universal throughout all sys-
tems described to date [1].
The E. coli SSB is highly cooperative in ssDNA binding

that is influenced by salt concentration [24,25]. Recent
studies indicate that SSB has at least two distinct modes
of ssDNA binding [26]. The binding is modulated by
monovalent salts. At very low salt concentration
(<10 mM NaCl), SSB binds ssDNA using two of its four
subunits in a highly cooperative manner and occludes
only 35 nucleotides [(SSB)35 mode]. On the other hand,
at higher salt concentrations (>200 mM NaCl), it binds
to ssDNA using all four subunits and protects ~65
nucleotides [(SSB)65 mode]. It is not clear how the
ssDNA binding is altered between 10 and 200 mM NaCl.
Higher-order forms of SSB in ssDNA bound states,
based on high resolution electron microscopic studies of
SSB-ssDNA complex, have also been reported [27].
Chrysogelos and Griffith discovered that repeated
freezing-thawing of E. coli SSB leads to the formation of
unique strings of tetramers [28].
Gram-positive bacterial protein sequences do not form

a monophyletic group, but are intermixed with plasmid
and phage sequences [29,30]. Gene organization in these
organisms can differ from that observed in Gram-
negative E. coli and these organisms may contain mul-
tiple paralogues [31,32]. Sequence analysis indicated that
Gram-positive SSBs have a highly conserved nearly-
identical (>90% identity) N-terminal ssDNA binding as
well as monomer-monomer interaction domains but
they differ to some extent from the Gram-negative SSBs.

We have investigated the structure and ssDNA binding
of a Gram-positive bacillus SSB (SSBBA) in order to
understand its mechanism of action of SSBs in these
organisms. We present here a report of a Gram-positive
SSB that utilizes a novel structural mechanism for
protein-DNA interaction using a transient tetramer
formation.

Results
The single-stranded DNA binding protein ORF of B. anthracis
(BAS5326) was identified by BLAST search of the annotated
sequenced genome of B. anthracis Stern strain [33,34]. The
ORF encodes a polypeptide of 172 amino acid residues with a
predicted molecular weight of 19.2 kDa.

Sequence analysis of SSBBA
The amino acid sequence of the N-terminal ssDNA bind-
ing and protein-protein interaction domains responsible
for dimer and tetramer formation of SSBBA were com-
pared with the sequences of a Gram-positive (Bacillus
anthracis) and Gram-negative (E. coli and Salmonella
typhimurium) SSB proteins. Multiple-alignment of these
sequences, using ClustalW2, is shown in Figure 1. In
general, a high degree of sequence homology among
SSBs was observed only in the N-terminal two-thirds of
the proteins. In the N-terminus two-third, sequence
homology (identity + similarity) of SSBBA was observed
with Gram-positive SSBs and was estimated to be ~54%,
whereas, it was ≥90% among Gram-negative SSBs.
Amino acid residues 1–46 constitute the major portion
of the SSB core domain and contain the OB DNA bind-
ing fold. The second region of homology observed was
between residues 51–104 (Figure 1). A third area of hom-
ology was also observed in the last six residues with the
sequence, DDDLPF, which corresponds to the acidic
carboxy-terminal domain characteristic of eubacteria;
this sequence is required for interaction with recombin-
ation, replication and repair machineries [35,36]. The C-
terminal region lacked significant homology even among
Gram-negative SSBs in the region between the residues
100–166 among these SSBs [37].

Purification of SSBBA
Recombinant SSBBA was highly soluble when expressed
in E. coli. It was purified using a combination of ammo-
nium sulfate fractionation as well as conventional ion
exchange chromatography. These steps resulted in
homogenous SSBBA (Figure 2A). In SE-HPLC analysis of
purified SSBBA (100 μg/ml) the protein eluted as a single
peak with an elution volume consistent with that of a
monomer (Figure 3).
To test the biological activity of SSBBA we measured

its ability to stimulate its cognate DnaB, DnaBBA, using a
FRET based DNA helicase assay. It was based on the
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ability of SSBBA to stimulate DNA unwinding activity of
its cognate DNA helicase, DnaBBA (Figure 2). In the ab-
sence of SSBBA, DNA unwinding by DnaBBA was limited
(Figure 2B) and was greatly stimulated in the presence
of SSBBA (Figure 2C). The stimulation of the DNA heli-
case activity of DnaBBA in the presence of the purified
SSBBA was >10 fold which was as expected for the cog-
nate SSB [13].

Mechanism of ssDNA binding by SSBBA
Fluorescence anisotropy-based titration of a DNA-
fluorophore by the DNA binding protein is a direct meth-
odology for determining affinity of protein-DNA com-
plexes. Following this approach, 5′-Fluorescein-labeled
oligo(dT)20 (Fl(dT)20) was used as a fluorescence anisot-
ropy probe for analyzing SSBBA and ssDNA interactions.
In order to determine the binding constant for SSBBA,
the interaction of SSBBA with 5′-flourescein labeled oligo
(dT)20 was examined at 25°C and in buffer B containing
0.1 nM Fl-(dT)20, 25 mM KCl and 5 mM Mg+2. Fl-(dT)20

was titrated with SSBBA until saturation in anisotropy was
observed. The anisotropy values at various SSBBA concen-
trations were used to create a binding isotherm as a semi-
log plot as shown in Figure 4. At very low SSBBA concen-
trations, very small anisotropy changes and a flat plateau
(~43 mA) were observed that were attributed to Fl-(dT)20.
Upon further addition of SSBBA, the anisotropy value
increased with an increase in SSBBA•Fl-(dT)20 complex
formation. A sigmoid binding isotherm with saturation
binding at high SSBBA concentration was observed with
maximum anisotropy of 184 ± 5 mA. At higher SSB con-
centration (≥ 1 μM), anisotropy did not change signifi-
cantly (data not shown). Nonlinear regression analysis,
using a sigmoidal dose–response equation, of the data
allowed for determination of the SSBBA concentration at
which 50% of the ligand was in bound form (EC50); that
value corresponds to the apparent dissociation constant.
The KD for SSBBA•Fl-(dT)20 complex was 1.0 ± 0.1 x 10−9 M.
The Hill coefficient was 1.6 ± 0.6 indicating a possible bind-
ing of one to two molecules of SSBBA to Fl-(dT)20, which is

Figure 1 Sequence alignment of SSB proteins. Gram-positive and Gram-negative bacteria: ssDNA binding and protein-protein interactions
domains of SSB proteins from Gram-positive B. anthracis (SSB-BA), and Gram-negative E. coli (SSB-EC), Salmonella typhimurium (SSB-ST), Klebsiella
pneumoniae (SSB-KP), Pseudomonas aeruginosa (SSB-PA) were aligned using ClustalW2 program. The color coding is as follows: red, basic; blue
hydrophobic; green, hydrophilic; orange, neutral; pink, acidic; and light green, proline. Notations of the secondary structures in SSBBA are as
defined by Murzin [38] with the β strands of the OB-fold labeled 1–5 (Light green box) and the α-helix (dark green box). Locations of the
important hydrophobic tryptophans (in E. coli) are indicated by red up arrows. The residues in the monomer-monomer interface of the dimer in
E. coli SSB sequence are indicated in yellow boxes. Changes of Gln77 !Leu and Gln111!Phe should destabilize dimer-dimer interaction
important for the tetramer formation [39].
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not surprising considering the fact that SSBBA does not form
a stable tetramer. A simple hyperbolic fit of the anisotropy
data was also carried out (Figure 4 inset). The estimated KD

value was 1.2 ± 0.8 x 10−9 M. In order to determine the cor-
rect method of analysis of binding data, we have examined
the “Goodness of Fit” using both models. The R2 value for
the sigmoidal dose–response model was found to be 0.98,
whereas, for the simple hyperbolic model was 0.94. The F-
test using the values of degrees-of-freedom and absolute
sum of squares, gave an F-value of 22.4 which correlated well
with the R2 values and clearly demonstrated that the sig-
moidal dose–response model as the correct model/equation
for fitting anisotropy binding data for such analysis.

