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CELL SIGNALLING DYNAMICS IN TIME AND SPACE 

Boris N. Kholodenko

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust St., 

Philadelphia, PA 19107, USA. E-mail: Boris.Kholodenko@jefferson.edu.

PREFACE.

The specificity of cellular responses to receptor stimulation is encoded by the spatial and 

temporal dynamics of downstream signalling networks. Computational models provide insights into 

the intricate relationships between stimuli and responses and reveal mechanisms that enable networks 

to amplify signals, reduce noise and generate discontinuous bistable dynamics or oscillations. These 

temporal dynamics are coupled to precipitous spatial gradients of signalling activities, which guide 

pivotal intracellular processes, but also necessitate mechanisms to facilitate signal propagation across 

a cell. 

INTRODUCTION 

Cells respond to a multitude of external cues using a limited number of signalling pathways 

activated by plasma membrane receptors, such as G protein-coupled receptors (GPCRs) and receptor 

tyrosine kinases (RTKs). These pathways do not simply transmit, but process, encode and integrate 

internal and external signals. In recent years, it has become apparent that distinct spatio-temporal 

activation profiles of the same repertoire of signalling proteins result in different gene activation 

patterns and diverse physiological responses1-3. Thus, pivotal cellular decisions, such as cytoskeletal 

reorganization, cell cycle checkpoints and apoptosis (active cell death), depend on the precise 

temporal control and relative spatial distribution of activated signal-transducers.

Signalling by RTKs has long been in the limelight of scientific interest owing to its central role in 

the regulation of embryogenesis, cell survival, motility, proliferation, differentiation, glucose 

metabolism, and apoptosis4-6. Malfunction of RTK signalling is a leading cause of major human 

diseases that range from developmental defects to cancer, chronic inflammatory syndromes and 

diabetes6-8. Upon stimulation, RTKs undergo dimerization (for example, the epidermal growth factor 

(EGF) receptor) or allosteric transitions (insulin receptor) that results in activation of the intrinsic 

tyrosine kinase4,9. Subsequent phosphorylation of multiple tyrosine residues transmits a biochemical 

message to a number of cytoplasmic proteins, triggering their mobilization to the cell surface4,10. The 
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resulting cellular responses occur through complex biochemical circuits of protein interactions and 

covalent-modification cascades. 

An emerging picture of interconnected networks has replaced the earlier view of discrete linear 

pathways that relate extracellular signals to specific genes, raising questions about the specificity of 

signal-response events. In fact, the protein complement that mediates signal transduction is similar 

for all RTK pathways11. Both GPCRs and RTKs activate kinase/phosphatase cascades, such as 

mitogen-activated protein kinase (MAPK) cascades, that turn on nuclear transcription factors. For 

any individual receptor pathway, there is no single protein or gene responsible for signalling 

specificity. Rather, specificity is determined by the temporal and spatial dynamics of downstream 

signalling components. The classical example is the distinct biological outcome of PC12 cell 

stimulation with EGF and nerve growth factor (NGF). EGF-induced transient MAPK activation 

results in proliferation, whereas a sustained MAPK activation by NGF changes the cell fate and 

induces differentiation1,2. However, the factors controlling the kinetics of MAPK cascades are 

intricate. MAPK cascades can generate bistable dynamics (where two stable “On” and “Off” steady 

states coexist), abrupt switches, and oscillations12-14, and their responses depend dramatically on 

subcellular localization or recruitment to scaffolds15,16. 

The purpose of this review is to survey dynamic and spatial aspects of intracellular 

communication. Wherever possible, I outline general principles by which chemical transformations 

and Brownian motion of myriad signalling molecules create coordinated behaviour in time and space 

and generate stimulus-specific responses. I explain how the timing, amplitude and duration of 

signalling responses are elucidated by exploiting mechanistic systems-level models that help unravel 

crucial interactions and kinetic factors. Extremely complex dynamic behaviours are shown to arise 

from simple basic modules, adding to the repertoire of specific signalling outcomes. A number of 

excellent reviews have focused on computational functions of signalling networks, offering an 

intriguing glimpse into the parallels between biological and human-made control systems17-20. 

However, there are important distinctions between electronic and living cell circuitry, which are 

illustrated by examining the spatial dynamics of intracellular communication. These studies have led 

to unexpected predictions about the spatial control of intracellular gradients of signalling 

activities21,22 and to the recognition that diffusion alone cannot account for effective propagation of 

phosphorylation signals that are terminated by phosphatases23,24. The transfer of information over 

intracellular distances of more than a few micrometers requires facilitated transport mechanisms, 

including movement of phosphorylated kinases on scaffolds and endosomes driven by molecular 

motors and travelling waves of phosphoproteins23,25-28. 
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TEMPORAL DYNAMICS OF SIGNALLING NETWORKS.

