Document Type

Article

Publication Date

3-30-2011

Comments

This article has been peer reviewed and is published in Journal of Translational Medicine 2011, 9:33. The published version is available at DOI: 10.1186/1479-5876-9-33. ©BioMed Central Ltd.

Abstract

BACKGROUND: Infiltration of colorectal carcinomas (CRC) with T-cells has been associated with good prognosis. There are some indications that chemokines could be involved in T-cell infiltration of tumors. Selective modulation of chemokine activity at the tumor site could attract immune cells resulting in tumor growth inhibition. In mouse tumor model systems, gene therapy with chemokines or administration of antibody (Ab)-chemokine fusion proteins have provided potent immune mediated tumor rejection which was mediated by infiltrating T cells at the tumor site. To develop such immunotherapeutic strategies for cancer patients, one must identify chemokines and their receptors involved in T-cell migration toward tumor cells.

METHODS: To identify chemokine and chemokine receptors involved in T-cell migration toward CRC cells, we have used our previously published three-dimensional organotypic CRC culture system. Organotypic culture was initiated with a layer of fetal fibroblast cells mixed with collagen matrix in a 24 well tissue culture plate. A layer of CRC cells was placed on top of the fibroblast-collagen layer which was followed by a separating layer of fibroblasts in collagen matrix. Anti-CRC specific cytotoxic T lymphocytes (CTLs) mixed with fibroblasts in collagen matrix were placed on top of the separating layer. Excess chemokine ligand (CCL) or Abs to chemokine or chemokine receptor (CCR) were used in migration inhibition assays to identify the chemokine and the receptor involved in CTL migration.

RESULTS: Inclusion of excess CCL2 in T-cell layer or Ab to CCL2 in separating layer of collagen fibroblasts blocked the migration of CTLs toward tumor cells and in turn significantly inhibited tumor cell apoptosis. Also, Ab to CCR2 in the separating layer of collagen and fibroblasts blocked the migration of CTLs toward tumor cells and subsequently inhibited tumor cell apoptosis. Expression of CCR2 in four additional CRC patients' lymphocytes isolated from infiltrating tumor tissues suggests their role in migration in other CRC patients.

CONCLUSIONS: Our data suggest that CCL2 secreted by tumor cells and CCR2 receptors on CTLs are involved in migration of CTLs towards tumor. Gene therapy of tumor cells with CCL2 or CCL2/anti-tumor Ab fusion proteins may attract CTLs that potentially could inhibit tumor growth.

PubMed ID

21450101

Share

COinS