Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations.

Lawrence D Gaspers
Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey

Paula J Bartlett
Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey

Antonio Politi
German Cancer Research Center, Division of Theoretical Systems Biology

Paul Burnett
Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey

Walson Metzger
Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey

See next page for additional authors

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/pacbfp
Part of the Medical Cell Biology Commons

Recommended Citation
Gaspers, Lawrence D; Bartlett, Paula J; Politi, Antonio; Burnett, Paul; Metzger, Walson; Johnston, Jane; Josepsh, Suresh K; Höfer, Thomas; and Thomas, Andrew P, "Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations." (2014). Department of Pathology, Anatomy and Cell Biology Faculty Papers. Paper 155.
http://jdc.jefferson.edu/pacbfp/155
Hormone-Induced Calcium Oscillations Depend on Cross-Coupling with Inositol 1,4,5-Trisphosphate Oscillations

Highlights

- Ca\(^{2+}\) oscillation mechanisms can be distinguished using an IP\(_3\) buffer
- IP\(_3\) buffer suppresses IP\(_3\) oscillations without decreasing peak levels of IP\(_3\) or Ca\(^{2+}\)
- IP\(_3\) buffering slows Ca\(^{2+}\) oscillation kinetics and reduces Ca\(^{2+}\) wave-propagation rates
- Ca\(^{2+}\) oscillations in hepatocytes are driven by Ca\(^{2+}\) feedback on IP\(_3\) formation

Authors

Lawrence D. Gaspers, Paula J. Bartlett, ..., Thomas Höfer, Andrew P. Thomas

Correspondence

andrew.thomas@rutgers.edu

In Brief

Gaspers et al. use a genetically encoded IP\(_3\) buffer to suppress IP\(_3\) dynamics during hormonal stimulation. Using this approach, they find that positive feedback of Ca\(^{2+}\) on IP\(_3\) formation is an essential component, generating long-period, baseline-separated Ca\(^{2+}\) oscillations and intracellular Ca\(^{2+}\) waves.
Hormone-Induced Calcium Oscillations Depend on Cross-Coupling with Inositol 1,4,5-Trisphosphate Oscillations

Lawrence D. Gaspers, Paula J. Bartlett, Antonio Politi, Paul Burnett, Watson Metzger, Jane Johnston, Suresh K. Joseph, Thomas Höfer, and Andrew P. Thomas

INTRODUCTION

Oscillatory Ca^{2+} signaling is a fundamental control process utilized by hormones and other agonists linked to the second messenger inositol 1,4,5-trisphosphate (IP_3). Stimulus strength is typically encoded by increasing the frequency of cytosolic Ca^{2+} ([Ca^{2+}]) oscillations. For example, in hepatocytes, baseline-separated [Ca^{2+}] oscillations with an extended frequency range (seconds to many minutes) provide fine control of metabolic output over log-order hormone dose ranges (Bartlett et al., 2014; Hajnóczky et al., 1995; Rooney et al., 1989; Woods et al., 1986). Despite their critical importance, the mechanisms underlying IP_3-dependent [Ca^{2+}] oscillations have not been fully elucidated (Berridge, 1993; Dupont et al., 2011; Meyer and Stryer, 1988; Thomas et al., 1996; Thurley and Falcke, 2011).

There are two distinct classes of apparently opposing hypotheses that are very difficult to distinguish experimentally: Ca^{2+} excitability models in which Ca^{2+} oscillations occur independent of IP_3 oscillations and cross-coupling models whereby IP_3 oscillations are required to drive periodic Ca^{2+} release and reuptake.

SUMMARY

Receptor-mediated oscillations in cytosolic Ca^{2+} concentration ([Ca^{2+}]) could originate either directly from an autonomous Ca^{2+} feedback oscillator at the inositol 1,4,5-trisphosphate (IP_3) receptor or as a secondary consequence of IP_3 oscillations driven by Ca^{2+} feedback on IP_3 metabolism. It is challenging to discriminate these alternatives, because IP_3 fluctuations could drive Ca^{2+} oscillations or could just be a secondary response to the [Ca^{2+}] spikes. To investigate this problem, we constructed a recombinant IP_3 buffer using type-I IP_3 receptor ligand-binding domain fused to GFP (GFP-LBD), which buffers IP_3 in the physiological range. This IP_3 buffer slows hormone-induced [IP_3] dynamics without changing steady-state [IP_3]. GFP-LBD perturbed [Ca^{2+}] oscillations in a dose-dependent manner: it decreased both the rate of [Ca^{2+}] rise and the speed of Ca^{2+} wave propagation and, at high levels, abolished [Ca^{2+}] oscillations completely. These data, together with computational modeling, demonstrate that IP_3 dynamics play a fundamental role in generating [Ca^{2+}] oscillations and waves.
revert to a higher frequency spiking pattern when studied at fixed [IP$_3$] after cell permeabilization (Hajnóczky and Thomas, 1997). Thus, other mechanisms may be superimposed on the basic Ca$^{2+}$ excitability model to produce the broad distribution of agonist-evoked [Ca$^{2+}$] oscillation frequencies observed experimentally. This can provide more efficient encoding of the strength of the extracellular stimulus into intracellular Ca$^{2+}$ signaling (Politi et al., 2006).