Mechanistic models can reveal crucial regulations. Since the 1990s, modelling has emerged as a 

novel tool to handle the rapidly growing information on the molecular parts list and the 

overwhelmingly complex interaction circuitry of signalling networks29-41. These mechanistic models 

aspired to create in silico replicas of cellular networks with the initial purpose of understanding the 

temporal dynamics of signalling responses. General principles of model building are illustrated 

exploiting models of the EGF receptor (EGFR) network (BOX 1). Importantly, EGFR is not only the 

best studied RTK, but together with other members of the ErbB family plays a pivotal role in 

carcinogenesis7,8,42,43. Phosphorylation of a number of tyrosine residues on EGFR and binding to, and 

activation of, EGFR adapter and target proteins (Supplementary Table S1) initiates signal 

propagation through multiple interacting branches including the phospholipase C-γ (PLCγ), 
phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular-signal-regulated kinase (ERK)/MAPK 

pathways (see EGF network diagrams in reference44 and at: http://www.grt.kyushu-

u.ac.jp/spad/pathway/egf.html, http://www.biocarta.com/pathfiles/egfPathway.asp). Merely 

qualitative arguments fall short of providing insights into the complex temporal responses of a variety 

of downstream EGFR targets, and reliable and testable computational models are required to predict 

signalling dynamics45-47.

The first mechanistic model of the EGFR network was published in 1999 and explained the 

temporal dynamics of signalling responses in liver cells stimulated with EGF30. Interrogation of this 

model generated a number of hypotheses and counterintuitive predictions (BOX 1). A particularly 

surprising prediction was that EGFR-mediated phosphorylation of the Src homology and collagen 

domain protein (Shc) would decrease its binding affinity and facilitate Shc dissociation from the 

receptor. EGFR phosphorylates Shc on Tyr317 located within the central collagen-homology linker 

region, distant from the N- and C-terminal domains that mediate binding to EGFR. The modular 

structure underlying protein interactions10 might imply that phosphorylation of residues outside the 

Shc binding domains should not influence the affinity. However, molecular dynamics simulations 

revealed that Tyr317 phosphorylation significantly affects collective motions of Shc domains, 

increases structural rigidity of the linker region and decreases the flexibility of the binding domains, 

significantly reducing their capacity to interact with EGFR48. These findings corroborated the 

prediction of the kinetic model30 and favoured a broader view that the affinities of many RTK-

binding partners (for example, the p85-subunit of PI3K) might decrease following RTK-mediated 

phosphorylation. In recent years, a number of EGFR pathway models with predictive and explanatory 
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power have been developed. These models addressed various aspects of EGFR-mediated signalling, 

including (1) transient versus sustained responses of the MAPK cascade “gatekeepers” (small 

GTPases Ras and Rap1) to various growth factors32,41,49, (2) the non-linear dependences of the 

amplitude of MAPK activation on the EGFR numbers34, (3) autocrine positive-feedback loops50, (4) 

cross-talk between the MAPK and Akt pathways37, and (5) integration of EGFR signalling from the 

plasma membrane and the endosomes51. 

Challenges in mechanistic modelling. Perhaps, the most significant challenges that face 

mechanistic modelling are (i) the lack of quantitative kinetic data and (ii) the combinatorial increase 

in the number of emerging distinct species and states of the protein network being simulated38,52. The 

first challenge is beginning to be addressed by nascent quantitative proteomics of posttranslational 

modification53,54.The second challenge arises because RTKs and many signalling proteins possess 

multiple docking sites, serving as scaffolds that generate a variety of heterogeneous multi-protein 

complexes, each involved in multiple parallel reactions. Even initial steps in signal transduction can 

generate hundreds of thousands of distinct states38, referred to as “micro-states” of a network55. 

Because of the exceedingly high numbers of micro-states, previous models merely ignored this 

combinatorial variety and simulated only a small part of feasible states and reactions. Several 

methods of handling this problem have been proposed, all based on specifying rules that 

automatically generate species and reactions. Programs implementing these methods include 

StochSim52, BioNetGen56,57, and Moleculizer58. The entire micro-state network can either be 

generated in advance for deterministic simulations56,57, or the species and reactions can be generated 

as needed during a stochastic simulation52,57,58. 

An alternative “domain-oriented” approach rigorously simplifies or approximates a mechanistic 

micro-state picture in terms of “macro-states”, such as the phosphorylation levels and the fractions 

occupied by binding partners55,59. A necessary prerequisite is the presence of domains/sites that do 

not allosterically influence each other. This domain-oriented framework drastically reduces the 

number of states and differential equations to be solved and, therefore, the computational cost of both 

deterministic and stochastic simulations. 

Cycle and cascade motifs. A universal motif found in cellular networks is the cycle that is formed 

by two or more interconvertible forms of a signalling protein. The protein forms are modified by two 

opposing enzymes, such as a kinase and phosphatase for phosphoproteins, or a guanine nucleotide 

exchange factor (GEF) and GTPase–activating protein (GAP) for small G-proteins (FIG.1). Cascades 

of such cycles form the backbone of most signalling pathways that propagate external stimuli from 

the membrane to the nucleus or other distant targets. The well-known property of these cycles is 
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“ultrasensitivity” to input signals, which occurs when the converting enzymes operate near 

saturation60. Depending on the degree of saturation, the response of either interconvertible form 

ranges from a merely hyperbolic to an extremely steep sigmoidal curve. Sequestration of a signalling 

protein by converting enzymes significantly decreases sigmoidicity of responses. Likewise, 

ultrasensitivity can disappear if converting enzymes are inhibited or saturated by their products61. By 

contrast, multi-site phosphorylation (following a distributive, multi-collision mechanism62) was 

shown to increase output-input sensitivity dramatically, resisting the sequestration effect and leading 

to switch-like responses62-65. Multi-site protein modification as a variation of the basic cycle motif is 

repeatedly used in nature, and this has pivotal ramifications for signalling dynamics62-65.

