11-5-2014

Obstructive Sleep Apnea and Metabolic Syndrome: Where is the Chicken? Where is the Egg?

Vsevolod Y. Polotsky, MD, PhD
Johns Hopkins University, vpolots1@jhmi.edu

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/pulmcritcaregrandrounds
Part of the Medicine and Health Sciences Commons

Recommended Citation
Polotsky, MD, PhD, Vsevolod Y., "Obstructive Sleep Apnea and Metabolic Syndrome: Where is the Chicken? Where is the Egg?" (2014). Pulmonary and Critical Care Medicine, Presentations and Grand Rounds. Presentation 114.
http://jdc.jefferson.edu/pulmcritcaregrandrounds/114

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Pulmonary and Critical Care Medicine, Presentations and Grand Rounds by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Obstructive Sleep Apnea and Metabolic Syndrome: Where is the Chicken? Where is the Egg?

Vsevolod Y. Polotsky, M.D., Ph.D.
Associate Professor of Medicine
Division of Pulmonary and Critical Care Medicine,
Johns Hopkins University School of Medicine, Baltimore,
MD, USA

November 5, 2014
DISCLOSURE

• No financial relationships with commercial entities to disclose
• I will not reference an unlabeled/unapproved use of a drug or product in my presentation.
Intermittent Hypoxia

Transthoracic Pressure Swings

Sleep Fragmentation

Hypercapnea
TRACING OF OBSTRUCTIVE APNEAS DURING SLEEP
PREVALENCE

AHI ≥ 5: 24% in men and 9% in women
(Young et al., 1993)

30-60% in obese individuals
(Vgontzas, 2000; Punjabi 2002; Young 1993 and 2002; Tufik 2010)
Sleep-Disordered Breathing and Mortality: a Prospective Cohort Study

Current evidence suggests that increased cardiovascular risk of OSA may be related to the increased prevalence of the metabolic syndrome in patients with OSA.
Current evidence suggests that increased cardiovascular risk of OSA may be related to the increased prevalence of the metabolic syndrome in patients with OSA.
Metabolic Syndrome (NCEP, 2001 and AHA/NHLBI, 2004)
Any 3 of the following

- Abdominal obesity
- Serum triglycerides > 150 mg/dl
- HDL-C < 40 mg/dl in men and < 50 mg/dl in women
- BP $> 130/85$ (or treated for HTN)
- Fasting blood glucose > 100 mg/dl (or Medx)

+ Non-alcoholic fatty liver disease
• Obstructive Sleep Apnea, Insulin Resistance and Type 2 Diabetes

• Obstructive Sleep Apnea and Dysregulation of Lipid Metabolism

• Obstructive Sleep Apnea and Fatty Liver
• Obstructive Sleep Apnea, Insulin Resistance and Type 2 Diabetes

• Obstructive Sleep Apnea and Dysregulation of Lipid Metabolism

• Obstructive Sleep Apnea and Fatty Liver
Obstructive Sleep Apnea Is Independently Associated with Insulin Resistance
MARY S. M. IP, BING LAM, MATTHEW M. T. NG, WAH KIT LAM, KENNETH W. T. TSANG, and KAREN S. L. LAM
Am J Respir Crit Care Med Vol 165. pp 670–676, 2002

Sleep-disordered Breathing and Insulin Resistance in Middle-aged and Overweight Men
NARESH M. PUNJABI, JOHN D. SORKIN, LESLIE I. KATZEL, ANDREW P. GOLDBERG, ALAN R. SCHWARTZ, and PHILIP L. SMITH
Am J Respir Crit Care Med Vol 165. pp 677–682, 2002
HOMA = $G_0 \times l_0 / 22.5$

Prevalence of OSA in T2DM
(adapted from Pamidi and Tasali,
CPAP effect

- 9 small RCT (1 – 12 wks)
- in different population of apneics

- Different outcomes (SI, HbA1C, fasting blood glucose and insulin)

- 4 studies showed some improvement, 5 showed none
CPAP effect

Chirinos et al.