Thermodynamics of ssDNA binding
In order to understand the thermodynamics of
SSBBA•ssDNA binding interactions, we have analyzed
SSBBA binding to ssDNA at different temperatures over
a range of 20–37°C. The temperature-dependent binding
isotherms for SSBBA and Fl-(dT)20 are presented in
Figure 5A. Higher anisotropy values observed at 20 or
25°C were due to glycerol used in this assay. As the
temperature increased, an overall decrease in anisotropy
value was observed for both the free and bound oligonu-
cleotides. This overall decrease in anisotropy value is
attributed to the decrease in viscosity of the solution
with increasing temperature which was somewhat atte-
nuated by adding glycerol. With a decrease in

Figure 2 SDS-PAGE and biological activity of purified SSBBA.
(a) SDS-PAGE analysis of SSBBA (fraction V) used in this study.
(b) FRET helicase analysis of DnaBBA in the presence and absence of
SSBBA: Emission spectra of the substrate (4.2 nM), after 15 min
incubation with SSBBA (3 μg/ml) DnaBBA (0.5 μg/ml), and both SSBBA
and DnaBBA at 37°C; (c) Kinetic analysis of helicase activity: The
helicase substrate was rapidly mixed with indicated protein(s) and
fluorescence emission at 662 ± 8 nm was recorded as a function of
time for 500 s using a Slow Kinetic mode in PC1 spectrofluorometer
using Vinci software (ISS Inc. Champaign, IL). Using FRET spectra of
native and heat denatured substrate, we predetermined that 1%
decrease in FRET is equivalent to ~3.1 pmol of nucleotide (or bp)
unwinding of duplex DNA.

Figure 3 Size exclusion HPLC analysis of SSBBA.Size exclusion
HPLC analysis of SSBBA. The native molecular mass of SSBBA
Fraction V was investigated using a TSK GS3000SW gel filtration
column using A-100 as running buffer. Twenty micrograms of SSBBA
was injected and the column was eluted at 0.4 ml/min. and 0.4 ml
fractions were collected. The gel filtration standards were BSA
(68 kDa) and ovalbumin (44 kDa) and lysozyme (15 kDa).
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temperature, the viscosity as well as the anisotropy
values appeared to increase [40]. Analysis of the binding
curve data for KD showed the dissociation constants
increased steadily from 20°c to 37°C. We did not observe
any significant change in the Hill coefficient with
temperature. This increase in KD could likely be due to
the dissociation of the protein•DNA complex at higher
temperatures. The DnaABA•DNA complex was most
stable at 20–25°C.
The dissociation constants obtained at varying tempera-

tures were used to evaluate the thermodynamic properties
of DNA binding. We have plotted the dissociation con-
stants using the Van’t Hoff equation, lnKD= −ΔH°/RT,
where ΔH° is the enthalpy change and T and R are the
temperature and gas constant respectively, with the dis-
sociation constants derived from 20, 25, 30, and 37°C
(Figure 5B). The plot is linear for temperatures 20°C to
37°C and it diverges from linearity below 20°C. The slope
of the Van’t Hoff plot was used to derive the change in en-
thalpy (ΔH°) at 25°C (33.9 kJ mol−1). The change in en-
tropy (ΔS°) was calculated to be 56.9 Jmol−1 K−1. Thus, it
appears that the formation of the SSBBA•ssDNA complex
has a strong entropic or hydrophobic component to the
overall protein-DNA interaction.
In addition to hydrophobic interaction between SSBBA

and ssDNA, we analyzed the contribution of ionic interac-
tions, if any, in the complex formation. Fluorescence

anisotropy was used determine the KD of formation of
SSBBA•ssDNA complex as a function of NaCl concentra-
tion. The binding isotherm at different salt concentrations
was generated using SSBBA titration of ssDNA at 25°C
(Figure 6A). Each titration curve fits according to a single
site binding isotherm. The data shows that highest affinity
binding occurs at 0–25 mM NaCl. The dissociation con-
stant increased steadily from 0–250 mM NaCl. The most
striking change was in the values of the Hill coefficient. At
0 mM NaCl, it was 1.9 ± 0.6 and steadily decreased to 0.9 ±
0.1 at 150 mM NaCl and beyond. It could indicate that at
0 mM NaCl, SSBBA was forming a predominantly dimeric
structure which transformed into monomeric at higher
NaCl concentration. However, at very low ionic strength,
non-specific protein-protein interactions could not be ruled
out. A thermodynamic linkage plot for ssDNA binding as a
function of NaCl (Figure 6B) was generated from the KD

values obtained from Figure 6A. The presence of a negative
slope was indicative of a net ion release [41]. The data were
analyzed using the following equation to determine the
number of ions released upon binding:

Δnions ¼ 1n 1=KDð Þ=1n NaCl½ �

The analysis suggests that upon SSBBA•ssDNA com-
plex formation, only one ion was released from the

Figure 4 Fluorescence anisotropy analysis of equilibrium ssDNA binding by SSBBA. ssDNA binding was measured using fluorescence
anisotropy of Fl-(dT)20 oligonucleotide probe using the fluorescence of its 5′-fluorescein moiety using 480 nm excitation and 540 nm emission of
fluorescein as described in Materials & Methods. Titration was carried out with SSBBA and fluorescence anisotropy of Fl-(dT)20 was measured. As
indicated, anisotropy of free Fl-(dT)20 oligonucleotide probe was 44 ± 5 mA and that of the SSBBA•Fl-(dT)20 complex was 182 ± 6 mA. Anisotropy
values were plotted against log of SSBBA concentration and the plots were analyzed by nonlinear regression using Prism 6.0. The error bars
indicate standard deviation. [Inset] A simple plot of the data fitted to single association hyperbolic function.
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protein-DNA interface. These results appeared to indi-
cate a small but significant contribution of ionic inter-
action in the ssDNA binding.

Structural analysis of SSBBA by homology modeling
The SSBBA sequence was further analyzed for secondary
structure using Rosetta software (http://robetta.org/frag-
mentsubmit.jsp). Rosetta analysis indicated that there

are at least five significant β strand structures and a sin-
gle α-helix in the N-terminal half of the molecule (data
not shown). The structure between the residues 101–
170 appeared to be a random coil. These secondary
structures are consistent with known features of SSBEC

monomer, as determined earlier by X-ray crystallography
[37,39,42].
Alignment of SSBBA sequence with sequences of other

prokaryotic SSBs did not provide any clue to the basis of

Figure 5 Temperature dependence of SSBBA•ssDNA complex
formation. Temperature dependence of ssDNA binding by SSBBA
was measured at temperatures as indicated. (a) Binding isotherms
for SSBBA binding to ssDNA at seven temperatures: 20°C, 25°C, 32°C
and 37°C are shown. The concentration of the oligonucleotide was
1.0 nM and 25 mM NaCl was added. (b) Van’t Hoff plot was made
using the analysis of the KD values obtained from the nonlinear
regression of plot in 5A.

Figure 6 Ionic strength dependence of SSBBA•ssDNA complex
formation. Ionic strength dependence of ssDNA binding by SSBBA
was measured at NaCl concentration as indicated. (a) Binding
isotherms for SSBBA binding to ssDNA at six NaCl concentrations: 0,
25, 50, 100, 150, and 200 mM. (b) Thermodynamic linkage plot for
SSBBA binding to ssDNA as a function of NaCl concentration. The net
average number of ions released upon complex formation was
derived from the slope of the plot.
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its ssDNA binding properties (Figure 1). Therefore, the
three-dimensional structure of SSBEC derived from X-
ray crystallography [37] was explored. The significant se-
quence homology of SSBBA with E. coli SSB allowed us
to develop a putative three dimensional model of SSBBA

using homology based modeling. The initial modeling
was done using the SWISS-MODEL server [43,44]. Fur-
ther refinement of the model by energy minimization
was carried out using SYBYL 8.1 (Tripos Inc., St. Louis,
MO) molecular modeling software using the SSB crystal
structure, PDB ID: 1QVC, as the structure template
[37]. The structures for E. coli SSBEC, 1QVC and SSBBA

were visualized using PyMOL (The PyMOL Molecular
Graphics System, Version 1.3, Schrödinger LLC). Struc-
tures of both SSBs are presented in PyMol in Figure 7.
SSB proteins are known to bind ssDNA through their

oligonucleotide/oligosaccharide binding fold (OB fold)
as described by Murzin [38]. The OB fold is character-
ized by a β-barrel consisting of five β-strands capped by
an α-helix. Despite sequence differences between SSBBA

and SSBEC, the OB fold observed in SSBEC remained in-
tact in SSBBA including the β-turn regions, particularly
L45 between β sheets 4 and 5 (Figure 7). It has been
shown that the β sheet 1 of SSBEC with the sequence
VNKVILV is in the monomer-interface of the SSBEC

dimer [39]. In SSBBA, this β sheet remains partially in-
tact (NKVILV) with the loss of the Val5 residue.