Feedback loops induce complex dynamics. An increase in the number of interconnecting cycles 

in a cascade66,67 or positive feedback further increases the sensitivity of the target to the input signal. 

The notion of feedback is one of the most fundamental concepts in biological control. Positive 

feedback amplifies the signal, whereas negative feedback attenuates it. However, feedback loops not 

only change steady-state responses, but also favour the occurrence of instabilities. When a steady 

state becomes unstable, a system can jump to another stable state, start to oscillate or exhibit chaotic 

behaviour. Positive feedback can cause bistability14, but also either alone or in combination with 

negative feedback, it can trigger oscillations, for example, the Ca2+ oscillations arising from Ca2+-

induced Ca2+ release46 and the cell cycle oscillations68,69. Such positive-feedback oscillations 

generally do not have sinusoidal shapes and are referred to as relaxation oscillations, operating in a 

pulsatory manner: a part of a dynamic system is bistable, and there is a slow process that periodically 

forces the system to jump between “Off” and “On” states, generating oscillations (BOX 2). 

While positive feedback endows signalling cascades with the potential for bistability and 

relaxation oscillations, negative feedback can bring about adaptation and robustness to parameter 

variations within the feedback loop (for instance, caused by genetic variability)20,70. Although 

negative feedback can stabilize the cascade output when demand fluctuates, above certain threshold 

strength, this feedback induces damped or sustained oscillations. These oscillations are caused by the 

time delay within the negative feedback loop and require some degree of ultrasensitivity of individual 

cascade cycles12. Notably, relaxation oscillations and negative-only feedback oscillations differ in 

their robustness to noise71 and generally exhibit different shapes and control of the amplitude and 

period. 

Intricate dynamic properties have been traditionally associated with cascades of cycles69,72, yet 

even single cycles can exhibit complex dynamics, such as bistability and relaxation oscillations 

(BOX 2). For instance, multi-site protein modification not only increases ultrasensitivity, but 
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potentially leads to bistability65. The reported kinetic data allow us to suggest that a single MAPK 

cascade level, e.g., the dual phosphorylation ERK cycle, can exhibit bistability and hysteresis within 

a certain parameter range65; this prediction is awaiting experimental verification. A simple one-site 

modification cycle can turn into a bistable switch by four different regulatory mechanisms, in which 

one of the protein forms stimulates its own production or inhibits its consumption, thereby creating a 

destabilizing control loop (BOX2 and Supplementary Table S3). An extra (stabilizing) feedback loop 

that affects the rate of synthesis or degradation of a converting enzyme can render this bistable switch 

into a relaxation oscillator (the resulting 32 distinct feedback designs that can give rise to oscillations 

are shown in FIG.2 and Supplementary FIG.S1). 

Cascade dynamics govern cellular functions. Following stimulation, signalling proteins become 

involved in collective dynamic behaviour that none of the individual molecules can exhibit in 

isolation. Inherently complex dynamics of universal signalling motifs allows a cascade of these 

motifs to generate even large spectrum of temporal patterns that contribute to the signal-response 

specificity. A multitude of negative and positive feedback loops enables cascades to generate gradual 

and ultrasensitive responses, multi-stability and oscillations12,18,20,46,47,72-74. For instance, the same 

basic architecture allows MAPK cascades to operate as negative feedback amplifiers that reduce 

noise, as ultrasensitive or discontinuous switches, or flexible integration modules; these theoretical 

predictions were verified experimentally13,16,72. 

The signalling dynamics can become multi-stable, when two or more bistable cycles form a 

cascade, such as MAPK cascade65. The biological outcome of multi-stability is the ability to control 

multiple irreversible transitions, for instance, sequential transitions in the cell cycle. Central 

components of the cell cycle machinery are cyclin-dependent kinases (such as, CDK1/Cdc2), which 

sequential activation/inactivation governs cell-cycle transitions. CDK1/Cdc2 activity is low (OFF) in 

G1-phase (resting state) and has to be high (ON) for entry into mitosis (M-phase). Recently, 

hysteresis and bistability were shown to occur in the activation/inactivation of CDK1/Cdc2, 

confirming a theoretical prediction made by Novak and Tyson a decade ago75. Bistability in the 

CDK1/Cdc2 cycle arises from positive and double-negative feedback loops in the reactions, where 

CDK1/Cdc2 activates its activator (the phosphatase Cdc25) and inactivates its inhibitor (the kinases 

Wee1 and Myt1). Negative feedback from the anaphase promoting complex (APC) renders the 

CDK1/Cdc2 bistable switch into a relaxation oscillator that drives the cell cycle68,69. Intriguingly, 

Cdc25 and Wee1 themselves can be phosphorylated on multiple sites and therefore can potentially 

exhibit bistability, implying that the entire CDK/cyclin system can display multiple steady states65

(this prediction is awaiting experimental verification). Sequential bifurcations of multiple steady 
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states provide more flexibility in the control of the cell fate and allow for a number of check points in 

the cell cycle. 