Cross-coupling hypotheses postulate that the dynamics of IP$_3$ and Ca$^{2+}$ are mutually destabilizing, resulting in coupled oscillations of both messengers. In the most widely discussed model, stimulation of PLC by Ca$^{2+}$ provides the positive feedback to generate a rapid burst of IP$_3$ formation (Harootunian et al., 1991; Meyer and Stryer, 1988; Politi et al., 2006; Woods et al., 1986). Termination of Ca$^{2+}$ release can occur by negative feedback processes such as Ca$^{2+}$ inactivation of IP$_3$R, elimination of IP$_3$ by Ca$^{2+}$-activation of inositol 1,4,5-trisphosphate 3-kinase (ITPK), or inhibition of receptor-stimulated PLC by protein kinase C (PKC). Thus, Ca$^{2+}$-dependent feedback on either PLC, ITPK, or PKC, alone or in combination, has the potential to generate oscillations in [IP$_3$] and drive [Ca$^{2+}$] spiking (Politi et al., 2006).

Consistent with cross-coupling models, [Ca$^{2+}$], spiking has been shown to be accompanied by synchronous fluctuations in IP$_3$ or phosphatidylinositol 4,5-bisphosphate levels in intact cells (Harootunian et al., 1991; Hirose et al., 1999; Matsura et al., 2006; Várnaí and Balla, 1998). This may be an indication that IP$_3$-Ca$^{2+}$ cross-coupling is involved in the regulation of [Ca$^{2+}$] oscillations. However, an alternative interpretation would be that the IP$_3$ fluctuations are an epiphenomenon mediated by Ca$^{2+}$-dependent changes in IP$_3$ metabolism and are nonessential for generating [Ca$^{2+}$] oscillations (Dupont et al., 2003; Tanimura et al., 2009). We have taken a different approach from trying to measure IP$_3$ oscillations and correlate [IP$_3$] changes with [Ca$^{2+}$] oscillations, focusing instead on modifying IP$_3$ dynamics with a genetically encoded IP$_3$R buffer designed to function within the physiological range of [IP$_3$]. The recombinant cytosolic IP$_3$R buffer was constructed by the in-frame fusion of the N-terminal 620 amino acids of the type-I IP$_3$R to the C terminus of green or red fluorescent protein (GFP-LBD or DsRed-LBD). Previous studies have shown that the N terminus of the IP$_3$R expressed in E. coli can bind to IP$_3$ with similar affinity to native IP$_3$R (Yoshikawa et al., 1996).

Chemical Ca$^{2+}$ buffers and recombinantly expressed Ca$^{2+}$-binding proteins have been successfully employed to investigate the role of Ca$^{2+}$ dynamics in numerous processes. IP$_3$-binding proteins should prove equally useful to probe the role of IP$_3$ dynamics in generating Ca$^{2+}$ spikes. The expression of GFP-LBD is expected to slow the kinetics of agonist-evoked IP$_3$ turnover without modifying the free steady-state [IP$_3$]. Moreover, our modeling studies demonstrate that an IP$_3$R buffer allows us to go beyond determining the causality between [IP$_3$] and [Ca$^{2+}$] oscillations; it is also an ideal experimental tool to distinguish between positive- versus negative-feedback effects of Ca$^{2+}$ on IP$_3$ metabolism in controlling the generation of oscillatory Ca$^{2+}$ signals (Politi et al., 2006).

The data presented here show that GFP-LBD can bind IP$_3$ and decrease the rate of IP$_3$ rise during agonist stimulation, which disrupts [Ca$^{2+}$] spikes in COS cells and primary hepatocytes. This perturbation of Ca$^{2+}$ signaling was due to the ability of GFP-LBD to bind IP$_3$, because a mutant that does not bind IP$_3$ had no effect on agonist-induced [Ca$^{2+}$] responses. Increasing the level of GFP-LBD expression correlated with a loss of repetitive Ca$^{2+}$ spiking and the appearance of distorted [Ca$^{2+}$] responses with slower kinetics and smaller amplitudes. These data suggest that [IP$_3$] increased to a level sufficient to activate the IP$_3$R but lacked a self-amplifying mechanism required for robust spikes of Ca$^{2+}$ release and propagation of intracellular [Ca$^{2+}$] waves. Finally, introducing an IP$_3$ buffer into a mathematical model based on the positive feedback of Ca$^{2+}$ on PLC reproduced the experimental data. Taken together, these findings provide strong evidence that dynamic fluctuations of IP$_3$ are an essential component in the generation of [Ca$^{2+}$] spikes and propagation of intracellular Ca$^{2+}$ waves.

RESULTS

Expression of GFP-LBD in COS Cells

The properties of GFP-LBD were determined in COS cells transiently transfected with either GFP alone, GFP-LBD, or a nonbinding mutant of GFP-LBD, with a single amino acid substitution in the IP$_3$-binding site (GFP-R265QLBD; Yoshikawa et al., 1996). Western blot analysis of cells transfected with GFP-LBD or GFP-R265QLBD revealed a band at ~100 kDa, which corresponds to the full-length fusion protein (Figure S1A). Confocal images of COS cells expressing GFP-LBD or GFP-R265QLBD revealed a cytosolic distribution, similar to that observed with GFP (Figure S1B). Permeabilization of the plasma membrane with digitonin resulted in rapid loss of the GFP fusion proteins, suggesting they are not bound to cytoskeletal elements or organelles.