CPAP effect

New data from Punjabi and Tasali presented at ATS 2014 indicate significant improvement of insulin resistance with CPAP
What are the mechanisms?
i has a checzie
Intermittent Hypoxia

Transthoracic Pressure Swings

Sleep Fragmentation

Hypercapnea
Mouse Model of Intermittent Hypoxia
Intermittent Hypoxia is a Complex Stimulus: IH Events Fragment Sleep

Mouse Model of Intermittent Hypoxia

Intermittent Hypoxia Increases Insulin Resistance and Suppresses Insulin Secretion

Mouse Model of Intermittent Hypoxia

Systemic Effects (Carotid bodies, SNS)

Carotid Body governs systemic responses to Intermittent Hypoxia
Carotid Sinus Nerve Dissection

- External carotid artery
- Glossopharyngeal nerve (CN IX)
- Internal carotid artery
- Carotid sinus nerve
- Carotid sinus
- Carotid body
- Common carotid artery
Carotid Body governs systemic responses to Intermittent Hypoxia

Changes in mean arterial blood pressure in controls and rats exposed to episodic hypoxia for sham-operated and carotid-body-denervated (CBD) rats on going from baseline to final measurement. Values are means ± SEM. *P<0.05, versus group control and baseline.

Carotid Sinus Nerve Dissection (CSND) prevents IH-induced fasting hyperglycemia

A. Fasting blood glucose (mg/dl)

B. Fasting serum insulin (ng/ml)

C. HOMA-IR (units)

D. Fasting serum glucagon (pg/ml)

Carotid Sinus Nerve Dissection (CSND) prevents an IH-induced increase in hepatic glucose output (hyperinsulinemic euglycemic clamp)

A. Baseline hepatic glucose output (μmol/kg/min)

B. Whole body glucose flux during the clamp (μmol/kg/min)

Carotid Sinus Nerve Dissection (CSND) prevents an IH-induced increase in gluconeogenesis

CSND abolishes sympathetic activation in the liver

Carotid Body Governs Systemic Responses to Intermittent Hypoxia

- Intermittent Hypoxia
- Carotid Body
- Brainstem
- Cardiovascular System
- Sympathetic Nervous System
 - Lipolysis
 - Hepatic Glucose Output
 - Adipose Tissue
 - FFA
 - Muscle Insulin Resistance
 - Epinephrine Efflux by Adrenal Medulla
 - Pancreatic Insulin Secretion

↑ Glucose Output
↓ Lipolysis
↓ Muscle Insulin Resistance
↓ Hepatic Glucose Output
↓ Pancreatic Insulin Secretion
↑ Lipolysis
• Obstructive Sleep Apnea, Insulin Resistance and Type 2 Diabetes

• Obstructive Sleep Apnea and Dysregulation of Lipid Metabolism

• Obstructive Sleep Apnea and Fatty Liver
OSA is Associated with Dyslipidemia

<table>
<thead>
<tr>
<th>TABLE 5. Cholesterol, HDL cholesterol, and triglycerides by quartiles of RDI in SHHS participants at risk for incident CVD (n = 4,991), United States, October 1995 to February 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDI</td>
</tr>
<tr>
<td>0<1.25</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Cholesterol (mg/dl; mean (SD))</td>
</tr>
<tr>
<td>Men <65 years 197.2 (37.2)</td>
</tr>
<tr>
<td>≥65 years 196.3 (32.4)</td>
</tr>
<tr>
<td>Women <65 years 203.8 (40.9)</td>
</tr>
<tr>
<td>≥65 years 214.0 (38.3)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HDL cholesterol (mg/dl; mean (SD))</td>
</tr>
<tr>
<td>Men <65 years 46.7 (14.5)</td>
</tr>
<tr>
<td>≥65 years 47.0 (14.0)</td>
</tr>
<tr>
<td>Women <65 years 57.7 (16.8)</td>
</tr>
<tr>
<td>≥65 years 60.0 (17.1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dl; mean (SD))</td>
</tr>
<tr>
<td>Men <65 years 135.6 (130.4)</td>
</tr>
<tr>
<td>≥65 years 125.1 (65.5)</td>
</tr>
<tr>
<td>Women <65 years 128.5 (83.9)</td>
</tr>
<tr>
<td>≥65 years 136.3 (69.1)</td>
</tr>
</tbody>
</table>
CPAP and Plasma Lipids: Randomized Studies