SPATIAL DIMENSION OF SIGNALLING NETWORKS

Activation of cell-surface receptors and their downstream targets leads to the spatial relocation of 

multiple proteins within the cell. During evolution, cells have developed not only means to control 

the temporal dynamics of signalling networks, but also mechanisms for precise spatial sensing of the 

relative localization of signalling proteins. The regulation of signalling within the cellular space is 

pivotal for a number of physiological processes, such as cell division, motility and migration. Here I 

show how basic principles of the control of reaction rates, diffusive movement and directed transport 

underlie sophisticated mechanisms that activate signalling routes by the membrane recruitment of 

binding partners, provide spatial cues for cell division and transmit signals to distant cellular targets.

Regulation of signalling by membrane recruitment. Receptor stimulation triggers the 

mobilization of cytosolic adaptor proteins and enzymes to cellular membranes. Subsequent 

phosphorylation results in the assembly of signalling complexes on receptors, scaffolds and 

cytoskeletal elements76. These spatial relocations are effective control mechanisms of switching-on 

signalling pathways77. The classical example is the control of the Ras/MAPK cascade by membrane 

recruitment of SOS and RasGAP (GEF and GAP for the small GTPase Ras, respectively), mediated 

by RTKs (for example, by EGFR) and membrane-bound scaffolds. It has been previously proposed 

that the role of this recruitment is to increase diffusion-limited (first-encounter) rates, but it was 

recently shown that the function of membrane localization is to amplify the number of complexes that 

are formed between the signalling partners76-78. SOS and RasGAP bound to EGFR are confined to a 

small volume near the membrane that results in a 102 – 103-fold increase in the apparent affinity of 

these catalysts for Ras. Simulations corroborate the theory, demonstrating that in the absence of the 

membrane recruitment, the cytoplasmic concentrations of SOS and RasGAP would have to increase 

102 – 103-fold to account for the observed rates of Ras activation/deactivation49. We conclude that the 

spatial organization of the Ras circuit is crucial for the effective control of Ras activity. 

Location determines signalling outputs. The localization of signalling proteins to distinct 

subcellular regions, such as internal membranes and membrane microenvironments (including lipid 

rafts) modulates signalling outputs76,79. Specific anchoring subunits direct catalytic subunits of 

kinases and phosphatases, such as cAMP-dependent protein kinase, protein kinase C and 

serine/threonine protein phosphatases PP1, PP2A and PP2B to different cellular regions80. The 

general mechanism is to orient broad-specificity enzymes towards specific targets and physically 
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separate them from undesirable substrates. Discrete subcellular distribution enhances the specificity 

and fidelity of phosphorylation and dephosphorylation catalyzed by these kinases and phosphatases. 

Qualitatively different patterns of signalling are generated by receptors and downstream effectors 

associated with endosomes or the plasma membrane81. Likewise, the same protein cascades operate 

in surprisingly dissimilar ways when localized to different cellular compartments. The input-output 

sensitivity of MAPK cascade is different for signalling from the plasma membrane, the Golgi 

apparatus and endosomes16,82. Computational models have yet to take into full account the 

ramifications of subcellular localization on signalling outcomes. 

Spatial gradients of signalling activities. In the late 1990s, the novel concept of protein activity 

gradients within a cell was proposed 21,83-85. This concept has matured in recent years, when 

fluorescence resonance energy transfer-based biosensors enabled discoveries of intracellular 

gradients of the active form of the small GTPase Ran86 and the phosphorylated form of stathmin-

oncoprotein 18 (Op18/stathmin) that regulates the microtubule polymerization87. Spatial gradients of 

protein activities organize signalling around cellular structures, such as membranes, chromosomes 

and scaffolds, and provide positional cues for key processes, including cell division. During mitosis,

the microtubule network changes from the radial architecture emanating from the centrosome to a 

bipolar spindle. How this remarkable rearrangement occurs is not completely understood. Spatial 

gradients of several molecules that influenc e microtubule dynamics, including Op18/stathmin and 

RanGTP, which interacts with the nuclear-transport receptor importin-β, were recently suggested to 

guide microtubule-kinetochore positioning during the mitotic-spindle assembly88-91.

The basic prerequisite for signalling gradients is the spatial segregation of opposing reactions (for 

instance, kinase and phosphatase) in a universal protein-modification cycle (FIG.3). For a protein 

phosphorylated by a membrane-bound kinase and dephosphorylated by a cytosolic phosphatase, 

Brown & Kholodenko predicted that there can be a gradient of the phosphorylated protein (BOX 3) -

high concentration close to the membrane and low concentration within the cell21. Given measured 

values of protein diffusivity and kinase and phosphatase activities, it was estimated that 

phosphoprotein gradients might be large within the intracellular space (Fig. 3C). Even in small 

bacterial cells, spatial gradients of this kind were recently suggested for chemotaxis proteins22,92. 