Although GFP-LBD appeared to be freely diffusible, it could potentially interact with endogenous proteins, including plasma membrane and intracellular ion channels, and thereby modify agonist-induced Ca$^{2+}$ influx and/or ER Ca$^{2+}$ content. To test these possibilities, COS cells expressing GFP, GFP-LBD, or GFP-R265QLBD were incubated in Ca$^{2+}$-free medium and the ER Ca$^{2+}$ stores were released by treatment with 50 μM cyclopiazonic acid (CPA), followed by addition of 1.5 mM CaCl$_2$ to measure store-operated Ca$^{2+}$ influx (Figures S1C–S1E). GFP-LBD did not affect the size of the Ca$^{2+}$ store, monitored by the rate and magnitude of CPA-induced Ca$^{2+}$ release, and did not alter the rate or amplitude of Ca$^{2+}$ influx elicited by subsequent Ca$^{2+}$ add back (Figures S1C–S1E). Similar results were obtained with the purinergic agonist ATP. GFP-R265QLBD also had no effect on intracellular Ca$^{2+}$ release or Ca$^{2+}$ influx (Figures S1F and S1G). Finally, there was no effect of GFP-LBD on resting [Ca$^{2+}$], indicating that it did not alter basal [Ca$^{2+}$], homeostasis in the absence or presence of extracellular Ca$^{2+}$ (Figures S1D and S1H). Similar results were obtained in hepatocytes (Figure S2A).

Because the intracellular concentration of the IP$_3$ buffer is an important parameter for our analysis, we used a standard curve constructed with recombinant GFP to estimate the cytoplasmic concentration of each fusion protein on a
cell-by-cell basis, as described previously (Politi et al., 2006). The mean levels of intracellular expression in COS cells for GFP-LBD and GFP-R265QLBD were similar (13 ± 1 μM and 12 ± 1 μM, respectively), whereas GFP alone was expressed at somewhat higher levels (22 ± 1 μM; see Table S1). As expected, there was an increase in the amount of total IP3 binding measured in lysates prepared from populations of COS cells transfected with GFP-LBD compared to GFP alone (79 ± 6 versus 20 ± 1 fmoles of IP3/mg cell protein, respectively, at 9.6 nM 3H-IP3).

These data demonstrate that the ligand-binding domain of GFP-LBD is expressed in the correct confirmation and is able to bind IP3. In addition, GFP-LBD does not modify the activity of plasma membrane Ca2+ channels, the size of internal Ca2+ stores, or the basal levels of [Ca2+]i.

GFP-LBD Blocks Agonist-Induced [Ca2+]i Oscillations in COS Cells

COS cells were transiently transfected with either GFP-LBD or GFP, and the [Ca2+]i responses to ATP stimulation at submaximal (1 μM) and then maximal (100 μM) doses were monitored with fura-2. Data from both expressing and nonexpressing cells were recorded simultaneously from the same microscope field. Figure 1 shows representative single-cell Ca2+ traces from coverslips transfected with either GFP (Figures 1A and 1B) or GFP-LBD (Figures 1C and 1D); in each case, the top panels show responses for untransfected cells from the same field as the transfected cell responses shown in the middle panels. Data are summarized in Figures 1E and 1F. The addition of 1 μM ATP elicited periodic, baseline-separated [Ca2+]i oscillations in >90% of the COS cells that did not express the transgene.
Figures 1A and 1C) or expressed only GFP (Figure 1B). The kinetics and amplitude of these
$[\text{Ca}^{2+}]_i$ oscillations remained constant for the 10 min stimulation period and were not affected by the expression of GFP. By contrast, expression of GFP-LBD eliminated baseline-separated $[\text{Ca}^{2+}]_i$ oscillations in response to submaximal ATP; instead, a slow monophasic increase in $[\text{Ca}^{2+}]_i$ was observed (Figure 1D). The amplitude (Figure 1E) and rate of $[\text{Ca}^{2+}]_i$ increase (Figure 1F) in these cells were significantly lower following submaximal ATP stimulation when compared to nonexpressing or GFP-positive cells.

Maximal ATP concentrations (100 μM) evoked a sustained increase in $[\text{Ca}^{2+}]_i$, in both expressing and nonexpressing COS cells transfected with either GFP or GFP-LBD (Figure 1). The mean amplitude and rate of rise of these $[\text{Ca}^{2+}]_i$ increases were larger than those observed with 1 μM ATP (Figures 1E and 1F). There were no significant differences between any of the groups in the amplitude of the $[\text{Ca}^{2+}]_i$ increase at 100 μM ATP, indicating that, with sufficient stimulation, enough IP$_3$ could be generated to overcome the effect of the recombinant IP$_3$ buffer. The mean rate of $[\text{Ca}^{2+}]_i$ increase in GFP-LBD-expressing cells was slower than any of the control groups, but this parameter was variable in the presence of GFP-LBD and was not statistically significant.

To test whether the lack of baseline-separated $[\text{Ca}^{2+}]_i$ oscillations in GFP-LBD-expressing COS cells was due to a shift in the effective ATP sensitivity, we carried out dose-response studies of which increased in a dose-dependent manner. Frequency-modulated $[\text{Ca}^{2+}]_i$ oscillations with similar amplitude and kinetics to control cells were observed over the effective ATP dose range in nonexpressing COS cells and cells expressing the nonbinding mutant R265QLBD (Figures 1G and 1I). Thus, the suppression of agonist-induced $[\text{Ca}^{2+}]_i$ oscillations is a fundamental consequence of IP$_3$ binding by GFP-LBD and not just due to a shift in the effective free [IP$_3$].

Taken together, these data demonstrate that GFP-LBD does not prevent agonist-induced mobilization of Ca^{2+} from intracellular stores, even though it eliminates the ability of COS cells to generate $[\text{Ca}^{2+}]_i$ oscillations. The monotonic $[\text{Ca}^{2+}]_i$ increase evoked by agonist stimulation (Figures 1D and 1H) indicates that IP$_3$ levels were sufficient to activate the IP$_3$R but lacked a positive feedback mechanism required for rapid Ca^{2+} mobilization.

