Ethanol Pharmacokinetics in Neonates Secondary to Medication Administration

Elizabeth Marek, PharmD
Thomas Jefferson University

Susan C. Adeniyi-Jones, MD
Thomas Jefferson University

Lindsey Roke, PharmD
Thomas Jefferson University

Tara E. DeCerbo, PharmD
Thomas Jefferson University

Rebecca L. Cordell, PharmD
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/petposters

Part of the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation
Marek, PharmD, Elizabeth; Adeniyi-Jones, MD, Susan C.; Roke, PharmD, Lindsey; DeCerbo, PharmD, Tara E.; Cordell, PharmD, Rebecca L.; Monks, PharmD, Paul S.; and Kraft, MD, Walter K., "Ethanol Pharmacokinetics in Neonates Secondary to Medication Administration" (2015). Department of Pharmacology and Experimental Therapeutics Posters. 1.
https://jdc.jefferson.edu/petposters/1
Ethanol Pharmacokinetics in Neonates Secondary to Medication Administration

Elizabeth Marek1, Susan C. Adeniyi-Jones2, Lindsey Roke3, Tara E. DeCerbo3, Rebecca L. Cordell4, Paul S. Monks5 and Walter K. Kraft1

1Department of Pharmacology & Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia, PA; 2Department of Pediatrics, Thomas Jefferson University/Nemours Children’s Clinics; Philadelphia, PA; 3Department of Pharmacy, Thomas Jefferson University Hospital, Philadelphia, PA; 4Department of Chemistry, University of Leicester, Leicester, United Kingdom

Abstract

Purpose: Ethanol serves as a solvent and microbial preservative in oral liquid medications and is the second most commonly used solvent in liquid medications following water. Despite widespread use of ethanol in liquid medications in neonates, the pharmacokinetics and toxicity of ethanol in young children are not well described. The aim of the current study is to quantify blood ethanol levels in neonates secondary to oral ethanol containing medications.

Methods: Neonates who received either oral phenobarbital (15% ethanol) and/or oral dexamethasone (30% ethanol) per standard of care were eligible for enrollment. A maximum of 6 blood samples per patient (4 mL total) were taken over the study period. Blood samples were collected into heparin at the time of clinical laboratory collections or following a specific collection for study purposes. In addition, blood samples were collected from two populations: (a) neonates receiving oral ethanol only (30% ethanol) for neonatal abstinence syndrome from a separate clinical study. Blood ethanol levels were measured using a validated headspace gas chromatography mass spectrometry method utilizing micro-volume (-100uL) plasma samples. The limit of detection and lower limit of quantification for the assay were 0.1 mg/L and 0.5 mg/L, respectively.

Results: A total of 30 plasma samples from 15 neonates who were on ethanol containing medications were collected over the study period. Four neonates were exposed to phenobarbital and/or dexamethasone, while eleven neonates were exposed to buprenorphine alone or in combination with other medications. Blood ethanol levels were detectable in 98% (29/30) of samples, quantifiable in 67% (20/30) of samples, and ranged from below detection to 36.5 mg/L. Ethanol was rapidly cleared and did not accumulate with current dosing regimens.

Conclusions: Ethanol intake secondary to medication administration varied widely. Blood ethanol levels in neonates were low and ethanol was eliminated rapidly after a single dose of oral medications that contained a sizable fraction of ethanol.

Background

Ethanol Exposure

Blood ethanol levels were detectable in 98% (29/30) of samples, quantifiable in 67% (20/30) of samples, and ranged from below detection to 36.5 mg/L. Ethanol was rapidly cleared and did not accumulate with current dosing regimens.

Concentration-Time Profiles

- Ethanol is rapidly eliminated and does not accumulate with the current dosing regimen

Sample Collection

- Approximately one third (13/39) of the blood alcohol levels were below the lower limit of quantification
- Blood ethanol levels ranged from below detection to 8.6 mg/L

Conclusions

- Ethanol intake secondary to medication administration varied widely, but was generally low
- Endogenous ethanol generation is present in non-ethanol treated infants (43% of samples ≤LOQ)
- Blood ethanol levels in neonates were low and ethanol was eliminated rapidly after a single dose of oral medications that contained a sizable fraction of ethanol
- All blood ethanol levels were below the American Academy of Pediatrics recommendation following a single dose of an ethanol containing medication
- Approximately one third of blood ethanol levels were above the European Medicines Agency recommendation following a single dose of an ethanol containing medication

Future Directions

- Develop a population pharmacokinetic model to describe ethanol pharmacokinetics