However, the His56 of one monomer in SSBEC forms a
hydrogen bond with Asn6 and the carbonyl oxygen of
Leu83 of another monomer, which is essential for a
stable dimer/tetramer formation. Although Asn6 (Asn2
in SSBBA) and Leu83 (Leu76 in SSBBA) remained con-
served, one of the most important residues, His56 in
SSBEC was altered to Ile (Ile47) in SSBBA (Figure 1). It
should be noted that in the temperature-sensitive E. coli
mutant, ssb-1, His56 was mutated to Tyr56 leading to
the ts-phenotype. E. coli ssb-1 ts-mutant does not form a
stable tetramer at non-permissive temperature [5,45].
Thus, the lack of this His residue in SSBBA will likely
hinder a stable dimer formation.
The SSBEC tetramer is formed by the interaction of

two dimers [37,39]. The dimer-dimer interface involves
two six-stranded surfaces, each comprised of β1, β4, and
β5 from two monomers. The structure of SSBBA, as
shown in Figure 7, could form such a tetramer interface,
had it not been for the difficulty associated with the
dimer formation. It has been shown with a number of
SSB crystal structures that a network of hydrogen bonds
among the side chains in this six-stranded interface is
necessary for a stable tetramer formation. The residues
that were shown to be important in SSBEC for this net-
work of hydrogen bond formation are Lys8, Tyr79,
Gln77, Glu81, and Gln111. Sequence comparison
(Figure 1) between SSBEC and SSBBA indicated that all of

Figure 7 Homology based modeling of SSBBA. (a) Model of the SSBEC derived from the crystal structure of a chymotrypsin truncated SSBEC
monomer lacking 42 C-terminal residues (PDB ID 1QVC). (b) Model of the SSBBA derived from the crystal structure SSBEC monomer (PDB ID
1QVC). Both of these structures were generated using PyMol. In SSBEC, Trp55, Trp89, and Phe61 are important in the ssDNA binding, which are
replaced by Phe47, Tyr82, and Trp53 respectively in SSBBA. Most notably, His56 residue of SSBEC, required for monomer-monomer interaction is
replaced by Ile48 in SSBBA [39].
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these residues in SSBBA underwent changes and are as
follows: Lys8!Arg2, Tyr79!Gly71, Gln77!Leu69,
Gln83!Arg75, and Gln111!Phe104. Although all of
the changes may not be significant, three of these five
changes are significant in terms of hydrogen bond for-
mation. Therefore, these amino acid changes in SSBBA

are likely to impede tetramer formation further. Taken
together, inhibition of both monomer-monomer inter-
action leading to dimer formation as well as dimer-
dimer interaction leading to tetramer formation, the
amino acid sequence of SSBBA does not support forma-
tion of stable dimer or tetramer.

Analysis of the structure of ssDNA binding pocket
in SSBBA
Single-stranded DNA binding by prokaryotic SSBs has
been shown by several groups to be carried out exclusively
by tetrameric forms of SSBs containing four OB folds or
dimeric forms with each monomer containing two OB
folds [37,39,46]. Thus, the presence of four OB folds in
SSBs appears essential for high affinity ssDNA binding.
Our studies indicated that SSBBA bound ssDNA with very
high affinity (1.0 ± 0.1 x 10−9 M) even though it did not
appear to form a stable tetramer in the absence of DNA at
the concentration range examined (Figures 3 & 7).
The amino acid residues in SSBBA that are homolo-

gous to the residues in other SSBs, particularly SSBEC,
that are known from crystallographic studies to bind to
ssDNA were analyzed. Several hydrophobic residues,
Trp89, Trp55, and Phe61, in SSBEC have been identified

as involved in ssDNA binding through base stacking
interactions [39]. In Helicobacter pylori SSB (SSBHP),
Phe37, Phe50, Phe56, and Trp84 are involved in base
stacking interactions with ssDNA [47]. These hydropho-
bic residues (Phe36, Phe43, Trp53, and Tyr81) with
changes remained conserved in SSBBA (Figure 1). As
shown in Figure 8, these aromatic side chains are
exposed in the DNA binding groove of the OB fold so
that ssDNA bases could have stacking interactions. In
addition, ssDNA binding to SSB requires a large number
of positively charged residues for the formation of ionic
bridges with the phosphodiester backbone of ssDNA. A
large number of Arg and Lys residues were observed in
and around the groove as shown in Figure 8. Among
these, Arg9, Lys12, Arg17, Arg42, Arg54, Lys55, Lys65,
Lys66, Lys87, Arg88, Arg103 appeared to be in close
proximity of the DNA binding groove and form ionic
bridges with the phosphodiester backbone. Conse-
quently, the high affinity ssDNA binding observed with
SSBBA could be due to basic as well as aromatic residues
in its DNA binding groove.

Subunit structure of SSBBA in the SSBBA•ssDNA complex
Our studies demonstrated that SSBBA was capable of high-
affinity binding of ssDNA. Was it possible that the protein
could form higher order structures, possibly tetramers,
upon binding long ssDNA templates? Tetrameric E. coli
SSB binds ssDNA in two distinguishable forms; SSB35 and
SSB65 [26,48]. The SSB35 form binds approximately 35 nt
and the SSB65 form binds approximately 65 nt on a (dT)70

Figure 8 Surface topology and charge distribution on the surface of SSBBA that are involved in ssDNA binding. Hydrophobic (in green)
and basic residues (in red) that are likely involved in ssDNA binding are depicted. (a) Hydrophobic residues (Phe36, Phe47, Trp53, and Tyr82) are
depicted in green sticks and basic residues (Arg 9, 17, 54, 88 and Lys 55, 65, 66, 87) are presented in red sticks attached to the backbone.
(b) Electrostatic surface potential of the SSBBA are created from the structure in Figure 7A using the program PyMOL. Hydrophobic, positive, and
neutral potential surface are displayed and colored green, red, and white, respectively.
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template. In the SSB35 form, only two subunits of the
tetramer make contacts with the DNA, whereas, in SSB65
form all four subunits of the tetramer make contacts with
the DNA. These two forms can be distinguished by fluor-
escence resonance energy transfer (FRET) using a long
ssDNA labeled in each end with Cy3 and Cy5 fluorophores
[26]. The SSB65 form produces high FRET and the SSB35
form produces attenuated FRET. This approach was uti-
lized using a seventy nucleotide, (dT)70, oligonucleotide la-
beled with a 3′ Cy3 fluorophore and a 5′ Cy5 fluorophore
(Cy5-(dT)70-Cy3) to test our hypothesis that SSBBA forms
higher order structures upon DNA binding. With this
ssDNA substrate, we anticipated that SSBBA in SSB35-
mode would produce attenuated FRET and SSB65-mode
would produce high FRET. Binding of SSBEC to Cy5-
(dT)70-Cy3 oligonucleotide was first analyzed to test the
validity of our assay. The results are presented in Figure 9.
FRET was measured using 515 nm excitation wavelength
and 665 nm emission wavelength. The emission intensity
was corrected for Cy5 contribution to 665 nm emission.
FRET was defined by (F-F0)/F0 where F0 and F are the cor-
rected 665 nm emission intensities of the 200 nM 5′-Cy5
(dT)70Cy3-3′ oligonucleotide in the absence and presence
of SSB respectively. In the titration with SSBEC, sharp in-
crease in FRET with initial titration with SSBEC reaching a
peak at 0.44 μM concentration was seen. Upon further ti-
tration with SSBEC, the FRET decreased substantially and
reached a plateau at concentrations higher than 1.1 μM.
These results with SSBEC are comparable to that observed
by Roy et al. [26]. However, our experiments required a
somewhat higher concentration of SSBEC than reported by
Roy et al. [26], which could be due to different buffer sys-
tems and ssDNA concentration. Thus, at 0.44 μM SSBEC,
the high FRET (SSBEC)4-(dT)70 complex was observed and
at or above 1.1 μM SSBEC, intermediate FRET (SSBEC)8-
(dT)70 complex was seen.
Next, SSBBA binding to Cy5(dT)70Cy3 oligonucleotide

was analyzed. The Cy5(dT)70Cy3 oligonucleotide was
titrated with SSBBA as described above for SSBEC. Simi-
lar to SSBEC, FRET increased linearly with increasing
concentration of SSBBA, and reached a plateau at 0.8 μM
Surprisingly, only a high FRET form of (SSBBA)-(dT)70
complex was observed. However, initial slope of the plot
is very different from that observed with SSBEC which is
a stable tetramer. Therefore, it appeared that the high
FRET form of the complex was formed but required
higher concentration of SSBBA. The high FRET form of
(SSBEC)-(dT)70 complex is a tetrameric complex in
which all four monomers bind ssDNA. The high FRET
form of (SSBBA)-(dT)70 complex should have the same
oligomeric structure as the high FRET form of (SSBEC)-
(dT)70 complex. As SSBBA lacked stable tetramer forma-
tion, it required higher (~two fold) SSB concentration to
form the high FRET complex. The reason is that this

complex is not formed by a single binding event as is
the case with SSBEC complex. It involves four binding
and one structural rearrangement steps. As individual
monomers are binding, there are four separate binding
constants (K1, K2, K3, and K4) involved in the (SSBBA)4-
(dT)70 complex formation. It will be erroneous to