GFP-LBD Suppresses $[\text{Ca}^{2+}]_i$ Oscillations in Hepatocytes

Hepatocytes provide one of the most well-characterized examples of frequency-modulated $[\text{Ca}^{2+}]_i$ oscillations in primary cells and tissues, where they play a key role in the regulation of hepatic metabolism (Bartlett et al., 2014; Hajnóczky et al., 1995; Thomas et al., 1996). Figure 2 shows the effects of GFP-LBD expression on hormone-stimulated $[\text{Ca}^{2+}]_i$ signaling in primary cultures of rat hepatocytes. Figure 2A shows representative
single-cell [Ca^{2+}]_{i} traces from hepatocytes expressing GFP or different levels of GFP-LBD. GFP-LBD-positive cells were divided into low- and high-expressing cells using a cutoff that corresponded to a calculated intracellular GFP concentration of 10 μM. The effects of GFP or GFP-LBD on the pattern of hormone-evoked [Ca^{2+}]_{i} responses are summarized in Figure 2B.

Stimulation of GFP-expressing hepatocytes with vasopressin (VP) induced repetitive [Ca^{2+}]_{i} spiking that increased in frequency in a dose-dependent manner until a sustained plateau of [Ca^{2+}]_{i} was achieved (Figure 2A), consistent with the frequency modulation reported in previous studies (Rooney et al., 1989; Woods et al., 1986). Submaximal VP (3 nM) evoked repetitive [Ca^{2+}]_{i} spiking in 60% of the GFP-positive hepatocytes (Figure 2B) with similar kinetic properties to those observed in untransfected hepatocytes (Rooney et al., 1989). In both GFP- and GFP-LBD-expressing cells, the full scope of hormone-evoked [Ca^{2+}]_{i} responses was observed after hormone treatment, ranging from no response through repetitive oscillations to peak and plateau maximal increases in [Ca^{2+}]_{i} (Figure 2B). Importantly, in hepatocytes, baseline-separated [Ca^{2+}]_{i} spikes could be elicited by VP in the presence of GFP-LBD. However, with increasing expression levels, GFP-LBD reduced the percentage of cells exhibiting repetitive baseline-separated [Ca^{2+}]_{i} spikes (Figure 2B). In addition, there was a marked broadening of the individual [Ca^{2+}]_{i} transients with increasing levels of the GFP-LBD IP_{3} buffer (Figure 2B). In control (GFP-expressing) hepatocytes, the widths of consecutive spikes remained constant, averaging 22 ± 1 s (n = 27 cells). The spike duration was significantly longer in GFP-LBD-positive cells, the full scope of hormone-evoked [Ca^{2+}]_{i} responses was observed after hormone treatment, ranging from no response through repetitive oscillations to peak and plateau maximal increases in [Ca^{2+}]_{i} (Figure 2B). In contrast to the baseline-separated [Ca^{2+}]_{i} spikes in hepatocytes and COS cells, ATP stimulation of MDA MB231 breast cancer cells causes high-frequency sinusoidal-like Ca^{2+} oscillations (Figure S3). Expression of LBD in these cells did not affect the [Ca^{2+}]_{i} oscillation frequency but only partially reversed the effects of high GFP-LBD expression (Figures 2E and 2F). We also examined the effects of LBD on the kinetics of Ca^{2+} wave using a recombinant Ca^{2+}-sensitive fluorescent protein, RGECO1 (Zhao et al., 2011). This protein-based Ca^{2+} indicator is more slowly diffusible with lower buffering capacity compared to fura-2, so it should minimize alterations in Ca^{2+} wave velocity that might derive from indicator effects on Ca^{2+} diffusion. Nevertheless, the expression of GFP-LBD still reduced Ca^{2+} wave velocity in a stimulus-strength-dependent manner in our studies using RGECO1 (Figures S2B and S2C). Thus, similar results were obtained with fura-2 and RGECO1: LBD decreased the rate of [Ca^{2+}]_{i} rise even at subcellular resolution and slowed the propagation of Ca^{2+} waves. If [Ca^{2+}]_{i} oscillations and waves were dependent only on Ca^{2+}-feedback effects on Ca^{2+} release and reuptake, independent of oscillations in IP_{3}, the Ca^{2+} dynamics should not be affected by the IP_{3} buffering effect of GFP-LBD.

Effect of LBD Expression on Ca^{2+} Responses Elicited by Slow Release of Caged IP_{3}

In order to further investigate whether the effects of IP_{3} buffering to suppress [Ca^{2+}]_{i} oscillations is primarily associated with long-period, baseline-separated Ca^{2+} spiking, although this does not exclude a role for Ca^{2+} feedback on IP_{3} dynamics during faster oscillations.