<table>
<thead>
<tr>
<th></th>
<th>Therapeutic CPAP</th>
<th></th>
<th>Subtherapeutic CPAP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0 (SD)</td>
<td>Day 30 change (CI)</td>
<td>Day 0 (SD)</td>
<td>Day 30 change (CI)</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>220 (43)</td>
<td>-10.8 (-17.4 to -4.2)</td>
<td>216 (43)</td>
<td>-2.7 (-2.3 to 8.1)</td>
</tr>
<tr>
<td>mmol/l</td>
<td>5.7 (1.1)</td>
<td>-0.28 (-0.45 to -0.11)</td>
<td>5.6 (1.1)</td>
<td>-0.07 (-0.06 to 0.21)</td>
</tr>
<tr>
<td>Tryglicerides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>230 (168)</td>
<td>-21.2 (-24.8 to 67.3)</td>
<td>292 (221)</td>
<td>-4.4 (-39.8 to 32)</td>
</tr>
<tr>
<td>mmol/l</td>
<td>2.6 (1.9)</td>
<td>-0.24 (-0.28 to 0.76)</td>
<td>3.3 (2.5)</td>
<td>-0.05 (-0.45 to 0.36)</td>
</tr>
</tbody>
</table>

Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials

G V Robinson, J C T Pepperell, H C Segal, R J O Davies, J R Stradling

Independent Association Between Nocturnal Intermittent Hypoxemia and Metabolic Dyslipidemia in Obstructive Sleep Apnea

CPAP (2 months) and Postprandial Plasma Lipids: a Cross-over Randomized Placebo-Controlled Study

i has a checzie
Intermittent Hypoxia increases VLDL levels

CIH for 12 weeks in C57BL/6J mice

Lipid Biosynthesis

CM

VLDL

LPL

Hydrolysis

TG

β-Oxidation

CO₂ + H₂O

FFA

GLYCEROL

FFA

LPL

LPL

Lipolysis
Intermittent Hypoxia and Adipose Tissue Lipolysis
Mouse Model of Intermittent Hypoxia

Systemic Effects (Carotid bodies, SNS)
Lipolysis in Adipose Tissue

Kathy Jaworski, Eszter Sarkadi-Nagy, Robin E. Duncan, Maryam Ahmadian and Hei Sook Sul
Intermittent Hypoxia induces lipolysis via the carotid body and downstream sympathetic efferent pathways

In patients with sleep apnea nocturnal elevation of plasma FFA levels is caused by IH

Intermittent Hypoxia and Lipoprotein Clearance
Mouse Model of Intermittent Hypoxia

Tissue Specific Effects (Hypoxia inducible factors, etc)
Intermittent Hypoxia Decreases Chylomicron Clearance

Intermittent Hypoxia Decreases Lipoprotein Lipase (LpL) Activity in Adipose Tissue

Angiopoietin-like Protein 4 Rapidly Inactivates Lipoprotein Lipase (LPL)

Intermittent Hypoxia Increases Adipose Angptl4

Angptl4 Ab prevent CIH-induced dyslipidemia

Drager, Yao et al. AJRCCM 2013; 188:240-8
Angptl4 Ab prevent CIH-induced atherosclerosis

Drager, Yao et al. AJRCCM 2013; 188:240-8
In obese patients, expression of Angptl4 in subcutaneous fat depended on the severity of hypoxemia and OSA.