Interestingly, the existence of intracellular cAMP-gradients generated by the membrane-associated 

adenylate cyclase and cytosolic phosphodiesterase was conjectured theoretically in 198093. 

For a simple cycle of two opposing enzymes, one confined to a cellular structure and the other in 

the cytoplasm, the characteristic size of the gradient is determined predominantly by the protein 



9

diffusivity and the activity of the cytoplasmic enzyme (BOX 3). If the enzyme in the cytoplasm is 

saturated, the gradient length also depends on the activity of the enzyme confined to the structure23. 

Cells employ additional means to control the shape and the extent of spatial gradients. For instance, if 

the input activity changes gradually in space, ultrasensitive responses would generate precipitous, 

short- length gradients, whereas linear responses can generate shallow output gradients. Kinase and 

GTPase cascades can expand gradients over large spatial regions (BOX 4). How far gradients of the 

active form reach into the cytoplasm can also be controlled by the association with an adaptor protein 

that protects against the deactivating enzyme. In fact, the complex of RanGTP with importin-β
generates more extended gradients than RanGTP alone because the GTP hydrolysis by RanGAP is 

prevented during the life-time of the RanGTP-importin-β complex 91. Alternatively, binding an 

adaptor that enhances the deactivation rate will decrease the length of the gradient. 

Temporal signalling dynamics can induce spatial gradients. The time-course of signalling 

responses and the formation of spatial gradients of signalling activities are directly related. The 

spatial segregation of opposing enzymes is often initiated by specific signals. For instance, the cyclin-

dependent kinase CDK1/Cdc2 phosphorylates the nuclear localization signal (NLS) of RCC1, which 

is a GEF for Ran94. In the G1-phase CDK1/Cdc2 activity is low and, therefore, the NLS 

phosphorylation level is low. CDK1/Cdc2 becomes active to drive cells into mitosis. Owing to NLS 

phosphorylation by CDK1/Cdc2, RCC1 binds to the chromosomes and catalyzes the conversion of 

inactive RanGDP into active RanGTP. Since the opposing RanGAP activity is predominantly 

cytoplasmic, spatial gradients of active Ran emerge with high RanGTP concentration near mitotic 

chromosomes and low in the surrounding area. Therefore, the RanGTP-related gradients that guide 

the mitotic-spindle self-organization91 are driven by the temporal dynamics of CDK1/Cdc2. 

FACILITATED COMMUNICATION WITHIN CELLS. 

Phosphoprotein gradients in MAPK cascades. Phosphoprotein gradients are hallmarks of 

kinase/phosphatase cascades, including MAPK cascades. MAPK cascades contain three 

interconnected cycles of MAPK, MAPK kinase (MAPKK) and MAPKK kinase (MAPKKK). In the 

MAPK/ERK cascade (the most well-characterized biochemically), these kinases are ERK, MEK and 

Raf. Upon RTK stimulation and Ras activation, the cytosolic Raf is recruited to the cell membrane, 

where it binds to and phosphorylates MEK on two serine residues. Phosphorylated MEK drifts into 

the cell interior, where it phosphorylates ERK on threonine and tyrosine residues. Because MEK is

dephosphorylated in the cytoplasm, spatial gradients of phosphorylated MEK, and subsequently 
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phosphorylated ERK might occur. Calculations show that these gradients can be precipitous23,24, 

decreasing the strength of the phosphorylation signal to the nucleus. Instructively, the 

phosphorylation signal reaches further into the cell if the cascade has more levels, and this might be 

one of the reasons that cascades exist (BOX 4). The cascades found in eukaryotes tend to have more 

levels than the cascades in prokaryotes; this can be related to larger distances of signal propagation in 

eukaryotes.

Endocytosis and signalling: a marriage of convenience. Many cytosolic proteins that are 

phosphorylated at the plasma membrane travel into the cell interior to interact with the targets, which 

are confined to mitochondria, cytoskeleton, the Golgi, and the nucleus. The membrane confinement 

of kinase activity and the cytosolic localization of phosphatases can result in unfavorable gradients of 

phosphorylated signal-transducers provided they spread solely by diffusion; this would impede 

information transfer21,23. In view of this problem, alternative mechanisms to relay stimuli from the 

surface to distant targets were proposed including trafficking of phosphorylated kinases with 

endosomes (“signalling endosome”) or non-vesicular signalling complexes driven by molecular 

motors23,26,28,95,96. Motor-mediated movement of the endosomes and kinase complexes along 

microtubules is remarkably distinct from chaotic diffusive motion and is able to prevent the 

formation of precipitous reaction-diffusion gradients23,26. Although in the past, endocytosis was 

thought to be a mechanism to attenuate signalling, a dual role of endocytosis is now emerging: a 

robust, immediate signal transducer on a short time-scale and a downregulator of receptor signalling 

on longer times23,95. Distinct endocytic compartments, including clathrin, caveolae, and Rab domains, 

can deliver differential sets of proteins to diverse cellular targets, generating specific signalling 

outputs95,97. 