Figure 9 Analysis of binding modes, (SSB)35 and (SSB)65, of
SSBEC and SSBBA by FRET analysis. Protein-ssDNA binding and
FRET assays were carried out as described in Materials & Methods
[26]. The FRET substrate was 40 nM 5′-Cy5-(dT)70-Cy3-3′. (a) Analysis
of SSBEC binding to 5′-Cy5-(dT)70-Cy3-3′. Both (SSB)65 and (SSB)35
modes are clearly observed (22). (b) Analysis of SSBBA binding to
5′-Cy5-(dT)70-Cy3-3′. Only (SSB)65, not (SSB)35, mode was observed.
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assume that they are all 1 nM. Certainly K1 is 1 nM as
observed in Figure 4. Other binding constants (K2, K3,
and K4) are likely to be higher than 1 nM due to steric
hindrance which is particularly important for K4 involv-
ing the binding of the fourth monomer. The (dT)70 is
small and can accommodate only four SSBBA resulting
in progressive lack of sufficient open DNA for second,
third and fourth SSBBA monomers to bind. Therefore, it
is very likely that K2 and K3 are higher and K4 is sub-
stantially higher than 1 nM which explains a higher
SSBBA concentration to achieve a high FRET complex.
Based on this reasoning of the (SSBBA)4-(dT)70 complex
formation, as described above, our data actually supports
the model in Figure 10. Lack of observation of an inter-
mediate FRET form of the (SSBBA)-(dT)70 complex in
this study indicated that a (SSBBA)8-(dT)70 complex
probably did not form in appreciable amount even with
high proportional levels of SSBBA. Based on these rea-
sonings of the (SSBBA)4-(dT)70 complex formation, as
described above, our data led to the proposal of the
model presented in Figure 10 for the (SSBBA)8-(dT)70
complex.

Discussion
SSB protein is required for a variety of processes such as
DNA replication, recombination and DNA repair despite
its lack of any enzymatic activity [5,9,49]. Among its
multifaceted cellular activities, a common feature of all
of these processes is to bind ssDNA with high affinity
and protect it from reannealing and/or degradation. Of
emerging importance is SSB’s role in protein-protein
interaction during various DNA transactions. Most stud-
ies involving SSB proteins demonstrated that ssDNA
wraps around a tetrameric form of SSB.

SSBBA does not form a stable tetramer
E. coli SSBEC is a stable tetramer with high solubility and
tremendous thermal stability [1]. The majority of pro-
karyotic cellular SSBs are homotetramers, where each
monomer harbors an OB fold. However there are excep-
tions. SSBDR from Deinococcus radiodurans is a homodi-
mer, where each monomer is quite large and contains
two OB folds [37-39,46]. Each OB fold is capable of
binding ssDNA independently. In both cases, a stable
SSB protein complex with four OB folds is required for
ssDNA binding. SSBBA was found to be not tetrameric
at or above ambient temperature by size exclusion
HPLC (Figure 3). This physicochemical property of
SSBBA is closely comparable to the T4 bacteriophage
SSB, which is monomeric.

Molecular basis of SSBBA structure
Sequence alignment and three dimensional structure of
SSBBA, generated by homology-based modeling were

utilized to probe the molecular basis of ssDNA binding
(Figures 1). Sequence alignment and secondary structure
prediction (data not shown) clearly indicated the pres-
ence of an OB fold in SSBBA, which is a characteristic of
SSBs and required for high affinity ssDNA binding
(Figure 4).
Both sequence alignment and homology modeling

(Figures 1 & 8) indicated lack of several residues that are
important for monomer-monomer and dimer-dimer
interactions leading to the formation of a stable tetramer
in SSBEC. His56 (as well as Glu54) of β sheet 3 (Figure 1)
in SSBEC plays an important role by forming a hydrogen
bond with Asn7 in β sheet 1, the carbonyl group in
Leu84 and Thr100 at the base of loop L45. Notably, in
E. coli temperature-sensitive mutant, ssb-1, His56 is
mutated to Tyr56 [5]. This mutant does not form a
stable tetramer with respect to monomers at non-
permissive temperatures [5,45,50]. Thus, a lack of the

Figure 10 A hypothetical model for the formation of SSBBA
tetramer upon ssDNA binding. The cartoon depicts a hypothetical
model for the formation of ssDNA•(SSBBA)4 complex with a wrapped
ssDNA that is bound to all four SSBBA monomers in SSB65 mode.
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corresponding His residue (His!Ile change) in SSBBA

may be one of the important contributors to its struc-
ture. Moreover, in B. anthracis the sequence Glu54.
Trp55.His56 in the E. coli β sheet 3 is altered to Asp46.
Phe47.Ile48 (Figure 1). This change did not alter the β
sheet structure but may have altered the contributions
of these residues in the monomer-monomer interaction
in the stable dimer and tetramer formation. It appears
that although β sheet 1 remained conserved in SSBBA,

this region lacks the valine residue which may have atte-
nuated the interaction of the β sheet 1 with β sheet 1′ in
the monomer-monomer interface of the dimer. The
shortening of the N-terminus in SSBBA may also have
deleterious effect in the interactions involving H-bonds
in this region and can contribute to the lack of tetramer
formation. Taken together, the amino acid residue sub-
stitutions in SSBBA, as described above, are likely con-
tributed to the disruption of monomer-monomer
interaction leading to dimer formation.
The dimer-dimer interface in the SSBEC tetramer is

primarily a six-stranded β sheet-mediated. Residues that
are important in SSBEC for the network of hydrogen
bond formation at the dimer-dimer interface are Lys8,
Tyr71, Gln77, Glu81, and Gln111 [39]. Sequence com-
parison (Figure 1) between SSBEC and SSBBA indicated
that all of these residues in SSBBA underwent alteration
and are as follows: Lys8!Arg3, Tyr79!Gly71,
Gln77!Leu69, Gln83!Arg75, and Gln111!Phe104.
Some of these changes are chemically significant leading
to possible disruption of the network of hydrogen bond
formation that is required for a stable tetramer forma-
tion. In addition, Gln77 and Gln111 are located in the
dimer-dimer interface and have been implicated in the
tetramer formation. As described earlier, Gln111 is
altered to Phe104 in SSBBA. An equally significant
change is observed with Gln77 which is changed to
Leu69 in SSBBA. Taken together, these changes in amino
acid sequence may disrupt both monomer-monomer
and dimer-dimer interactions leading to a monomeric
SSBBA at a physiological temperature.

Energetics of SSBBA•ssDNA binding
Protein-DNA recognition and binding involve complex
interactions. Earlier, we have used fluorescence anisot-
ropy analysis of DNA binding by E. coli DNA primase
and determined the thermodynamic parameters of
protein-DNA interaction (38). We have used a similar
analysis to probe the ssDNA binding by SSBBA. In
addition, we have analyzed contribution of electrostatic
and ionic interactions in the binding by analyzing the
dependence of binding on the ionic strength of the en-
vironment. Together, these two analyses provided a
detailed picture of the forces in SSBBA•ssDNA binding.