The Effect of GFP-LBD on Intracellular [Ca^{2+}]_{i} Waves

In many cell types, [Ca^{2+}]_{i} oscillations are organized as intracellular Ca^{2+} waves. In hepatocytes, the Ca^{2+} waves begin at a discrete subcellular locus associated with the apical membrane and then propagate through the cell with constant velocity and amplitude (Rooney et al., 1990). Figure 2D shows time courses of [Ca^{2+}]_{i} increase at discrete subcellular sites following VP stimulation in GFP-, low-GFP-LBD, or high-GFP-LBD-expressing hepatocytes. In each case, the green and red traces are the [Ca^{2+}]_{i} increases from two subcellular regions in the same cell, separated by similar distances (see legend). The effects of GFP or GFP-LBD expression on the rates of Ca^{2+} wave propagation and rates of [Ca^{2+}]_{i} rise are summarized in Figures 2E and 2F. Submaximal agonist concentrations were defined as those that evoked oscillatory [Ca^{2+}]_{i} responses in GFP and low-GFP-LBD-expressing cells, whereas maximal hormone doses evoked a peak and plateau [Ca^{2+}]_{i} increase in all cells. In the GFP-expressing control cells, the rates of Ca^{2+} wave propagation and rates of Ca^{2+} rise were not significantly different between submaximal and maximal hormone concentrations (Figures 2E and 2F), consistent with our previous work showing that Ca^{2+} wave rates are independent of agonist dose (Rooney et al., 1990). Increasing GFP-LBD expression from low to high levels progressively slowed the rates of Ca^{2+} wave propagation and decreased rates of Ca^{2+} rise elicited by submaximal hormone stimulation (Figure 2). Maximal VP overcame the actions of low levels of GFP-LBD expression on both [Ca^{2+}]_{i} oscillation parameters but only partially reversed the effects of high GFP-LBD expression (Figures 2E and 2F).
a slow return to basal. Figure 3 shows representative traces from GFP- and GFP-LBD-expressing hepatocytes coexpressing RGE01 for [Ca\(^{2+}\)] measurement. Importantly, there was no effect of LBD on the rate of rise (Figure 3C) or the peak amplitude (Figure 3D) of the [Ca\(^{2+}\)] increase elicited by uncaging IP\(_3\). One interpretation of these data is that once the [IP\(_3\)] crosses a critical threshold, the primary driver of [Ca\(^{2+}\)] increase is CICR, yielding a Ca\(^{2+}\) transient that is essentially autonomous from the slowly rising IP\(_3\) level. Despite the lack of effect of LBD on the rising phase, it significantly prolonged the [Ca\(^{2+}\)] spike width (Figure 3E), perhaps because it slows IP\(_3\) degradation. Once the [Ca\(^{2+}\)] response to IP\(_3\) uncaging had returned to basal, the hepatocytes were subsequently challenged with 1 nM VP. In contrast to the results with IP\(_3\) uncaging, the rates of rise and peak amplitude of VP-induced Ca\(^{2+}\) transients were significantly decreased in the presence of LBD (Figures 3C and 3D). These data demonstrate that the effect of the IP\(_3\) buffer is not simply a consequence of the rate of delivery of IP\(_3\) to the IP\(_3\)R or the relative rates of IP\(_3\) \(\text{Ca}^{2+}\) activation and inactivation. Instead, the data support a role for rapid dynamic modulation of IP\(_3\) levels specifically during hormone-induced [Ca\(^{2+}\)] oscillations.

Effect of GFP-LBD on Agonist-Induced IP\(_3\) Increases

The effects of GFP-LBD expression on intracellular IP\(_3\) levels were measured in populations of COS cells using an IP\(_3\) mass assay. Stimulation with submaximal ATP (1 \(\mu\)M) for 60 s increased total intracellular IP\(_3\) by 30% ± 1% above basal in control GFP-expressing cells, whereas IP\(_3\) accumulation in GFP-LBD-expressing cells was significantly greater at 69% ± 5% above basal (\(p < 0.001\)). No significant difference in the basal levels of IP\(_3\) could be detected between the two cell populations. The higher accumulation of total IP\(_3\) in the presence of GFP-LBD is an expected consequence of IP\(_3\) buffering, because the IP\(_3\) buffer creates an additional cellular pool of sequestered IP\(_3\).

To directly measure agonist-induced [Ca\(^{2+}\)] and IP\(_3\) changes simultaneously by single-cell imaging, we used the recombinant IP\(_3\)-sensitive biosensor IRIS-1 (Matsuura et al., 2006) together with the chemical Ca\(^{2+}\) indicator Indo-1. More than 90% of nontransfected COS cells responded to increasing ATP concentrations with frequency-modulated [Ca\(^{2+}\)] spiking, whereas ATP induced only sporadic [Ca\(^{2+}\)] spikes in the presence of IRIS-1 (Figure S4). This presumably reflects the effect of IP\(_3\) binding by IRIS-1 and is consistent with the sensitivity of COS cells to the IP\(_3\) buffering effects of GFP-LBD shown in Figure 1. In order to examine the effect of the LBD buffer on IP\(_3\) dynamics, a DsRed-LBD construct was used so that IRIS-1 and DsRed-LBD could be discriminated in cotransfected cells. Stimulation with maximal ATP caused a sustained increase in [Ca\(^{2+}\)] and a robust rise in the IRIS-1 emission ratio in both DsRed and DsRed-LBD-expressing cells (Figure S4C). DsRed-LBD did not alter the
magnitude of [IP$_3$] increase induced by maximal ATP but slowed the rate of IP$_3$ rise by about 5-fold (Figures S4D and S4E). As with our measurements of total IP$_3$ formation, this is what is predicted for an IP$_3$ buffer and serves to validate our approach using the LBD-expression constructs to modify the kinetics of IP$_3$. In common with GFP-LBD, DsRed-LBD completely eliminated the occurrence of ATP-induced [Ca$^{2+}$] oscillations in cells expressing IRIS-1 plus DsRed (DsRed) or IRIS-1 plus DsRed-LBD (LBD), compared to nonexpressing cells on the same coverslips (None).