Retrograde transport and phosphoprotein waves.  An interesting puzzle in neurobiology 

concerns the mechanisms used by neurons to transfer signals over long distances. The survival of 

developing neurons depends on neurotrophins, such as the nerve growth factor (NGF) and its 

receptor, TrkA. NGF is produced by peripheral tissues and binds to TrkA on distal axons that are 

located as far as one meter away from the neuronal soma. How do survival signals reach the cell body 

in a physiologically relevant span of time? Diffusion is ruled out as a mechanism of long-range 

signalling, because it would be prohibitively slow. In fact, we have seen that diffusion may be 

insufficient even for spreading signals across the cytoplasm of large cells, such as Xenopus eggs23,26.

Retrograde transport of endosomes containing the NGF-TrkA complexes is critical for neuronal 

survival96,98. Yet, recent evidence indicates that survival signals can also be transmitted by NGF-

independent mechanisms99. These might include lateral waves of receptor activation propagating 
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along the axon membrane25-27 and movement of a signalling complex of phosphorylated ERK with 

intermediate filament vimentin and importin, driven by the molecular motor dynein28. However, 

lateral propagation of TrkA activation can be excluded, as nearly complete inhibition of TrkA in the 

cell bodies/proximal axons did not affect survival, whereas TrkA inhibition at distal axons induced 

apoptosis100. Although transport of phosphorylated kinases driven by molecular motors is a robust 

mechanism of retrograde signalling, it cannot account for the initial burst of tyrosine phosphorylation, 

which reaches neuron bodies as early as several minutes after NGF stimulation100. This initial rapid 

signal cannot be carried out by molecular motors that move at 1 to 10 µm/sec96,101. It is feasible that 

the first survival signals are transmitted by waves of protein phosphorylation emerging from 

kinase/phosphatase cascades, such as MAPK or PI3K cascades, or GEF/GAP cascades of G-protein 

activation (BOX 4). 

Outlook/Future directions 

Quantitative models that generate novel experimentally testable hypotheses will have an increasingly 

important role in postgenomic biology. Future models will integrate data on the distinct spatio-

temporal dynamics of signalling from different cellular compartments and provide new insight into 

the connection between external stimuli and the signalling outcome in terms of gene expression 

responses. Challenges of the combinatorial complexity of signalling networks and experimental 

uncertainty in parameter values will be addressed by modular approaches, stochastic and pattern-

oriented modelling. The goal of the pattern-oriented approach is to predict and explain dynamic 

patterns of cellular responses to a multitude of external cues and perturbations. An exceedingly large 

number of quantitative and also qualitative data patterns will facilitate the verification of the 

proposed molecular mechanisms and exclude models that are too simplistic and uncertain102. These 

systems-level, data-driven models will generate new knowledge and provide strategies for the 

regulation of the cellular machinery. Understanding mechanisms underlying signalling network 

function will provide breakthroughs in the identification of critical controlling factors that will be 

targets for pharmacological interventions in the treatment of major human diseases. 
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BOX 1. Mechanistic models: keeping track of molecular processes.  

The temporal dynamics of signalling networks is described by ordinary differential equations, 

which are known as chemical kinetics equations103 and are derived similarly to the Michaelis-Menten 

equation, familiar to any biologist. The derivation begins with listing all chemical transformations 

thereby providing a kinetic scheme of a pathway. Figure, part A shows a simplified scheme of the 

signalling routes emanating from the epidermal growth factor receptor (EGFR), including the Shc, 

Grb2-SOS, GAP and phospholipase C-γ (PLCγ) signalling branches, and the RasGDP/RasGTP

circuit (phosphorylated proteins are indicated by added “P” after protein name, R is EGFR, molecules 

within complexes are abbreviated, and the designations are given in Supplementary Table S2). The 

scheme is translated into differential equations, one for each time- dependent molecular species. The 

rate of the concentration change is the sum of the reaction rates producing a given species minus the 

sum of consuming rates. Numerical integration (simulations) gives the time- course of the 

concentrations (see figure, parts B and C where EGF-induced responses were simulated using the 

scheme shown in part A49,104). 

Comparison of simulations with data helps generate novel hypotheses and often instigates an 

overhaul of a model. Data obtained from isolated hepatocytes (black squares and red triangles, see 

figure, parts B and C) demonstrate that despite the constant level of EGF (10nM), phosphorylation of 

EGFR and PLCγ is markedly transient (with the peaks reached within the first 15 seconds and the 

low pseudo-stationary levels within few minutes), whereas phosphorylation of Shc increased almost 

monotonically30,105. The mechanistic model elucidates that the transient time-course of EGFR 

phosphorylation arises from the protection of phosphotyrosine residues against phosphatases, whilst 

these residues are occupied by an adaptor/target protein. Transient patterns of tyrosine 

phosphorylation of PLCγ are explained by the slow dissociation of the PLC γ-phosphatase 

complex30,104. In fact, the existence of such complexes was reported106. Hypotheses generated by 

computational models have a certainty and precision, furthering our understanding of signalling 

dynamics. A variety of software tools can assist in quantitative modelling56,58,107- 109, and several 

databases of biological models have been developed, offering an interesting environment to generate 

and test novel hypotheses by using a computer keyboard110-112. 