The KD values were determined at different tempera-
tures (20–37°C) (Figure 5). Our data showed that although
SSBBA was able to bind DNA at a wide range of tempera-
tures, it bound with the highest affinity at 20–25°C. The
free energy change for SSB•ssDNA association was
−23 kJ mol−1 at 25°C. Using the two equations: ΔG°=
−RT lnKD and ΔG°=ΔH°−TΔS° and the slope of the plot,
we determined that ΔS° was ~188 Jmol−1 K−1 in this
temperature range.
We determined the KD value of SSBBA binding to

ssDNA at different salt concentrations (0–200 mM
NaCl) (Figure 6A). The binding is progressively wea-
kened with an increase in ionic strength. The KD values
were then analyzed using a linkage plot to determined
ionic interactions in the binding. The negative slope of
the plot in Figure 5B indicated a release of ions from.
Our analysis determined the release of one Na+ and one
Cl- ion during the binding process. In addition, our
results also pointed out that SSBBA likely formed a tetra-
meric species at 0 mM NaCl and became monomeric at
higher NaCl concentration. It is perhaps possible that
the tetramer formation could be dependent on the ionic
strength.
Thus our results suggest that ionic interaction or salt

bridge formation between the protein and the DNA
made specific contribution to the overall free energy
change. In order to determine the contribution we first
extrapolated KD value of the complex at infinite salt
concentration (KD

∞) by nonlinear regression of KD versus
log[NaCl] plot (data not shown). The value of ΔG°ionic
was −8 kJ mol−1.

Mechanisms of ssDNA binding by SSBBA
Despite differences between its Gram-negative counter-
part, SSBBA bound to ssDNA with high affinity (Figure 4).
The ssDNA binding affinity (KD) for a SSBBA monomer
binding to a small oligonucleotide was 1.0 ± 0.1 x 10−9 M
at 25°C. Even though many changes in amino acid se-
quence of SSBBA directly relate to ssDNA binding, such as
Trp55!Phe47, Trp90!Tyr81, Phe61!Trp53, the
changes are not drastic enough to alter ssDNA binding
(Figure 8). Three dimensional structure as well as electro-
static surface potential in Figure 8 indicates that ssDNA
binding remained unperturbed. A temperature-sensitive
mutant of E. coli SSB, ssb-1, is unable to form a stable
tetramer at a non-permissive temperature [5,45,50]. This
mutant is also defective in supporting DNA replication at
non-permissive temperature. Thus, it appears a SSB tetra-
mer formation is a prerequisite for DNA replication. Con-
sequently, we sought to explore whether ssDNA template
could influence the ability of SSBBA to form tetramers
upon DNA binding. A likely possibility is that SSBBA is
capable of forming a normal tetrameric structure contain-
ing four OB-folds, as seen in other SSBs, upon sufficiently
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long ssDNA. This possibility was examined using a re-
cently developed FRET assay for SSB•ssDNA interaction
[26].
Previous studies with SSBEC have shown that its SSB35

and SSB65 binding modes can be distinguished by a
FRET assay [26]. Both of these ssDNA binding modes
require a tetrameric (or di-tetrameric) structure of
bound SSB. A similar FRET assay was used to probe the
structure of SSBBA in ssDNA bound state. As the ssDNA
binding constant of SSBBA is very high, the possibility
that it may form a tetramer only in the ssDNA bound
state was investigated. As shown in Figure 9A, SSBEC

formed both SSB35 and SSB65 structures with the 5′-Cy5
(dT)70Cy3-3′ oligonucleotide as evidenced by FRET ana-
lysis. As described earlier, SSB35 represented the
intermediate-FRET complex and SSB65 represented the
high-FRET SSB-ssDNA complex. At a low SSB to dT70

ratio, it formed the high FRET complex and at a high
SSB to dT70 ratio, it formed the intermediate FRET com-
plex. In the FRET analysis, SSBBA formed only a high-
FRET complex but not the intermediate-FRET complex
(Figure 9B). In addition, the slope of the plot with SSBBA

is different from that of SSBEC. As SSBEC is a stable
tetramer, the high FRET complex formed rapidly with
increasing SSB concentration and it formed much slowly
with SSBBA because of the lack of a stable tetramer for-
mation. Our results appeared to indicate (i) a tetrameric
structure of SSBBA in the SSBBA-ssDNA complex, and
(ii) the SSBBA-ssDNA complex was formed only in the
SSB65 mode. Due to high affinity of ssDNA binding, per-
haps four monomers can bind the oligo(dT)70 prior to
the tetramer formation. Once this multi-SSBBA complex
is formed, the bound SSBBA monomers undergo con-
formational transition and form tetrameric structure in
SSB65 mode. A hypothetical model is proposed in Fig-
ure 10. In this proposed model, all four monomers in
the tetramer would first bind to the ssDNA, which
would likely lead to the formation of the SSB65 complex
and prevent the formation of a SSB35 complex. In the
case of SSBBA, a two-fold higher concentration of pro-
tein was needed to observe the high-FRET complex. We
believe this is due to the following reasons. First, the
SSBBA is in essence a mutant form of SSBEC and as a re-
sult its ssDNA binding mechanism is likely somewhat
different. Second, higher concentration of SSBBA might
have favored the binding of all four monomers to the
ssDNA. Initial slope of the plot in Figure 9B appeared to
support this pathway.
SSBBA appears to undergo structural transformations

which may support its high affinity binding to ssDNA.
Its structure is due to a cumulative effect of multiple
changes in key amino acid residues in its sequence
which resulted in the loss of stable tetramer formation.
Nonetheless, the SSBBA bound oligo(dT)20 with high

affinity as shown in Figures 4, 5, 6. Therefore, multiple
monomers will bind to oligo(dT)70 due to its long size.
Thus, it is reasonable to assume that four monomers are
binding to a long ssDNA (≥70 nucleotides). FRET data
presented in Figure 9 established that SSB65-like struc-
ture is being formed upon oligo(dT)70 binding. There-
fore, the ssDNA binding is leading to the formation of
an SSB65 complex in which ssDNA is bound to a SSBEC-
like tetrameric structure. We have proposed a hypothet-
ical model, presented in Figure 10, which may explain
the mechanism of formation of a SSBBA tetramer assem-
bly upon ssDNA binding which require further studies
of such complex formation. The proposed model repre-
sents a stepwise process by which SSBBA can achieve
high affinity DNA binding through a tetramer formation.
This mechanism of SSB-ssDNA complex formation and
its reversal may aid in the rapid removal of SSB, a neces-
sary step, by enzymes such as a DNA polymerase during
DNA replication as well as in other processes. In es-
sence, SSBBA could actually be more effective than its
tetrameric orthologs in executing its multifaceted func-
tions in cellular DNA transactions.

Conclusions
Our studies suggest that the structural properties of
SSBBA differ from that of its Gram-negative counterpart,
SSBEC, and that furthermore its structure is modulated
in the presence an ssDNA template. It is noteworthy that
despite complexities in structure and oligomerization,
SSBBA retains high-affinity ssDNA binding, which is its
primary function. Its unique structure may be due to the
cumulative effect of multiple key amino acid changes in
its sequence during evolution, leading to alteration of
stable dimer and tetramer formation. In the presence of a
long ssDNA (≥70 nucleotides) appears to form with SSBBA
a SSB65 complex in which ssDNA is bound to all four SSB
monomers in a tetrameric structure. A proposed model
may explain the mechanism of such SSBBA-ssDNA com-
plex formation through a transient tetramer formation.
This model indicates that SSBBA may be more efficient in
assembly and disassembly of the protein-DNA complex
particularly during DNA replication. The physiological
consequence(s) of the unusual structural dynamics of
SSBBA, could be significant. Further studies are required
to fully elucidate the role of protein•DNA and protein•pro-
tein interactions on SSBBA protein structure.

Methods
Nucleic acids and other reagents
Ultra pure nucleotides were obtained from GE Bios-
ciences (Piscataway, NJ) and were used without further
purification. All other chemicals used to prepare buffers
and solutions were reagent grade and were purchased
from the Fisher Chemical Company (Pittsburgh, PA).
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HPLC ion exchange columns, ion exchange chromatog-
raphy matrix, and the Bio-Cad 20 HPLC instrument were
from Applied Biosystems Inc., Woburn, MA. The gel fil-
tration column, TSK gel 3000SW, was from Tosoh Bio-
science, King of Prussia, PA. Custom oligonucleotides for
PCR and fluorescently labeled oligonucleotides were
from Sigma-Aldrich (St. Louis, MO).

