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Modeling Challenges

Image: http://pordlabs.ucsd.edu/ltalley/sio210/introduction/index.html

 LES – Turbulence parameterized.

 DNS – Turbulent scales resolved.

 Regional Ocean Models – Captures 
nonlinear energy transfers.
Requires a nonhydrostatic model.

 Global Circulation Models – Small 
scale effects poorly parameterized.

10 orders of magnitude
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SOMAR: Santilli & Scotti  (Journal of Computational Physics, 2011 & 2015)
Chombo: https://commons.lbl.gov/display/chombo

10 orders of magnitude
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SOMAR
Stratified Ocean Model with Adaptive Refinement

 Non-hydrostatic 2D and 3D flows.

 Adaptive refinement in both space and 
time.

 Efficient anisotropic Poisson solvers.

 Non-orthogonal, curvilinear coordinates.

 Accepts very general subgrid stress info.

 Built on the Chombo framework.



Image: Chalamalla et al. (Ocean Modelling, 2017)

SOMAR
Stratified Ocean Model with Adaptive Refinement



SOMAR-LES

 LES – Turbulence parameterized.

 DNS – Turbulent scales resolved.

 Regional Ocean Models – Captures 
nonlinear energy transfers.
Requires a nonhydrostatic model.

 Global Circulation Models – Small 
scale effects poorly parameterized.

10 orders of magnitude
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SOMAR-LES Algorithm



SOMAR-LES Equations

Fine-grid equationsCoarse-grid equations

For more details: Chalamalla et al. (Ocean Modelling, 2017)



SOMAR-LES Simulations



Lx = 40 km

Ly = 0.25 km

Lz = 3.28 km

dx = 9.8 m

dy = 3.9 m

dz = 3.2 m

𝜖 =
tan 𝛽

tan 𝜃
≈ 1

𝐸𝑥 =
𝑈0
𝑙 Ω

= 0.4

Internal tide generation with AMR



 Refinement only in the localized regions near the bathymetry. 

 Refinement is done based on the gradient Richardson number Rig < 0.25.

Internal tide generation with AMR



 Turbulence is intermittent in both space and time. 

 Ideal problem for AMR, however the locations of turbulence needs to be predicted accurately.

Internal tide generation with AMR



Adaptive refinement + Subgrid scale model

 Fine level grid adapts following the turbulent overturns. 

 Turbulent overturns as tall as 500 m are found at certain phases.

 Need to a better job in predicting where the fine level grid is required.



 Baroclinic energy budget and turbulent statistics compare well with previous numerical studies.

 Residual for baroclinic energy budget is less than 1%

 Fine level grid occupies less than 2% of the total computational domain.

 Total computational cost is just 10% of the single level grid solver.

Model validation

Model C M q = 1-M/C P

SOMAR-LES 0.736 0.637 0.13 0.036

LES 0.721 0.612 0.15 0.031



Low mode wave scattering

 Interaction of low-mode internal wave with an isolated
bathymetry results in the generation of higher modes due to
nonlinear interaction with the sloping bottom.

 Fine grids exist where Gradient Richardson number is < 0.25.

Lx = 446 km

Ly = 127 km

Lz = 4.7 km

dx = 109 m

dy = 125 m

dz = 18 m

Topographic width = 21 km



Low mode wave scattering

 SOMAR-LES used 3x finer resolution than MITgcm.

MITgcm used 4x more CPU-hours than SOMAR-LES.

 Reflected and transmitted energy in close agreement with 
linear theory.

 LES produces less dissipation than MITgcm’s Thorpe-scale 
based eddy viscosity model. 

Work in progress: Add more levels of refinement + apply LES 
on more refined grid.

SOMAR-LES vs. MITgcm



HYCOM-SOMAR-LES

 LES – Turbulence parameterized.

 DNS – Turbulent scales resolved.

 Regional Ocean Models – Captures 
nonlinear energy transfers.
Requires a nonhydrostatic model.

 Global Circulation Models – Small 
scale effects poorly parameterized.

10 orders of magnitude
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HYCOM-SOMAR-LES

SOMAR-LES

100 km



HYCOM  O(4 km, 4 km, 100m)

SOMAR  O(1 km, 1 km, 25m)

LES  O(250 m,  250m, 6.25m)

Future work with HYCOM-SOMAR-LES

 To study ocean-atmosphere interactions 
in the Bay of Bengal region by coupling 
this with atmospheric model.

 Achieve finer resolution, O(100m) in the 
horizontal and O(5m) in the vertical, to 
resolve the submesoscale eddies and 
their energy transfer to turbulence.

With finer resolution, we hope to 
numerically model features which are 
observed in the field experiments and 
absent in the global ocean simulations.

 Address challenges that exist during 
exchange of information at interfacial 
boundaries.



Thank you!



Why multi-scale modeling ?

Small scale turbulence/ 
Large eddies

O(1 cm-100 m)

DNS/LES

Low mode waves, 
Eddies

O(km)

Ocean Model

(GCM’s)

Turbulence not 
resolved

Need for a unified model ! 

Turbulence 
resolved/parameterized

Internal waves/ 
Submesoscale Eddies

O(100 m-1 km)

Nonlinear energy 
transfers????
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Large eddy simulations .. 

𝜕ഥ𝑢

𝜕𝑡
+ ത𝑢. 𝛻ത𝑢= −𝛻𝑝∗ + 𝜈𝛻2 ത𝑢 −

𝑔

𝜌0
𝜌∗ Ƹ𝑧+ Ԧ𝐹𝑒𝑥𝑡 − 𝛻. 𝜏

𝜕𝜌∗

𝜕𝑡
+ ത𝑢. 𝛻𝜌∗= 𝜅𝛻2𝜌∗ − ഥ𝑤

𝑑𝜌𝑏

𝑑𝑧
− 𝛻. 𝜆

𝛻. ത𝑢 =0

Very expensive to resolve all the scales of the flow.

Smallest length scales are removed via low pass filtering of Navier-Stokes equations. 

 Effect of the unresolved scales are modeled via sub-grid scale modeling. 



Eddy viscosity models 

𝜏𝑖𝑗= -2 𝜈𝑠𝑔𝑠 𝑆𝑖𝑗

𝜆𝑗= -𝜅𝑠𝑔𝑠
𝜕𝑏∗

𝜕𝑥𝑗

Subgrid-scale stress tensor & density flux are defined as ..

Subgrid-scale viscosity & diffusivity is then computed using a variety of models. 

Smagorinsky model 

𝜈𝑠𝑔𝑠(𝒙, 𝑡) = 𝐶𝑠∆
2 |𝑆|



SOMAR-LES Equations

Fine-grid equationsCoarse-grid equations

Chalamalla et al. (Ocean Modelling, 2017)

Add Ducros!



Schematic

𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝐵0𝐻

4

𝜅2𝜈

𝑅𝑜𝑠𝑠𝑏𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝐵0
1/2

𝑓3/2𝐻

 Surface cooling is applied by adding

forcing term to r.h.s of the density

equation.

 Two-level grid with adaptive

refinement is used to dynamically

resolve convective plumes.



SOMAR-LES Animations 

Localized refinement only in the regions of turbulence based on gradient Richardson 
number criteria Rig < 0 

Add some points .. About efficiency of SOMAR in these  kind of problems .. 
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