________________________________________________________________________________
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BOX 2. Complex temporal dynamics in a nutshell. 

Exotic dynamics emerges from simple, basic signalling motifs. Known examples include 

bistability arising from multi-site phosphorylation in a single protein cycle or from positive or 

double-negative feedback in a two-cycle cascade, and negative-feedback oscillations in a cascade 

with at least three cycles12,18,65. Here I show two additional basic signalling modules that bring about 

bistable and oscillatory dynamics. A single-site phosphorylation cycle generates only ultrasensitive, 

but not discontinuous switches. Yet, positive feedback from the phosphorylated form (Mp) to its 

kinase can render this cycle into a bistable switch. Assuming the kinase (vkin) and phosphatase (vphos) 

rates follow Michaelis-Menten kinetics (including the activation term), this system is described by a 

remarkably simple equation, 
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Here, the products of the catalytic constants and enzyme concentrations kin
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kin Ek  and phos
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phos Ek  are the 

maximal rates of the kinase and phosphatase, amm KKK ,, 21  and A are kinetic constants, totM  is the 

protein abundance. In a wide parameter range, there are three distinct solutions to the steady-state 

relationship phoskin vv = . The low and high pM  concentrations correspond to stable “Off” and “On” 

states, whereas the intermediate state is unstable. The steady-state pM  dependence on the input 

kinase (phosphatase) activity (known as one-dimensional bifurcation diagram) displays hysteresis, 

the hallmark of bistability (figure, part A). Likewise, phosphatase rate inhibition by pM , phosphatase 

rate activation or kinase rate inhibition by M can produce a similar bistable switch (Supplementary 

Table S3). 

If, in addition, the phosphorylated form pM  inhibits transcription/translation of the kinase protein 

or promotes its degradation (Supplementary Eqs.S2-S3 and Table S3), thereby creating negative 

feedback, the universal cycle becomes a relaxation oscillator (figure, part B), 
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Likewise, alternative negative feedback design where pM  activates the phosphatase protein 

transcription/translation (or inhibits its degradation) also generates relaxation oscillations (figure, part 

C), 
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This negative feedback might result from changes in mRNA or protein turnover, immediate-early 

gene expression, or de novo synthesis of transcription factors regulating protein levels. Different 

scenarios will correspond to different time scales and affect the period and shape of oscillations. 

________________________________________________________________________________

BOX 3. When do the spatial activity gradients occur? 

Here I show how intracellular signalling gradients arise from chemical transformation and 

diffusion. For a spatially-confined kinase and homogeneously-distributed phosphatase (or a similar 

enzyme pair, GEF and GAP), the spatio-temporal dynamics of the phosphorylated form pc  of the 

interconvertible protein is governed by the reaction-diffusion equation,  

)( ppp
p cvcD
t

c −∆=∂
∂

(1). 

When the diffusivities D are equal for the phosphorylated pc and unphosphorylated uc  forms, their 

total concentration is constant across the cell, totup Ccc =+  (which is untrue for different 

diffusivities83). 

The simplest one-dimensional geometry corresponds to a cylindrical (for instance, bacterial) cell 

of the length L with the kinase localized to one pole (surface-reaction with rate mem
kinv  at 0=x ) and the 

cytoplasmic phosphatase (rate pv ). The steady-state spatial profile )(xcp  is determined by letting the 

time-derivative in Eq.1 equal zero and imposing the following boundary conditions (the diffusive 

flux equals mem
kinv  at the kinase pole and zero at the opposite pole), 
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When the phosphatase is far from saturation, vp = kpcp (kp = Vmax/Km is the observed first-order 

rate constant), the analytical solution to Eq.2 reads, 
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When 1<<Lα , the phospho-protein concentration decreases almost linearly, and when 1≥Lα , it 

decreases nearly exponentially x
pp ecxc α−≈)0(/)(  with distance x from the membrane. This provides 

a simple, but powerful criterion83 that large phospho-protein gradients exist when the 
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dephosphorylation time 1/kp is smaller than the diffusion time L2/D. The kinase activity only 

influences the concentration )0(pc  near the membrane21,83. 

Spherical symmetry simplifies analysis of signalling in three dimensions. For a cell of the radius 

L with a kinase located on the cell surface and a phosphatase in the cytoplasm (FIG.3B), the steady-

state phospho-protein concentration decreases from the membrane towards the cell centre nearly 

exponentially if 1≥Lα , FIG. 3C21. 

A similar exponential decrease in the phosphorylation signal )(rcp  may occur when a kinase is 

bound to a supra-molecular structure (of radius s) and a phosphatase resides in the surrounding area 

(of the radius L, FIG.3A). Assuming spherical symmetry, the steady-state concentration )(rcp  is 

determined by (Supplementary FIG.S2), 
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Considering how )(rcp  decreases for different values of Lα , we conclude that signalling gradients 

cannot be built merely by diffusion, but require the spatial segregation of opposing enzymes.

______________________________________________________________________________

BOX 4. Facilitated communication through kinase cascades.