Buffers
Lysis buffer contained 25 mM Tris–HCl, (pH 7.9), 10%
sucrose, 250 mM NaCl, and 0.001% NP40. Buffer A con-
tained 25 mM Tris–HCl (pH 7.5), 5 mM MgCl2, 10%
glycerol, 5 mM DTT, and NaCl in mM as indicated in
the subscript. Buffer B, used for all fluorescence studies,
contained 20 mM Hepes-NaOH (pH 7.5), 5 mM MgCl2
and 1 mM DTT and 25 mM (unless otherwise indicated)
ultrapure NaCl. In temperature and salt titration experi-
ments, buffer B containing 5% ultrapure glycerol was
used. Buffers for fluorescence measurements were pre-
pared with HPLC-grade water (with minimal back-
ground fluorescence), fluorescence grade reagents, and
filtered through a 0.2 μm nylon filter, examined for back-
ground fluorescence and Raman spectrum before use in
anisotropy measurements. Background fluorescence was
subtracted where necessary.

Cloning and expression of SSBBA
The SSBBA gene was amplified by PCR using B. anthracis
genomic DNA, obtained as a gift from Dr. Theresa M.
Koehler of the University of Texas Houston Health Sci-
ence Center, Houston (33, 34). This ORF codes for a 172
amino acid polypeptide with a predicted molecular weight
of 19.2 kDa. The amplified gene was cloned into a pET29b
vector (Novagen, Inc., Madison, WI) under the control of
a T7 promoter (pET29b-SSBBA recombinant plasmid).
The presence of the correct insert was confirmed by DNA
sequencing. The SSBBA protein was over-expressed in E.
coli strain BL21(DE3)RIL (Agilent Technologies Inc.,
Santa Clara, CA) harboring pET29b-SSBBA plasmid. Cells
harboring the recombinant plasmid were grown in 2X-YT
media containing 50 μg/ml of kanamycin, 20 μg/ml of
tetracycline and 12 μg/ml of chloramphenicol with shak-
ing at 37°C to an optical density at 600 nm of 0.4. IPTG
(isopropyl-β-D-thiogalactopyranoside) was added to a
final concentration of 0.25 mM. The cells were shaken for
an additional two hours at 25°C, then harvested by centri-
fugation for 10 min at 5,000 x g. The cells were resus-
pended in 2.5% of the original culture volume of lysis
buffer at 4°C and stored at −80°C until further use.

Purification of SSBBA
Cells were thawed, adjusted to pH 8.0 with 1 M Tris
base, and lysed using 0.25 mg/ml lysozyme, 5 mM
MgCl2, 5 mM spermidine�HCl, and 2.5 mM DTT via

incubation at ambient temperature for 60 min. The mix-
ture was Dounce homogenized followed by centrifugation.
The lysate was centrifuged at 43,000 x g for 30 min at 23°
C. The supernatant was precipitated overnight using
0.25 g/ml ammonium sulfate at 4°C. This precipitate was
collected by centrifugation at 43,000 x g for 30 min at 4°C,
and dissolved in buffer A0 (Fraction II). Fraction II was
clarified by centrifugation at 43000 x g for 30 min. All
steps were carried out at ambient temperature unless
otherwise indicated.
The salt concentration of Fraction II was adjusted to

the conductivity of buffer A50 by diluting with buffer
A0. The protein fraction was then passed through a
5 ml POROS-Q column equilibrated with buffer A50.
SSBBA protein was eluted with a 150 ml gradient from
A100 to A500. The SSBBA fractions, identified by
SDSPAGE, were pooled (fraction III). The salt concen-
tration of Fraction III was adjusted to the conductivity
of buffer A50 by diluting with buffer A0. Diluted Frac-
tion III was bound to a 5 ml S-Sepharose column
equilibrated with A50. SSBBA was eluted using a
150 ml gradient from A100 to A500. Fractions contain-
ing SSBBA were identified by SDS-PAGE and combined
(Fraction IV). The Fraction IV, adjusted to 0.25 g/ml
ammonium sulfate, was incubated on ice for two
hours that resulted in the selective precipitation of
SSBBA. The SSBBA precipitate was collected by centri-
fugation at 43000 x g for 60 min at 0–1°C. The pellet
(Fraction V) was resuspended in 10 ml of buffer A100.
Homogeneity was assessed by SDS-PAGE.

Assay of SSB biological activity
The standard assay, based on the stimulation of DNA
helicase ativity of DnaB protein, was carried out in 1 ml
of buffer B containing 1 mM DTT, 25 mM KCl, 3.5 mM
ATP and 4.2 nmol of the 55 bp partial duplex substrate
containing the following oligonucleotides [51]:

50‐GTCTTTCTGAGTACGAGAGTTCTGAGCAGTT
CCAATACATTTTTTTTTTTTTTTT Cy5½ �‐30

50‐ Cy3½ �TTTTTTTTTTTTTTTATGTATTGGAACTG
CTCAGAACTCTCGTACTCAGAAAGAC‐30:

Italicized nucleotides denote non-complimentary bases
that create the fork structure of the duplex. Fluorescence
emission spectra of the samples, before and after reac-
tion, were recorded between 550–750 nm with 519 nm
excitation with 8 nm slit-width. Reaction was initiated
by adding 0.5 μg/ml DnaBBA helicase to the reaction
mixture and incubated for 15 min at 37°C and FRET
was measured. SSBBA (3 μg/ml) was added to the reac-
tion mixture where indicated. DnaBBA helicase unwind-
ing of the duplex led to inhibition of the FRET between
Cy3 and Cy5. SSBBA was required for efficient helicase
action of DnaBBA which was the basis of the assay. By
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using native and heat denatured substrates, it was deter-
mined that 1% decrease in FRET is equivalent to 3 pmol
DNA unwinding in terms of base pairs (bp).

Steady-state fluorescence measurements
Fluorescence anisotropy was measured to investigate
DNA binding by SSBBA in solution [40,52]. Fluores-
cence measurements were carried out using a steady-
state-photon counting spectrofluorometer, PC1 with
Vinci software, from ISS Instruments (Champaign, IL)
and Fluoromax4-TCSPC with time-resolved fluores-
cence from Horiba Instruments Inc. (Edison, NJ). Exci-
tation and emission slits were adjusted to 8 nm to
maximize intensity counts [53]. Temperature during
measurements was maintained using a programmable
Peltier-controlled cuvette holder from Quantum North-
west Inc. (Seattle, WA).

Fluorescence anisotropy analysis of equilibrium ssDNA
binding
The oligonucleotide was diluted to a concentration of
1 nM and titrated with SSBBA within a concentration
range of 0.1 nM to 1μM. The sample was incubated for
2 min after each addition and thermostated at 25°C.
Anisotropy measurements were carried out in general
as described above except the excitation wavelength
was 480 nm and emission anisotropy was measured at
540 nm. The standard deviation for the anisotropy
values was <5 mA. Anisotropy at each titration point
was measured three times for 10 s. and averaged. The
total fluorescence intensity did not change significantly
(≤10%) with increase in SSBBA concentration. There-
fore, fluorescence lifetime changes, or the scattered
excitation light, did not affect the anisotropy measure-
ments.

Anisotropy; A; is defined as : A
¼ Ivv � G� Ivhð Þ= Ivv þ 2� G� Ivhð Þ ð1Þ

where, G is the instrumental correction factor for the
fluorometer and it is defined by

G ¼ Ihv=Ihh

Ivv, Ivh, Ihv and Ihh represent the fluorescence signal for
excitation and emission with the polarizers set at (00,
00), (00, 900), (900, 00) and (900, 900) respectively.
The interaction of SSBBA with the labeled oligonucleo-

tide can be represented as follows:

SSBBA P½ � þ ssDNA R½ �⇆SSBBA � ssDNA RP½ � ð2Þ

Where, R is the ligand i.e., labeled oligonucleotides
and P is SSBBA.

