

Thomas Jefferson University [Jefferson Digital Commons](https://jdc.jefferson.edu/)

[College of Humanities and Sciences Faculty](https://jdc.jefferson.edu/jchspresentations)

Jefferson College of Humanities and Sciences

2018

Multi-scale modeling of turbulent oceanic flows

Vamsi K. Chalamalla UNC Chapel Hill

Edward Santilli Thomas Jefferson University, edward.santilli@jefferson.edu

Alberto Scotti UNC Chapel Hill

Masoud Jalali UCSD

Sutanu Sarkar UCSD

Follow this and additional works at: [https://jdc.jefferson.edu/jchspresentations](https://jdc.jefferson.edu/jchspresentations?utm_source=jdc.jefferson.edu%2Fjchspresentations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages) Let us know how access to this document benefits you

Recommended Citation

Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; and Sarkar, Sutanu, "Multi-scale modeling of turbulent oceanic flows" (2018). College of Humanities and Sciences Faculty Presentations. Paper 1.

https://jdc.jefferson.edu/jchspresentations/1

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's [Center for Teaching and Learning \(CTL\)](http://www.jefferson.edu/university/teaching-learning.html/). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in College of Humanities and Sciences Faculty Presentations by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

Vamsi K Chalamalla UNC Chapel Hill

Edward Santilli Jefferson University

> Alberto Scotti UNC Chapel Hill

> > Masoud Jalali UCSD

Sutanu Sarkar UCSD

Multi-scale modeling of turbulent oceanic flows

Modeling Challenges

- **LES** Turbulence parameterized.
- **► DNS** Turbulent scales resolved.
- **Regional Ocean Models** Captures nonlinear energy transfers. Requires a nonhydrostatic model.
- **Global Circulation Models** Small scale effects poorly parameterized.

Image: http://pordlabs.ucsd.edu/ltalley/sio210/introduction/index.html

Modeling Challenges

LES – Turbulence parameterized.

DNS – Turbulent scales resolved.

 Regional Ocean Models – Captures nonlinear energy transfers. Requires a nonhydrostatic model.

 Global Circulation Models – Small scale effects poorly parameterized.

Image: http://pordlabs.ucsd.edu/ltalley/sio210/introduction/index.html

SOMAR

Stratified Ocean Model with Adaptive Refinement

SOMAR: Santilli & Scotti (*Journal of Computational Physics,* 2011 & 2015) Chombo: https://commons.lbl.gov/display/chombo

SOMAR Stratified Ocean Model with Adaptive Refinement

Image: Chalamalla et al. (*Ocean Modelling,* 2017)

SOMAR-LES

LES – Turbulence parameterized.

DNS – Turbulent scales resolved.

 Regional Ocean Models – Captures nonlinear energy transfers. Requires a nonhydrostatic model.

 Global Circulation Models – Small scale effects poorly parameterized.

SOMAR-LES Algorithm

SOMAR-LES Equations

Coarse-grid equations Fine-grid equations

 $\nabla \cdot \mathbf{u} = 0,$

$$
\nabla \cdot \mathbf{u} = 0,
$$
\n
$$
\frac{D\mathbf{u}}{Dt} = \nu \nabla^2 \mathbf{u} - \nabla \cdot \boldsymbol{\tau} - f \hat{\mathbf{k}} \times \mathbf{u} + b^* \hat{\mathbf{k}} - \nabla p^*
$$
\n
$$
\frac{D\overline{\mathbf{u}}}{Dt} = \nu \nabla^2 \overline{\mathbf{u}} - \nabla \cdot \boldsymbol{\tau} - f \hat{\mathbf{k}} \times \overline{\mathbf{u}} + \overline{b}^* \hat{\mathbf{k}} - \nabla p^*
$$
\n
$$
\frac{D\overline{\mathbf{u}}}{Dt} = \kappa \nabla^2 b^* - \nabla \cdot \lambda + wN^2
$$
\n
$$
\frac{D\overline{\mathbf{u}}}{Dt} = \kappa \nabla^2 \overline{b}^* - \nabla \cdot \lambda + \overline{w}N^2
$$
\n
$$
\lambda = -\kappa_{sgs} \nabla \overline{b}^*
$$
\n
$$
\lambda = -\kappa_{sgs} \nabla \overline{b}^*
$$
\n
$$
\text{Smagorinsky}: \nu_{sgs} = (C_S \Delta)^2 \sqrt{2\overline{S}} : \overline{S}
$$
\n
$$
\overline{F_2} = \frac{1}{6} \left(||\overline{\tilde{u}}_{i+1,j,k} - \overline{\tilde{u}}_{i,j,k}||^2 + ||\overline{\tilde{u}}_{i-1,j,k} - \overline{\tilde{u}}_{i,j,k}||^2 + ||\overline{\tilde{u}}_{i,j,k-1} - \overline{\tilde{u}}_{i,j,k}||^2 \right)
$$

For more details: Chalamalla et al. (*Ocean Modelling*, 2017)

SOMAR-LES Simulations

Internal tide generation with AMR

Internal tide generation with AMR

 \triangleright Refinement only in the localized regions near the bathymetry.

Refinement is done based on the gradient Richardson number Ri_{g} < 0.25.

Internal tide generation with AMR

 \triangleright Turbulence is intermittent in both space and time.

 \triangleright Ideal problem for AMR, however the locations of turbulence needs to be predicted accurately.

Adaptive refinement + Subgrid scale model

 \triangleright Fine level grid adapts following the turbulent overturns.

Turbulent overturns as tall as 500 m are found at certain phases.

 \triangleright Need to a better job in predicting where the fine level grid is required.