For a cascade where a kinase (Mi) at each level activates a kinase (Mi+1) at the subsequent 

downstream level, the gradients of the phosphorylated forms become shallower down the cascade21. 

For a spherical cell, where a membrane-bound kinase phosphorylates M1 (rate mem
kinv ) and all other 

kinases and phosphatases diffuse in the cytoplasm, the spatio-temporal dynamics of a three-level 

cascade (Fig. 1C) is described by the following equations, 
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Here )(1 PMwPM i
i
kini ⋅−  is the rate of phosphorylation of Mi (proportional to the concentration Mi-1P

of the active kinase upstream) and )( PMv i
i
p  is the rate of the i-th phosphatases (Supplementary 
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Table S4). The calculated steady-state spatial profiles (figure, part A) show that descending down the 

cascade, phosphorylated kinases reach further into the cell. 

Although the existence of more levels in a cascade facilitates signal transfer over several 

micrometers, signalling over longer distances (for instance, from the plasma membrane to the nucleus 

in large cells, such as Xenopus eggs) requires additional means, such as vesicular or non-vesicular 

transport of phosphorylated kinases along microtubules and travelling waves of protein 

phosphorylation. Such waves propagating through bistable protein modification cascades 

(Supplementary FIG.S3) were recently predicted26. In fact, travelling waves in bistable systems are 

well-known in physics, chemistry and biology27. Bistability intrinsic to the multisite 

activation/deactivation cycles in the cytoplasm65 (such as the MAPKK or MAPK cycles) gives rise to 

travelling waves that propagate binary phosphorylation signals to distant targets. Figure, part B shows 

the travelling phosphorylation wave that propagates through a three-level cascade following a 30-

second pulse of activity of the input membrane-bound kinase ( mem
kinV , Supplementary Table S5). 

Additional positive feedback in the cytoplasm may enable phosphorylation waves to propagate with 

high velocity over exceedingly long distances, possibly solving a long-standing enigma of survival 

signalling in neurons.  

________________________________________________________________________________
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Systems Biology Workbench: www.sys-bio.org

Silicon Cell: http://jjj.biochem.sun.ac.za/

SigPath: http://www.sigpath.org/
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24

Figure legends 

FIG. 1. Universal motifs of cellular signalling networks. A. One-site phosphorylation cycle. 

The protein M is phosphorylated by a kinase to yield the phosphorylated form Mp, which is 

dephosphorylated by an opposing phosphatase. B. A cycle of a small GTPase (Ran). A guanine 

nucleotide exchange factor (GEF) catalyzes the transformation of an inactive guanosine diphosphate 

(GDP)-bound form (Ran-GDP) into an active guanosine triphosphate (GTP)-bound form (Ran-GTP). 

A GTPase–activating protein (GAP) is the opposing enzyme that catalyzes the reverse 

transformation. C. A cascade of cycles. Negative feedback provides robustness to noise, increasing 

resistance to disturbances inside the feedback loop, but brings about oscillations if it is too strong and 

the cascade is ultrasensitive12,20. Positive feedback greatly increases the sensitivity of the target to the 

signal and may also lead to bistability and relaxation oscillations12,18,46,72. 

FIG. 2. Feedback designs that can turn a universal signalling cycle into a bistable switch 

and relaxation oscillator. Simple cycle can turn bistable in four distinct ways; either pM  or M

stimulates its own production (positive feedback) by product activation or substrate inhibition of the 

kinase or phosphatase reactions. Each of the four rows of feedback designs correspond to a different 

bistable switch, provided that the kinase and phosphatase abundances are assumed constant and only 

single feedback (within the M cycle) is present. Sixteen relaxation oscillation designs are generated 

by extra negative feedback brought about by negative or positive regulation of the synthesis or 

degradation rates of the kinase protein or phosphatase protein by pM  or M. Designs A*-H* are 

mirror images of designs A-H. Although synthesis and degradation reactions are shown for both the 

kinase and phosphatase proteins, the protein concentration that is not controlled by feedback from the 

M cycle is considered constant, resulting in only two differential equations for each diagram. All 

feedback regulations are described by simple Michaelis-Menten type expressions (BOX 2 and 

Supplementary Table S3). The remaining sixteen relaxation oscillation designs are shown in 

Supplementary FIG.S1 and can require some degree of cooperativity within feedback loops. 

FIG. 3. Spatial segregation of two opposing enzymes in a protein-modification cycle 

generates intracellular gradients. Kinases localize to (A) supra-molecular structures (sphere) or (B) 

the cell membrane, whereas phosphatases are homogeneously distributed in the cytoplasm. The 

concentration gradients are shown by colour intensity. C. Stationary phosphorylation levels pc

decline with the distance d from the cell membrane toward the centre[Brown, 1999 #61 (see panel B). 

The steepness of the gradient (reciprocal of the characteristic length) is determined by the parameter 

α (α2 = kp/D is the ratio of the phosphatase activity kp and the protein diffusivity D, BOX 3). 
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Figure Box 1. Parts A, B and C
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Figure Box 2. Parts A, B and C
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Figure Box 4, Part A
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Figure Box 4, Part B
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