At equilibrium, KA, the equilibrium association con-
stant can be given as

KA ¼ RP½ �= R½ � P½ � ð3Þ
KA R½ � P½ � ¼ RP½ � ð4Þ

Fraction of the binding sites occupied, f, can be repre-
sented as

f ¼ occupied binding sites½ �
= total binding sites½ �

¼ RP½ �= R½ � þ RP½ �ð Þ ð5Þ

Substituting for [RP] and rearranging the equation we
get

f ¼ KA � P = 1þ KA � Pð Þ ð6Þ
f ¼ P½ � = P½ � þ 1= KAð Þ ð7Þ

Similarly, equilibrium dissociation constant KD

(KD = 1/KA) can be expressed as

f ¼ P½ �= P½ � þ KDð Þ ð8Þ

At f ¼ 0:5; KD ¼ P½ � ð9Þ
Thus, KD can be further defined as the protein con-

centration at which half of the sites are occupied when
ligand concentration is constant, as in the present case.
Non-linear regression analysis of the anisotropy plot (an-
isotropy vs. log[SSBBA]) was carried out using Prism 6.1
software (GraphPad Software Inc., San Diego, CA) and
the concentration of SSBBA required to bind 50% of
oligonucleotides was computed using the following
equation:-

Y ¼ YMIN þ YMAX � YMINð Þ= 1þ 10 LogEC50�Xð Þnappð Þ
� �h i

ð10Þ

where, YMIN and YMAX are the anisotropy values at the
bottom and top plateaus respectively. X represents log
[SSBBA] (where [SSBBA] represents total concentration
of SSBBA) and X0 is the X value when the anisotropy is
halfway between the top and the bottom of the plot and
napp is the Hill coefficient.

FRET analysis of ssDNA binding by SSBEC and SSBBA
FRET analysis was used to monitor ssDNA binding by SSB
as described (22). Reaction mixtures were assembled on
ice and incubated at 25°C for 5 min before FRET analysis.
Reaction mixtures contained 40 nM labeled Cy5-(dT)70-
Cy3 oligonucleotide and the indicated amount of SSBEC or
SSBBA in a total volume of 1 ml. SSBBA or SSBEC titrations
were performed with PC1 spectrofluorometer with the
monochromator set at 515 nm for excitation for the Cy3
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donor and with the monochromator set at 665 nm emis-
sions for the Cy5 acceptor. Slit width was 8 nm.

Abbreviations
B. anthracis: Bacillus anthracis; ssDNA: Single stranded DNA;
DTT: Dithiothreitol; SDS: Sodium dodecyl sulfate; PAGE: Polyacrylamide gel
electrophoresis; rNTP: Ribonucleotide triphosphate; BSA: Bovine serum
albumin; SSB: Single stranded DNA binding protein; SSBBA: SSB of Bacillus
anthracis; DnaBBA: DnaB helicase of Bacillus anthracis; FRET: Fluorescence
resonance energy transfer; mA: Millianisotropy; kDa: Kilo Dalton.

Competing interests
The author(s) declare that they have no competing interests.
Supported by grants from the National Institute of Allergy & Infectious
Diseases, NIH and UMDNJ Foundation.

Authors’ contributions
EB-F was involved in the design of the study, experiments, and
manuscript preparation. JK was involved in the design of the study and
carried out purification and fluorescence experiments. SB was involved in
the design of the study and overall direction of the project. All authors
read and approved the final manuscript.
Supported by grants from the National Institute of Allergy & Infectious
Diseases, NIH and UMDNJ Foundation.

Acknowledgements
Authors gratefully acknowledge support of this work by grants from the
National Institute of Allergy & Infectious Diseases, NIH and UMDNJ
Foundation. Authors wish to thank Ms. S. Rotoli and K-Y Luu for DNA
helicase assay of SSBBA, Ms. J. Debski for critical review of the manuscript,
Ms. Julia Crawford for F-test, Mr. Robert McBride of Educational Media,
UMDNJ-SOM for illustration. We also thank the anonymous reviewers for
helpful suggestions and comments.
Supported by grants from the National Institute of Allergy & Infectious
Diseases, NIH and UMDNJ Foundation.

Author details
1Department of Molecular Biology, School of Osteopathic Medicine &
Graduate School of Biomedical Sciences, University of Medicine & Dentistry
of New Jersey, Stratford, NJ 08084, USA. 2Department of Bioscience
Technologies, Jefferson School of Health Professions, Thomas Jefferson
University, Philadelphia, PA 19107, USA.

Received: 19 January 2012 Accepted: 21 May 2012
Published: 14 June 2012

References
1. Pestryakov PE, Lavrik OI: Mechanisms of single-stranded DNA-binding

protein functioning in cellular DNA metabolism. Biochemistry (Mosc) 2008,
73(13):1388–1404.

2. Bochkarev A, Bochkareva E: From RPA to BRCA2: lessons from single-stranded
DNA binding by the OB-fold. Curr Opin Struct Biol 2004, 14(1):36–42.

3. Iftode C, Daniely Y, Borowiec JA: Replication protein A (RPA): the
eukaryotic SSB. Crit Rev Biochem Mol Biol 1999, 34(3):141–180.

4. Salas M, Freire R, Soengas MS, Esteban JA, Mendez J, Bravo A, Serrano M, Blasco
MA, Lazaro JM, Blanco L, et al: Protein-nucleic acid interactions in
bacteriophage phi 29 DNA replication. FEMS Microbiol Rev 1995, 17(1–2):73–82.

5. Meyer RR, Laine PS: The single-stranded DNA-binding protein of
Escherichia coli. Microbiol Rev 1990, 54(4):342–380.

6. Sancar A, Williams KR, Chase JW, Rupp WD: Sequences of the ssb gene and protein.
Proc Natl Acad Sci USA 1981, 78(7):4274–4278.

7. Sancar A, Rupp WD: Cloning of uvrA, lexC and ssb genes of Escherichia coli.
Biochem Biophys Res Commun 1979, 90(1):123–129.

8. Wold MS, Li JJ, Kelly TJ: Initiation of simian virus 40 DNA replication
in vitro: large-tumor-antigen- and origin-dependent unwinding of the
template. Proc Natl Acad Sci USA 1987, 84(11):3643–3647.

9. Chase JW, Williams KR: Single-stranded DNA binding proteins required
for DNA replication. Annu Rev Biochem 1986, 55:103–136.

10. Zou Y, Liu Y, Wu X, Shell SM: Functions of human replication protein A (RPA): from
DNA replication to DNA damage and stress responses. J Cell Physiol 2006, 208
(2):267–273.

11. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL: SSB as an
organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem
Mol Biol 2008, 43(5):289–318.

12. LeBowitz JH, McMacken R: The Escherichia coli dnaB replication protein is a DNA
helicase. J Biol Chem 1986, 261(10):4738–4748.

13. Biswas EE, Chen PH, Biswas SB: Modulation of enzymatic activities of
Escherichia coli DnaB helicase by single-stranded DNA-binding
proteins. Nucleic Acids Res 2002, 30(13):2809–2816.

14. Stayton MM, Bertsch L, Biswas S, Burgers P, Dixon N, Flynn JE Jr, Fuller R,
Kaguni J, Kobori J, Kodaira M, et al: Enzymatic recognition of DNA replication
origins. Cold Spring Harb Symp Quant Biol 1983, 47 Pt 2:693–700.

15. Stayton MM, Kornberg A: Complexes of Escherichia coli primase with the
replication origin of G4 phage DNA. J Biol Chem 1983,
258(21):13205–13212.

16. Learn BA, Um SJ, Huang L, McMacken R: Cryptic single-stranded-DNA
binding activities of the phage lambda P and Escherichia coli DnaC
replication initiation proteins facilitate the transfer of E. coli DnaB
helicase onto DNA. Proc Natl Acad Sci USA 1997, 94(4):1154–1159.

17. Biswas SB, Biswas EE: Regulation of dnaB function in DNA replication in
Escherichia coli by dnaC and lambda P gene products. J Biol Chem 1987,
262(16):7831–7838.

18. Krejci L, Sung P: RPA not that different from SSB. Structure 2002, 10(5):601–602.
19. Haseltine CA, Kowalczykowski SC: A distinctive single-strand DNA-

binding protein from the Archaeon Sulfolobus solfataricus. Mol
Microbiol 2002, 43(6):1505–1515.

20. Robbins JB, Murphy MC, White BA, Mackie RI, Ha T, Cann IK: Functional
analysis of multiple single-stranded DNA-binding proteins from
Methanosarcina acetivorans and their effects on DNA synthesis by
DNA polymerase BI. J Biol Chem 2004, 279(8):6315–6326.

21. Wadsworth RI, White MF: Identification and properties of the crenarchaeal
single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic
Acids Res 2001, 29(4):914–920.

22. Pant K, Karpel RL, Rouzina I, Williams MC: Salt dependent binding of T4
gene 32 protein to single and double-stranded DNA: single molecule
force spectroscopy measurements. J Mol Biol 2005, 349(2):317–330.

23. Nakai H, Richardson CC: The effect of the T7 and Escherichia coli
DNA-binding proteins at the replication fork of bacteriophage T7.
J Biol Chem 1988, 263(20):9831–9839.