Drager, Yao et al. AJRCCM 2013; 188:240-8
Intermittent Hypoxia and Lipoprotein Clearance

- ↓ Lipoprotein clearance by up-regulating adipose Angptl4, a potent inhibitor of lipoprotein lipase
- Adipose tissue hypoxia may play a role in cardiovascular morbidity and mortality of OSA
• OSA and Intermittent Hypoxia

• Intermittent Hypoxia, Insulin Resistance and Type 2 Diabetes

• Intermittent Hypoxia and Dysregulation of Lipid Metabolism

• Intermittent Hypoxia and Fatty Liver
Non-alcoholic fatty liver disease

Fatty liver → Inflammation, fibrosis → Cirrhosis
OSA and Non-Alcoholic Fatty Liver

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aron-Wisnewsky 2012</td>
<td>8.3%</td>
<td>2.96 [1.13, 7.73]</td>
<td></td>
</tr>
<tr>
<td>Campos 2008</td>
<td>7.4%</td>
<td>4.00 [1.33, 12.07]</td>
<td></td>
</tr>
<tr>
<td>Daltro 2010</td>
<td>3.5%</td>
<td>1.84 [0.31, 10.91]</td>
<td></td>
</tr>
<tr>
<td>Jouet 2007</td>
<td>4.3%</td>
<td>0.60 [0.07, 5.39]</td>
<td></td>
</tr>
<tr>
<td>Kallwitz 2007</td>
<td>0.9%</td>
<td>3.14 [0.12, 79.39]</td>
<td></td>
</tr>
<tr>
<td>Polotsky 2009</td>
<td>1.6%</td>
<td>3.67 [0.47, 28.40]</td>
<td></td>
</tr>
<tr>
<td>Tannè 2005</td>
<td>0.8%</td>
<td>10.00 [0.85, 117.02]</td>
<td></td>
</tr>
<tr>
<td>Ulitsky 2010</td>
<td>39.9%</td>
<td>1.36 [0.78, 2.35]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>66.7%</td>
<td>2.01 [1.36, 2.97]</td>
<td>2.01 [1.36, 2.97]</td>
</tr>
</tbody>
</table>

G. Musso¹, M. Cassader², C. Olivetti¹, F. Rosina¹, G. Carbone¹ and R. Gambino²

obesity reviews (2013) 14, 417–431
OSA and Non-Alcoholic Fatty Liver

BMI 45, no OSA

Severe OSA

BMI 45, no OSA

Severe OSA

Polotsky et al. Am J Respir Crit Care Med, 179 (2009), pp. 228–234
OSA and Non-Alcoholic Fatty Liver: Liver Fibrosis

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>M-H, Fixed, 95% CI</th>
<th>M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aron-Wisnewsky 2012</td>
<td>11.4%</td>
<td>1.04 [0.06, 17.43]</td>
<td></td>
</tr>
<tr>
<td>Campos 2008</td>
<td>24.1%</td>
<td>1.85 [0.34, 10.05]</td>
<td></td>
</tr>
<tr>
<td>Daltro 2010</td>
<td>4.9%</td>
<td>3.46 [0.12, 100.51]</td>
<td></td>
</tr>
<tr>
<td>Jouet 2007</td>
<td>5.8%</td>
<td>3.00 [0.17, 51.75]</td>
<td></td>
</tr>
<tr>
<td>Kallwitz 2007</td>
<td>8.8%</td>
<td>3.00 [0.24, 36.88]</td>
<td></td>
</tr>
<tr>
<td>Mishra 2008</td>
<td>11.0%</td>
<td>5.80 [0.66, 51.19]</td>
<td></td>
</tr>
<tr>
<td>Polotsky 2009</td>
<td>4.7%</td>
<td>3.00 [0.09, 102.05]</td>
<td></td>
</tr>
<tr>
<td>Sundaram 2012</td>
<td>12.1%</td>
<td>2.00 [0.19, 20.61]</td>
<td></td>
</tr>
<tr>
<td>Tannè 2005</td>
<td>6.0%</td>
<td>2.29 [0.08, 66.02]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>100.0%</td>
<td>2.68 [1.23, 5.82]</td>
<td></td>
</tr>
</tbody>
</table>