Model validation

- Baroclinic energy budget and turbulent statistics compare well with previous numerical studies.
- \triangleright Residual for baroclinic energy budget is less than 1%
- \triangleright Fine level grid occupies less than 2% of the total computational domain.
- \triangleright Total computational cost is just 10% of the single level grid solver.

Low mode wave scattering

Topographic width = 21 km

 \triangleright Interaction of low-mode internal wave with an isolated bathymetry results in the generation of higher modes due to nonlinear interaction with the sloping bottom.

dz = 18 m

 \triangleright Fine grids exist where Gradient Richardson number is < 0.25.

Low mode wave scattering

SOMAR-LES vs. MITgcm

- \triangleright SOMAR-LES used 3x finer resolution than MITgcm.
- \triangleright MITgcm used 4x more CPU-hours than SOMAR-LES.
- \triangleright Reflected and transmitted energy in close agreement with linear theory.
- LES produces less dissipation than MITgcm's Thorpe-scale based eddy viscosity model.
- \triangleright Work in progress: Add more levels of refinement + apply LES on more refined grid.

HYCOM-SOMAR-LES

- **LES** Turbulence parameterized.
- **DNS** Turbulent scales resolved.
- **Regional Ocean Models** Captures nonlinear energy transfers. Requires a nonhydrostatic model.
- **Global Circulation Models** Small scale effects poorly parameterized.

HYCOM-SOMAR-LES

Future work with HYCOM-SOMAR-LES

HYCOM O(4 km, 4 km, 100m)

 \triangleright To study ocean-atmosphere interactions in the Bay of Bengal region by coupling this with atmospheric model.

 \triangleright Achieve finer resolution, O(100m) in the horizontal and O(5m) in the vertical, to resolve the submesoscale eddies and their energy transfer to turbulence.

 \triangleright With finer resolution, we hope to numerically model features which are observed in the field experiments and absent in the global ocean simulations.

 \triangleright Address challenges that exist during exchange of information at interfacial boundaries.

Thank you!

Why multi-scale modeling ?

Why multi-scale modeling ?

Why multi-scale modeling ?

Large eddy simulations ..

Very expensive to resolve all the scales of the flow. Smallest length scales are removed via low pass filtering of Navier-Stokes equations. Effect of the unresolved scales are modeled via sub-grid scale modeling.

$$
\nabla.\,\bar{u}=0
$$

$$
\frac{\partial \overline{u}}{\partial t} + \overline{u}.\nabla \overline{u} = -\nabla p^* + \nu \nabla^2 \overline{u} - \frac{g}{\rho_0} \rho^* \hat{z} + \overrightarrow{F}_{ext} - \nabla \cdot \tau
$$

$$
\frac{\partial \rho^*}{\partial t} + \overline{u}.\nabla \rho^* = \kappa \nabla^2 \rho^* - \overline{w} \frac{d\rho^b}{dz} - \nabla \cdot \lambda
$$

Eddy viscosity models

Subgrid-scale stress tensor & density flux are defined as ..

$$
\tau_{ij} = -2 \, \nu_{sgs} \, S_{ij}
$$

$$
\lambda_j = -\kappa_{sgs} \frac{\partial b^*}{\partial x_j}
$$

Subgrid-scale viscosity & diffusivity is then computed using a variety of models.

Smagorinsky model

$$
\nu_{sgs}(x,t)=(\mathcal{C}_s\Delta^2)|S|
$$

SOMAR-LES Equations

Coarse-grid equations Fine-grid equations

$$
\nabla \cdot \mathbf{u} = 0,
$$

\n
$$
\frac{D\mathbf{u}}{Dt} = \nu \nabla^2 \mathbf{u} - \nabla \cdot \boldsymbol{\tau} - f\hat{\mathbf{k}} \times \mathbf{u} + b^* \hat{\mathbf{k}} - \nabla p^*
$$

\n
$$
\frac{Db^*}{Dt} = \kappa \nabla^2 b^* - \nabla \cdot \boldsymbol{\lambda} + wN^2
$$

$$
\nabla \cdot \overline{\mathbf{u}} = 0
$$

\n
$$
\frac{D\overline{\mathbf{u}}}{Dt} = \nu \nabla^2 \overline{\mathbf{u}} - \nabla \cdot \boldsymbol{\tau} - f \hat{\mathbf{k}} \times \overline{\mathbf{u}} + \overline{b}^* \hat{\mathbf{k}} - \nabla p^*
$$

\n
$$
\frac{D\overline{b}^*}{Dt} = \kappa \nabla^2 \overline{b}^* - \nabla \cdot \boldsymbol{\lambda} + \overline{w} N^2
$$

\n
$$
\boldsymbol{\tau} = -2\nu_{sgs} \overline{S}
$$

\n
$$
\boldsymbol{\lambda} = -\kappa_{sgs} \nabla \overline{b}^*
$$

\n
$$
\nu_{sgs} = (C_S \sqrt[3]{\Delta x \Delta y \Delta z})^2 \sqrt{2\overline{S} : \overline{S}}
$$

Add Ducros!

Chalamalla et al. (*Ocean Modelling*, 2017)

Schematic

 \triangleright Surface cooling is applied by adding forcing term to r.h.s of the density equation.

 Two-level grid with adaptive refinement is used to dynamically resolve convective plumes.

> Rayleigh number = B_0H^4 $\kappa^2 \nu$

> > $B_0^{1/2}$

 $f^{3/2}H$

Rossby number =

SOMAR-LES Animations

Localized refinement only in the regions of turbulence based on gradient Richardson number criteria Ri $_{\rm g}$ < 0

Add some points .. About efficiency of SOMAR in these kind of problems ..