24. Ferrari ME, Fang J, Lohman TM: A mutation in E. coli SSB protein (W54S)
alters intra-tetramer negative cooperativity and inter-tetramer positive
cooperativity for single-stranded DNA binding. Biophys Chem 1997,
64(1–3):235–251.

25. Overman LB, Lohman TM: Linkage of pH, anion and cation effects in protein-
nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid
interactions. J Mol Biol 1994, 236(1):165–178.

26. Roy R, Kozlov AG, Lohman TM, Ha T: Dynamic Structural Rearrangements
Between DNA Binding Modes of E. coli SSB Protein. J Mol Biol 2007,
369(5):1244–1257.

27. Griffith JD, Harris LD, Register J 3rd: Visualization of SSB-ssDNA complexes
active in the assembly of stable RecA-DNA filaments. Cold Spring Harb
Symp Quant Biol 1984, 49:553–559.

28. Chrysogelos S, Griffith J: Escherichia coli single-strand binding protein
organizes single-stranded DNA in nucleosome-like units. Proc Natl Acad
Sci USA 1982, 79(19):5803–5807.

29. Bendtsen JD, Nilsson AS, Lehnherr H: Phylogenetic and functional analysis
of the bacteriophage P1 single-stranded DNA-binding protein. J Virol
2002, 76(19):9695–9701.

30. Moreira D: Multiple independent horizontal transfers of informational
genes from bacteria to plasmids and phages: implications for the origin
of bacterial replication machinery. Mol Microbiol 2000, 35(1):1–5.

31. Lindner C, Nijland R, van Hartskamp M, Bron S, Hamoen LW, Kuipers OP:
Differential expression of two paralogous genes of Bacillus subtilis
encoding single-stranded DNA binding protein. J Bacteriol 2004, 186
(4):1097–1105.

32. Grove DE, Willcox S, Griffith JD, Bryant FR: Differential single-stranded DNA
binding properties of the paralogous SsbA and SsbB proteins from
Streptococcus pneumoniae. J Biol Chem 2005, 280(12):11067–11073.

33. Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin
H, Fouts DE, Eisen JA, Gill SR, et al: The genome sequence of Bacillus
anthracis Ames and comparison to closely related bacteria. Nature 2003,
423(6935):81–86.

Biswas-Fiss et al. BMC Biochemistry 2012, 13:10 Page 15 of 16
http://www.biomedcentral.com/1471-2091/13/10



34. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C,
Nakamura Y, Ogasawara N, et al: Complete genome sequence of the alkaliphilic
bacterium Bacillus halodurans and genomic sequence comparison with Bacillus
subtilis. Nucleic Acids Res 2000, 28(21):4317–4331.

35. Genschel J, Curth U, Urbanke C: Interaction of E. coli single-stranded DNA binding
protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition
site for the nuclease. Biol Chem 2000, 381(3):183–192.

36. Curth U, Genschel J, Urbanke C, Greipel J: In vitro and in vivo function of the C-
terminus of Escherichia coli single-stranded DNA binding protein. Nucleic
Acids Res 1996, 24(14):2706–2711.

37. Matsumoto T, Morimoto Y, Shibata N, Kinebuchi T, Shimamoto N, Tsukihara T,
Yasuoka N: Roles of functional loops and the C-terminal segment of a single-
stranded DNA binding protein elucidated by X-Ray structure analysis. J
Biochem 2000, 127(2):329–335.

38. Murzin AG: OB(oligonucleotide/oligosaccharide binding)-fold: common
structural and functional solution for non-homologous sequences. EMBO
J 1993, 12(3):861–867.

39. Raghunathan S, Ricard CS, Lohman TM, Waksman G: Crystal structure of the
homo-tetrameric DNA binding domain of Escherichia coli
single-stranded DNA-binding protein determined by multiwavelength
x-ray diffraction on the selenomethionyl protein at 2.9-A resolution.
Proc Natl Acad Sci USA 1997, 94(13):6652–6657.

40. Khopde S, Biswas EE, Biswas SB: Affinity and sequence specificity of
DNA binding and site selection for primer synthesis by Escherichia
coli primase. Biochemistry 2002, 41(50):14820–14830.

41. Datta K, LiCata VJ: Salt dependence of DNA binding by Thermus
aquaticus and Escherichia coli DNA polymerases. J Biol Chem 2003,
278(8):5694–5701.

42. Raghunathan S, Kozlov AG, Lohman TM, Waksman G: Structure of the DNA binding
domain of E. coli SSB bound to ssDNA. Nat Struct Biol 2000, 7(8):648–652.

43. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T: Protein
structure homology modeling using SWISS-MODEL workspace. Nat
Protoc 2009, 4(1):1–13.

44. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository
and associated resources. Nucleic Acids Res 2009,
37(Database issue):D387–D392.

45. Williams KR, Murphy JB, Chase JW: Characterization of the structural and
functional defect in the Escherichia coli single-stranded DNA binding protein
encoded by the ssb-1 mutant gene. Expression of the ssb-1 gene under
lambda pL regulation. J Biol Chem 1984,
259(19):11804–11811.

46. Bernstein DA, Eggington JM, Killoran MP, Misic AM, Cox MM, Keck JL: Crystal structure
of the Deinococcus radiodurans single-stranded
DNA-binding protein suggests a mechanism for coping with DNA damage. Proc
Natl Acad Sci USA 2004, 101(23):8575–8580.

47. Chan KW, Lee YJ, Wang CH, Huang H, Sun YJ: Single-stranded
DNA-binding protein complex from Helicobacter pylori suggests an ssDNA-
binding surface. J Mol Biol 2009, 388(3):508–519.

48. Lohman TM, Ferrari ME: Escherichia coli single-stranded DNA-binding
protein: multiple DNA-binding modes and cooperativities.
Annu Rev Biochem 1994, 63:527–570.

49. Kornberg A, Baker TA: DNA Replication. New York, NY: Freeman; 1992.
50. Meyer RR, Glassberg J, Scott JV, Kornberg A: A temperature-sensitive

single-stranded DNA-binding protein from Escherichia coli. J Biol Chem
1980, 255(7):2897–2901.

51. Aiello D, Barnes MH, Biswas EE, Biswas SB, Gu S, Williams JD, Bowlin TL, Moir DT:
Discovery, characterization and comparison of inhibitors of Bacillus anthracis
and Staphylococcus aureus replicative DNA helicases. Bioorg Med Chem 2009,
17:4466–4476.

52. Gryczynski I, Gryczynski Z, Lakowicz JR: Fluorescence anisotropy controlled by light
quenching. Photochem Photobiol 1998, 67(6):641–646.

53. Lakowicz JR: Principles of Fluorescence Spectroscopy, Volume 3. New York:
Springer Sciences + Business Media, LLC; 2006.

doi:10.1186/1471-2091-13-10
Cite this article as: Biswas-Fiss et al.: Thermodynamic analysis of DNA
binding by a Bacillus single stranded DNA binding protein. BMC
Biochemistry 2012 13:10.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Biswas-Fiss et al. BMC Biochemistry 2012, 13:10 Page 16 of 16
http://www.biomedcentral.com/1471-2091/13/10


	Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein.
	Let us know how access to this document benefits you
	Recommended Citation

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Sequence analysis of SSBBA
	Purification of SSBBA
	Mechanism of ssDNA binding by SSBBA

	link_Fig1
	Thermodynamics of ssDNA binding

	link_Fig2
	link_Fig3
	link_Fig4
	Structural analysis of SSBBA by homology modeling

	link_Fig5
	link_Fig6
	link_Fig7
	Analysis of the structure of ssDNA binding pocket in SSBBA
	Subunit structure of SSBBA in the SSBBA&bull;ssDNA complex

	link_Fig8
	link_Fig9
	Discussion
	SSBBA does not form a stable tetramer
	Molecular basis of SSBBA structure

	link_Fig10
	Energetics of SSBBA&bull;ssDNA binding
	Mechanisms of ssDNA binding by SSBBA

	Conclusions
	Methods
	Nucleic acids and other reagents
	Buffers
	Cloning and expression of SSBBA
	Purification of SSBBA
	Assay of SSB biological activity
	Steady-state fluorescence measurements
	Fluorescence anisotropy analysis of equilibrium ssDNA binding
	FRET analysis of ssDNA binding by SSBEC and SSBBA

	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53