We also used IRIS-1 to examine the effects of DsRed-LBD expression on IP$_3$ and [Ca$^{2+}$] dynamics in hormone-stimulated hepatocytes (Figure 4). At low levels of expression, IRIS-1 did not block [Ca$^{2+}$] oscillations induced by submaximal VP but slowed the rising phase of the [Ca$^{2+}$] spike (compare DsRed to None in Figure 4C). This is expected because IRIS-1 is itself an IP$_3$ buffer, but fortunately, its buffering effect is not sufficient to prevent the [Ca$^{2+}$] oscillations in hepatocytes. Importantly, for each [Ca$^{2+}$] spike, there was a parallel transient increase in the IRIS-1 emission ratio, indicating that Ca$^{2+}$ and IP$_3$ oscillations are synchronized in hepatocytes (Figure 4A). The onset of the [Ca$^{2+}$] and IP$_3$ spikes appeared to occur simultaneously, whereas peak [Ca$^{2+}$] was achieved while the IP$_3$ level was still rising (Figure 4B). The declining phase of the IP$_3$ oscillations clearly lagged behind the relaxation of the [Ca$^{2+}$] spike, and this was also apparent in the longer peak duration for IP$_3$ (Figures 4B and 4D). These data are consistent with positive feedback of Ca$^{2+}$ on IP$_3$ generation (Politi et al., 2006). Coexpression of the IP$_3$ buffer DsRed-LBD with IRIS-1 slowed the rate of rise of IP$_3$, and this was accompanied by a slowing and broadening of the [Ca$^{2+}$] spike (Figure 4), similar to that observed with GFP-LBD (Figures 2 and 3). Although DsRed-LBD expression slowed the rates of IP$_3$ increase evoked by both submaximal and maximal hormone stimulation, it did not alter the magnitude of these IP$_3$ increases (Figures 4E and 4F).

The data presented above demonstrate that the IP$_3$ buffers DsRed-LBD and GFP-LBD act to suppress [Ca$^{2+}$] oscillations by slowing the rate of increase in free IP$_3$ and not by inhibiting IP$_3$ formation. This is consistent with a key role for IP$_3$ dynamics in driving [Ca$^{2+}$] oscillations. It should be noted that IRIS-1 also partially inhibited agonist-induced [Ca$^{2+}$] oscillations, even though it has a lower affinity for IP$_3$ than the type-I IP$_3$R used to derive the LBD-based IP$_3$ buffers (Kd of 500 nM versus 40 nM, respectively; Matsu-ura et al., 2006; Yoshikawa et al., 1996). These findings indicate that IRIS-1 (and presumably other IP$_3$ indicators) can interfere with Ca$^{2+}$ dynamics by buffering agonist-induced changes in IP$_3$.

Figure 4. Effect of LBD on [Ca$^{2+}$] and IP$_3$ Dynamics in Hepatocytes
Hepatocytes cotransfected with IRIS-1 and either DsRed or DsRed-LBD were loaded with Indo-1 and then stimulated with submaximal (1–5 nM VP) or maximal (100 nM VP or 100 µM ATP) agonist.

(A) Simultaneous measurement of IP$_3$ and [Ca$^{2+}$] oscillations.
(B) Expanded time course of single IP$_3$ and [Ca$^{2+}$] transients in the presence of DsRed or DsRed-LBD.
(C and D) Kinetics of VP-induced [Ca$^{2+}$] oscillations in cells expressing IRIS-1 plus DsRed (DsRed) or IRIS-1 plus DsRed-LBD (LBD), compared to nonexpressing cells on the same coverslips (None).

(E and F) Effect of DsRed-LBD on the rate and magnitude of IP$_3$ formation measured with IRIS-1 in cells stimulated with submaximal and maximal agonist. Data are mean ± SEM; n = 4–7 cells from five separate experiments. *Significantly different from nonexpressing cells; black diamond, significantly different from DsRed and nonexpressing cells; black triangle, significantly different from DsRed-expressing cells; p < 0.05.
Mathematical Modeling of IP3 Buffer Effects on IP3-Induced Ca2+ Oscillators

The data presented here provide evidence that oscillations of IP3 are essential for the generation of [Ca2+]i spiking in many cell types. Different mechanisms for feedback regulation of IP3 levels by Ca2+ ions have been proposed that can result in coupled oscillations of [IP3] and [Ca2+]i: (1) inhibition of IP3 generation through PKC-mediated inactivation of agonist receptors or PLC; (2) Ca2+-mediated activation of IP3 removal by ITPK; and (3) activation of PLC by Ca2+ (see Politi et al., 2006 and Sneyd et al., 2006). We have investigated how a molecular IP3 buffer (e.g., GFP-LBD) is predicted to affect these oscillator mechanisms by analyzing prototypical mathematical models for each mechanism. The models incorporate the regulatory properties of the IP3R (stimulation by IP3 and activation and delayed inhibition by [Ca2+]i) together with one of the above-mentioned feedback mechanisms (Figure S5).

In the absence of IP3 buffer, all models reproduce the experimentally observed encoding of agonist dose into [Ca2+]i oscillation frequency and increased the latency to first spike (Figures 5E and 5F), but the oscillations persisted even at very high concentrations of IP3 buffer (30 μM). By contrast, in the positive-feedback model with Ca2+-activated PLC, IP3 buffer (5 μM) completely abolished oscillations. Instead, stepwise increases of [Ca2+]i with increasing agonist concentrations were observed (Figure 5G) that closely resemble the experimental observations in COS cells (Figure 1). In this model, plasma-membrane Ca2+ fluxes were neglected, assuming that they are small relative to the fluxes across the ER membrane. When substantial Ca2+ fluxes through the plasma-membrane Ca2+ ATPase were added to the model, the IP3 buffer converted [Ca2+]i oscillations into slow and broad responses to agonist stimulation (Figure 5H) that are similar to those observed in hepatocytes (Figure 2). For lower concentrations of IP3 buffer (~1 μM), the oscillations persisted but had lower frequencies (not shown).

