Document Type

Article

Publication Date

9-29-2016

Comments

This article has been peer reviewed. It is the author’s final published version in Cell Death and Disease

Volume 7, Issue 9, September 2016, Article number e2379.

The published version is available at DOI: 10.1038/cddis.2016.307. Copyright © Bertin et al.

Abstract

The death receptor, Fas, triggers apoptotic death and is essential for maintaining homeostasis in the peripheral lymphoid organs. RIP1 was originally cloned when searching for Fas-binding proteins and was later shown to associate also with the signaling complex of TNFR1. Although Fas exclusively induces apoptosis, TNFR1 primarily activates the pro-survival/pro-inflammatory NF-κB pathway. Mutations in Fas lead to lymphoproliferative (lpr) diseases, and deletion of TNFR1 results in defective innate immune responses. However, the function of RIP1 in the adult lymphoid system has not been well understood, primarily owing to perinatal lethality in mice lacking the entire RIP1 protein in germ cells. This current study investigated the requirement for RIP1 in the T lineage using viable RIP1 mutant mice containing a conditional and kinase-dead RIP1 allele. Disabling the kinase activity of RIP1 had no obvious impact on the T-cell compartment. However, T-cell-specific deletion of RIP1 led to a severe T-lymphopenic condition, owing to a dramatically reduced mature T-cell pool in the periphery. Interestingly, the immature T-cell compartment in the thymus appeared intact. Further analysis showed that mature RIP1(-/-) T cells were severely defective in antigen receptor-induced proliferative responses. Moreover, the RIP1(-/-) T cells displayed greatly increased death and contained elevated caspase activities, an indication of apoptosis. In total, these results revealed a novel, kinase-independent function of RIP1, which is essential for not only promoting TCR-induced proliferative responses but also in blocking apoptosis in mature T cells.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS