What is normal nasal airflow? A computational study of 22 healthy adults.

Document Type

Article

Publication Date

6-1-2014

Comments

This article has been peer reviewed. It was published in: International Forum of Allergy and Rhinology.

Volume 4, Issue 6, June 2014, Pages 435-446.

The published version is available at DOI: 10.1002/alr.21319

Copyright © 2014 ARS-AAOA, LLC.

Abstract

BACKGROUND: Nasal airflow is essential for the functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related conditions.

METHODS: Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables.

RESULTS: Common features across subjects included: >50% total pressure drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r = -0.65, p < 0.01). This middle flow percentage combined with peak postvestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r = 0.53, p < 0.01).

CONCLUSION: Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications.

PubMed ID

24664528

Share

COinS