In summary, negative-feedback models involving either PKC or ITPK cannot account for the experimentally observed effects of GFP-LBD. By contrast, the positive-feedback model with Ca2+-activation of PLC reproduces the distinct patterns of broadened [Ca2+]i oscillations and amplitude-modulated stepwise [Ca2+]i increases observed in the presence of the IP3 buffer in hepatocytes and COS cells. This provides further evidence that IP3 dynamics are an intrinsic component of the Ca2+ oscillator, at least for these cell types.

Figure 5. Simulations of the Effect of GFP-LBD Expression in Mathematical Models of Ca2+/IP3 Oscillations

Ca2+ and IP3 oscillations were modeled as described in Supplemental Information in the absence (A–D) and presence (E–H) of LBD IP3 buffer. Parameters used are given in Table S2. Stepwise agonist dose increases occur at each arrow. All models show frequency encoding of stimulus strength in the absence of LBD. LBD does not abolish oscillations in models with PKC-mediated receptor/PLC inactivation (E) or Ca2+-dependent IP3 metabolism by ITPK (F). Ca2+-oscillations are abolished by LBD in models with Ca2+ activation of PLC (G and H). Graded plateau [Ca2+]i increases occur when the plasma membrane fluxes are neglected (G), and slow broad [Ca2+]i transients occur when Ca2+ fluxes through the PMCA are substantial (H). LBD concentrations were 30 μM in (E), (F), and (H) and 5 μM in (G).
DISCUSSION

We have used engineered IP₃-binding proteins expressed in intact cells to investigate the effects of slowing [IP₃] dynamics on hormone-induced [Ca²⁺] oscillations. Apart from possible effects on the initial Ca²⁺ spike, IP₃ buffers are not expected to substantially affect [Ca²⁺] oscillator mechanisms that depend only on a static increase in [IP₃] [e.g., CICR at the IP₃R]. By contrast, IP₃ buffering is expected to perturb the ongoing generation of repetitive [Ca²⁺], spikes that depend on rapid modulation of IP₃ levels to sustain the oscillatory behavior (e.g., cross-coupling between Ca²⁺ and IP₃). Thus, IP₃ buffers can be used as an experimental tool to examine the causality between IP₃ dynamics and Ca²⁺ oscillations. Moreover, computational studies have shown that an IP₃ buffer can be used to distinguish the type of Ca²⁺-dependent feedback (positive versus negative) on IP₃ metabolism, because these mechanisms predict qualitatively different effects of IP₃ buffering (Poiti et al., 2006).

Expression of molecular IP₃ buffers in hepatocytes and COS cells suppressed or eliminated oscillatory [Ca²⁺] signals in a concentration-dependent manner. The IP₃R ligand-binding domain constructs used here did not directly affect intracellular Ca²⁺ release or plasma membrane Ca²⁺ entry mechanisms. The effects on [Ca²⁺] oscillations were specific for GFP-LBD binding to IP₃ because the nonbinding mutant R265QLBD had no effect. Importantly, these IP₃ buffering effects were not restricted to the initial phase of the oscillations but were observed for the first [Ca²⁺] spike and all of the subsequent spikes in the oscillation train. The fact that IP₃ buffering affected these later Ca²⁺ oscillations is a clear indication of the importance of IP₃ dynamics during ongoing Ca²⁺ spiking.

Simultaneous direct measurement of [IP₃] and [Ca²⁺] revealed synchronized oscillations in both messengers during hormone stimulation. Importantly, the fact that the IP₃ buffer slowed the rate of rise of both [Ca²⁺] and [IP₃] indicates that Ca²⁺ dynamics are intimately tied to IP₃ dynamics. Moreover, the effects of GFP-LBD cannot be explained by a reduction in the steady-state or time-averaged increase in free [IP₃], because the peak [IP₃] during each [Ca²⁺] spike was unaffected and the perturbation of [Ca²⁺] and [IP₃] kinetics persisted throughout the train of oscillations. GFP-LBD also slowed the falling phase of each [Ca²⁺] oscillation, which is consistent with the expected interplay between Ca²⁺ and IP₃ in the cross-coupling PLC positive feedback model (Poiti et al., 2006). Thus, inactivation of the IP₃R by Ca²⁺ negative feedback is insufficient to fully terminate Ca²⁺ release until the [IP₃] falls, and this process is slowed by the presence of the IP₃ buffer.

