Effectiveness of 3D-printed Upper Extremity Device for Chronic Neurological Impairment

Joe Kardine, MBA, MS, OTR/L, CBIS
Thomas Jefferson University, joe.kardine@jefferson.edu

Mikael Avery, MS, OTR/L
Thomas Jefferson University, mikael.avery@jefferson.edu

Alessandro Naopli, PhD
Thomas Jefferson University, alessandro.naopli@jefferson.edu

Namrata Grampurohit, PhD, OTR/L
Thomas Jefferson University, namrata.grampurohit@jefferson.edu

MaryJane Mulcahey, PhD, OTR/L
Thomas Jefferson University, MaryJane.Mulcahey-Hershey@jefferson.edu

Follow this and additional works at: https://jdc.jefferson.edu/farberneurospapers

Part of the Rehabilitation and Therapy Commons

See next page for additional authors.
Abstract

Background: Cerebral palsy, stroke, spinal cord injury, muscular dystrophy, and other neurological conditions frequently cause debilitating upper extremity (UE) motor impairments that are retained well beyond rehabilitation discharge. People with moderate to severe UE neurological impairment frequently exhibit limited active movement in their paretic elbow and little to no active movement in their paretic wrists and fingers. Pilot data demonstrating that an integrated myoelectric system could restore independent function both in clinical and naturalistic community settings will lay the foundation for extramural funding to support a future prospective, randomized comparative effectiveness study with the hope that results can lead to new standard-of-care guidelines, thereby enhancing their participation in everyday life across home, school, work, community and virtual environments, and increasing, their overall well-being.

Design: Pre-test and post-test design

Setting: Outpatient rehabilitation research center

Participants: Participants were referred to the research study coordinator. Participants were deemed appropriately having met inclusion criteria and no exclusion criteria; and consenting to trial. 5 participants have completed the study at this time.

Interventions: Don and doffing of the device, teach-back of safety mechanisms to use the device independently, joystick control with grasp and release activities, inertial measurement unit powered grasp and release activities, functional instrumental activities of daily living and self-care tasks, and bi-manual activities for everyday function.

Main Outcome Measures:

1. Canadian Occupational Performance Measure (COPM): Semi-structured interview measuring subjective performance and satisfaction with client-centered goals. Data in the table (right) supports the effectiveness of this device as functional improvement was recorded for each participant.
2. Box and Blocks Test (BBT): Assessment used to evaluate manual dexterity in having participants pick up and transport 2.5 cm wooden blocks over a 15.2 cm partition. There was a significant improvement for participants in these assessments without the device and with the device comparing pre and post-test.
3. Action Research Arm Test (ARAT): Assessment used to evaluate upper limb function by observing performance in a variety of tasks

Conclusions: Five adults with UE mobility impairment due to stroke learned to use a lightweight, customized, powered hand orthosis. Although the orthosis can only achieve one type of hand open-close motion, participants were able to use it to perform desired activities in their home and community settings. Feedback from the therapists and participants in this trial can inform the design of an improved device that could one day become a widely available tool for physicians or therapists to provide (with training) to all those who may benefit.

Author(s) Disclosure: No disclosures

ClinicalTrials.gov Identifier: NCT04798378

References

Acknowledgments

Thank you to Thomas Jefferson University, The Vickie and Jack Farber Institute for Neuroscience, the Center of Outcomes and Measurement, and the Center for Neurorehabilitation for diligent collaboration on this current clinical trial. We continue to foster innovative evidence and are creating an enormous impact on the lives of others. I appreciate everyone’s motivation and efforts for this innovative research within a wide range of clinical and non-clinical experts.

Results

3D Printed Device Function and Usage

Effectiveness of 3D-printed Upper Extremity Device for Chronic Neurological Impairment

Joe Kardine, MBA, MS, OTR/L, CBIS
Mikael Avery, MS, OTR/L, Alessandro Napoli, PhD, Namrata Grampurohit, PhD, OTR/L
MaryJane Mulcahey, PhD, OTR/L, Mijail Serruya, MD, PhD
Center for Neurorehabilitation
The Vickie and Jack Farber Institute for Neuroscience

Effectiveness of 3D-printed Upper Extremity Device for Chronic Neurological Impairment

Joe Kardine, MBA, MS, OTR/L, CBIS
Mikael Avery, MS, OTR/L, Alessandro Napoli, PhD, Namrata Grampurohit, PhD, OTR/L
MaryJane Mulcahey, PhD, OTR/L, Mijail Serruya, MD, PhD
Center for Neurorehabilitation
The Vickie and Jack Farber Institute for Neuroscience

Effectiveness of 3D-printed Upper Extremity Device for Chronic Neurological Impairment

Joe Kardine, MBA, MS, OTR/L, CBIS
Mikael Avery, MS, OTR/L, Alessandro Napoli, PhD, Namrata Grampurohit, PhD, OTR/L
MaryJane Mulcahey, PhD, OTR/L, Mijail Serruya, MD, PhD
Center for Neurorehabilitation
The Vickie and Jack Farber Institute for Neuroscience

Effectiveness of 3D-printed Upper Extremity Device for Chronic Neurological Impairment

Joe Kardine, MBA, MS, OTR/L, CBIS
Mikael Avery, MS, OTR/L, Alessandro Napoli, PhD, Namrata Grampurohit, PhD, OTR/L
MaryJane Mulcahey, PhD, OTR/L, Mijail Serruya, MD, PhD
Center for Neurorehabilitation
The Vickie and Jack Farber Institute for Neuroscience