G. Musso¹, M. Cassader², C. Olivetti¹, F. Rosina¹, G. Carbone¹ and R. Gambino²

obesity reviews (2013) 14, 417–431
I has a checzie
Intermittent Hypoxia Causes Steatohepatitis and Liver Fibrosis
What are the mechanisms?
Lysyl oxidase (LOX)

- Secreted amine oxidase.
- Catalyzes formation of covalent bonds between collagen fibers.
- Tissue hypoxia (via HIF-1) increases expression of LOX.

Kagan et al., 2003.
Erler et al., 2006; Higgins et al., 2007.
Mouse Model of Intermittent Hypoxia

Tissue Specific Effects (Hypoxia inducible factors, etc)
Intermittent hypoxia up-regulates collagen cross-linking enzyme lysyl oxidase in hepatocytes via hypoxia inducible factor 1 α.

In vivo

Liver LOX mRNA (fold change)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>IH</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIF1α+/-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.05

LOX mRNA (fold change)

In vitro

<table>
<thead>
<tr>
<th></th>
<th>16% O2</th>
<th>1% O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIF1α+/-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.05

Mesarwi et al. Manuscript in preparation
LOX secreted by hepatocytes in hypoxic cross-links collagen
LOX secreted by hepatocytes in hypoxic cross-links collagen

Mesarwi et al. Manuscript in preparation
Study design

- 35 consecutive patients recruited from the Bariatric Surgery clinic at Johns Hopkins Bayview Medical Center.
- Polysomnogram
- Serum LOX checked the morning after PSG.
- Liver biopsies analyzed for steatosis, fibrosis, and NAFLD activity score.
- Patients categorized by presence/absence of hepatic fibrosis.
OSA \rightarrow IH \rightarrow LOX \rightarrow Liver Fibrosis

R = 0.51, p < 0.002

Mesarwi et al. Manuscript in preparation
OSA → IH → LOX → Liver Fibrosis

Mesarwi et al. Manuscript in preparation
OSA → IH → LOX → Liver Fibrosis

Mesarwi et al. Manuscript in preparation
Mechanisms of Liver Fibrosis during IH: Hypothesis

1. IH induces liver tissue hypoxia
2. Liver tissue hypoxia up-regulates HIF-1\(\alpha\)
3. HIF-1\(\alpha\) up-regulates LOX
4. LOX cross-links collagen resulting in liver fibrosis
Current Members of the Laboratory

Dr. Jonathan Jun Dr. Mi-Kyung Shin Ms. Shannon Bevans-Fonti
Dr. Qiaoling Yao Dr. Omar Mesarwi

Formers Members of the Laboratory

Dr. David Li Dr. Luciano Drager Dr. Christian Reinke
Dr. Vladimir Savransky Ms. Ashika Nanayakkara-Bind

JHU Collaborators
Alan R Schwartz, MD
Philip L. Smith, MD
Susheel P Patil, MD, PhD
Naresh M. Punjabi, MD, PhD
Gregg L Semenza MD, PhD
Machiko Shirahata, PhD
Annabelle Rodriguez, PhD
Ann Moser, BS
Kimberley Steele, MD
Michael Schweitzer, MD

University of Maryland
Carole Sztalryd, PhD

Columbia University
William Blaner, PhD

UT Southwestern
Philipp Scherer PhD.

Lexicon Inc
David Powell, PhD

NIH: HL080105, HL068715, P50 HL084945,
AHA: 10GRNT3360001
ResMed Foundation