A slow, continuous photolysis of caged IP₃ was used to mimic the low hormone doses that typically induce Ca²⁺ oscillations in hepatocytes. Although this slow IP₃ uncaging could elicit a Ca²⁺ spike, the rates of Ca²⁺ rise were about 10-fold slower compared to those recorded after VP stimulation and also had a significantly lower amplitude. This can be explained by positive Ca²⁺ feedback on PLC only occurring during hormone activation, whereas the slow uncaging of IP₃ in the absence of hormone does not engage this positive feedback on IP₃ generation. Importantly, GFP-LBD did not affect the rate of rise or amplitude of Ca²⁺ increases triggered by the slow release of caged IP₃, whereas subsequent hormone-evoked Ca²⁺ oscillations were inhibited in the same cell. These data indicate that the effects of GFP-LBD expression on hormone-induced Ca²⁺ oscillations are not a simple consequence of the rate of delivery of IP₃ to the IP₃R to trigger CICR. Instead, the qualitatively different effects of IP₃ buffering observed with hormone compared to uncaging demonstrate the importance of positive feedback to regenerate IP₃ during hormone stimulation and show that IP₃ dynamics are an essential component sustaining baseline separated Ca²⁺ oscillations. Finally, our observation that hepatocytes and COS cells expressing high levels of GFP-LBD did not exhibit agonist-induced [Ca²⁺], oscillations at all but instead responded with monophasic or broad [Ca²⁺] transients indicates that [Ca²⁺] oscillations do not occur in these cells in the absence of [IP₃] oscillations.

Taken together, the data are consistent with a model in which [IP₃] oscillations, mediated by Ca²⁺-dependent feedback on IP₃ metabolism, are essential for repetitive, large-amplitude [Ca²⁺] spiking. Cross-coupling between Ca²⁺ and IP₃ can occur through either positive or negative feedback mechanisms. However, our experimental and computational studies indicate that the results can only be reproduced with a positive feedback mechanism, i.e., Ca²⁺-dependent activation of PLC. The IP₃ buffer interferes by dampening and, at high concentration, abolishing the [IP₃] oscillations. Accordingly, oscillatory [Ca²⁺] spikes are slowed and prolonged at low buffer concentration and disappear at high buffer concentration.

In conclusion, this study presents evidence that Ca²⁺ feedback regulation of the IP₃R is not sufficient in itself to generate low-frequency, baseline-separated [Ca²⁺] oscillations elicited by PLC-linked hormones in hepatocytes and COS cells. Experimental manipulation of IP₃ dynamics with an IP₃ buffer has provided important insights into the mechanisms generating [Ca²⁺] oscillations and waves. Our data are consistent with a model for [Ca²⁺], spiking that combines IP₃-Ca²⁺ cross-coupling with IP₃R-based Ca²⁺ excitability. The combination of two coupled oscillators, one at the level of IP₃ generation/breakdown and the other at the level of IP₃R activation/inactivation, can greatly extend the frequency range for encoding hormone stimulus strength in [Ca²⁺] oscillations (Poiti et al., 2006). This provides a high-fidelity signal, even at very low hormone doses, and is likely to be a widely used paradigm to fine-tune responses to stimulation.

EXPERIMENTAL PROCEDURES

Cells

COS-7 cells obtained from American Type Culture Collection were cultured in Dulbecco’s modified Eagle’s medium plus 10% fetal bovine serum. Hepatocytes were isolated by collagenase perfusion of rat livers and maintained in primary culture for 16–20 hr in Williams E medium (Hajnoczy et al., 1995; Rooney et al., 1989). Animal studies were approved by Rutgers New Jersey Medical School Institutional Animal Care and Use Committee.

GFP-LBD Expression and IP₃ Binding

Rat type 1 IP₃R cDNA encoding LBD, residues 1–620, and R265QLBD were ligated in frame to the C terminus of pGFP-C1 or pDsRed-C1 (Clontech Laboratories) to generate the plasmids pGFP-LBD, pDsRed-LBD, and pGFP-R265QLBD. Cells were transfected 16–48 hr prior to use. Expression of recombinant protein was confirmed by western blot analysis with anti-GFP antibody. Confocal microscopy was used to calculate the intracellular [GFP] as described previously (Poiti et al., 2006). Quantitation of IP₃-binding...
sites in lysates of transfected COS cells was determined using [3H]-IP$_3$ (Joseph et al., 1995). Agonist-induced formation of IP$_3$ in intact COS cells was measured using a commercial IP$_3$ mass assay (GE Healthcare).

Ca$^{2+}$ and IP$_3$ Imaging

Live-cell imaging was performed with cells plated on glass coverslips. Fura-2 or Indo-1 were loaded as acetoxymethyl esters for 20–40 min. RGEC01 (Addgene) or IRIS-1 (gift of K. Mikoshiba, RIKEN Brain Science Institute) were cotransfected with the LBD constructs as required. The cells were incubated in HEPEs-buffered physiological saline solution in a microscope chamber maintained at 37°C. Properties of [Ca$^{2+}$], oscillations and waves were determined as described previously (Hajnoczky and Thomas, 1997; Rooney et al., 1989, 1990).

Model Description

The mathematical models (Figure S5) used to compute the time courses of IP$_3$ concentration, P$_i$ [Ca$^{2+}$], c; the free Ca$^{2+}$ concentration in the ER, s; and the fraction of active IP$_3$Rs, r, for the negative-feedback and positive-feedback-generated [Ca$^{2+}$] spiking are described in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, five figures, and two tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2014.10.033.

AUTHOR CONTRIBUTIONS

Imaging studies were carried out by L.D.G., P.J.B., P.B., and W.M.; IP$_3$ uncaging by P.J.B.; and biochemical studies by J.J. and S.K.J. Modeling was by A.P. and T.H. Data analysis and manuscript preparation was by L.D.G., P.J.B., T.H., and A.P.T.

ACKNOWLEDGMENTS

We acknowledge support from the NIH (DK082954 to A.P.T. and AA017752 to A.P.) and the Thomas P. Infusion Endowed Chair (to A.P.T.). IRIS-1 was generously provided by Dr. K. Mikoshiba.

Received: July 31, 2014
Revised: August 8, 2014
Accepted: October 10, 2014
Published: November 13, 2014

REFERENCES

