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Original Articles

Epitope Characterization of Sero-Specific Monoclonal
Antibody to Clostridium botulinum Neurotoxin Type A

Cindi R. Corbett,1,2 Erin Ballegeer,1 Kelly A. Weedmark,1 M.D. Elias,3 Fetweh H. Al-Saleem,3

Denise M. Ancharski,3 Lance L. Simpson,3 and Jody D. Berry1,2,4

Botulinum neurotoxins (BoNTs) are extremely potent toxins that can contaminate foods and are a public health
concern. Anti-BoNT antibodies have been described that are capable of detecting BoNTs; however there still
exists a need for accurate and sensitive detection capabilities for BoNTs. Herein, we describe the characterization
of a panel of eight monoclonal antibodies (MAbs) generated to the non-toxic receptor-binding domain of BoNT/
A (HC50/A) developed using a high-throughput screening approach. In two independent hybridoma fusions,
two groups of four IgG MAbs were developed against recombinant HC50/A. Of these eight, only a single MAb,
F90G5-3, bound to the whole BoNT/A protein and was characterized further. The F90G5-3 MAb slightly
prolonged time to death in an in vivo mouse bioassay and was mapped by pepscan to a peptide epitope in the N-
terminal subdomain of HC50/A (HCN25/A) comprising amino acid residues 985WTLQDTQEIKQRVVF999, an
epitope that is highly immunoreactive in humans. Furthermore, we demonstrate that F90G5-3 binds BoNT/A
with nanomolar efficiency. Together, our results indicate that F90G5-3 is of potential value as a diagnostic
immunoreagent for BoNT/A capture assay development and bio-forensic analysis.

Introduction

The botulinum neurotoxins (BoNTs) exist as seven
distinct serotypes (A-G) and are the causative agents of

botulism, a neuroparalytic disease. BoNTs are among the
most toxic substances known with an estimated human lethal
dose of 1 ng/kg body weight.(1) Naturally occurring botulism
transpires from the ingestion of contaminated food or the
colonization of the gastrointestinal tract by BoNT-producing
clostridia. However, the relative ease of production and the
lethality of all the BoNT subtypes has resulted in their inclu-
sion on the Category A Select Agents and Toxins list.(1) Fur-
thermore, mass vaccination against BoNTs is unlikely due to
the rarity of the naturally occurring disease, the limited
availability and crudeness of the current pentavalent vaccine,
and the subsequent inability to use BoNT therapy in vac-
cines.(1) Neutralizing antibodies have been observed to be
protective against toxin challenge. Indeed, polyclonal thera-
pies against BoNT include human immunoglobulin for infant
botulism (BoNT serotypes A and B) and equine immuno-
globulin for adult botulism (BoNT serotypes A, B, and E).(1,2)

In addition, a despeciated investigational heptavalent anti-
toxin (HBAT), which contains antibodies to all seven known
BoNT serotypes, has recently become available to treat adult
botulism.(3–5)

The potential severity and lethality of botulism poisoning
require that a patient presenting clinical symptoms receive
antitoxin in a timely manner, before receiving a definitive
diagnosis.(2,6,7) To date, the gold standard to detect BoNT in
clinical samples is the mouse toxicity assay. While both sen-
sitive and specific, this assay takes up to 96 h to complete and
requires specialized personnel, facility, and reagent re-
sources.(8) Due to adverse patient reactions that can occur and
batch variation in polyclonal immunoglobulin production, it
is desirable to develop rapid methods of diagnosis that permit
accurate and sensitive BoNT detection and serotyping capa-
bility to ensure the correct course of treatment is initiated as
soon as possible. Many efforts have been made to develop
alternative, immunologically based assays for BoNT detection
in clinical samples, yet these assays are often limited by the
availability of high-quality antibodies.(8)

The production of monoclonal antibodies (MAbs) against
BoNTs is an excellent choice for several reasons. First, MAbs
are consistent between lots. Second, they are well defined and
are theoretically in unlimited supply. Mammalian cell lines
scale up readily and provide a means to produce clinical grade
material. Third, murine hybridomas with bioactivity provide
good lead molecules that can be modified by recombinant
means for improved bioactivity and/or less immunogenicity,
the latter, for example, by simple chimerization strategies.
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Investigation of BoNT structures has provided invaluable
information for alternative strategies for antibody develop-
ment to the BoNTs. All known BoNTs are synthesized as
inactive *150 kDa pretoxins composed of three *50 kDa
functional domains. Upon secretion, the pretoxin is cleaved
by proteases into an active disulfide bond-linked dipeptide
consisting of a *50 kDa light chain and a *100 kDa heavy
chain. The light chain contains the N-terminal catalytic
domain, while the heavy chain comprises a *50 kDa trans-
location domain (HN50) and a *50 kDa C-terminal receptor-
binding domain (HC50). The catalytic domain on the light
chain is a zinc-endopeptidase that cleaves target SNARE
(soluble NSF attachment protein receptor) complex proteins
at the neuromuscular junction, preventing neurotransmitter
release. The HC50 domain contains the receptor-binding site
that targets the BoNTs to cholinorogenic nerve endings where
the toxin is internalized via receptor-mediated endocytosis,
and the HN50 translocation domain aids in the intracellular
translocation of the enzymatically active light chain into the
host cell cytosol.(9–11)

This HC50 binding domain (corresponding to residues 873-
1295 of BoNT/A) can be further divided into two *25 kDa
subdomains: the N-terminal b-barrel (HCN25 subdomain) and
the C-terminal b-trefoil fold (HCC25 subdomain).(11,12) BoNTs
are proposed to bind to host cell neurons via a two-receptor
mechanism, whereas BoNT/A binds to host cell gangliosides
followed by specific binding to the glycoprotein receptor SV2
within the synaptic vesicles.(13–15) The conserved motif
H.SXWY.G for ganglioside binding is located within
HCC25 of BoNT/A and BoNT/B.(11,16,17) While the specific
amino acids for BoNT/A receptor binding have yet to be
elucidated, the BoNT/B receptor-binding site is located
within its HCC25 subdomain, and it is most likely this region
that provides the BoNT/A protein receptor site as well.(14,18)

Immunization with the inert HC50 domains of BoNTs provi-
des a safe and rational approach for MAb development to-
ward BoNTs.

Disruption of BoNT binding to host cell receptors negates
toxicity, and the bioactivity of neutralizing MAbs to the HC50
receptor-binding domain of BoNTs is well-established.(19–26)

A limited number of neutralizing MAbs specific for the
BoNT/A HC50 binding domain, HC50/A, have been charac-
terized in detail.(20,24,27,28) Three of these neutralizing anti-
bodies were generated by phage display, of which two were
developed from a murine immune library and one was de-
veloped from a human library.(20,27) Several studies on neu-
tralizing MAbs specific for BoNT/A indicate that an
oligoclonal mixture of neutralizing antibodies provide a ra-
tional design for a potent human therapeutic.(20,25,26,29,30)

Given that each of the seven BoNTs exists as multiple anti-
genic variants,(31) one can expect that individual MAbs may
have limited in vivo protection and pools of well-defined
MAbs will be required for optimal protection. There have also
been reports of murine MAbs, developed using classical hy-
bridoma technology, which neutralize BoNT/A with high
potency.(25,30) Thus, the potential for development of neu-
tralizing MAbs from murine immune sources to generate lead
molecules against BoNT/A and other serotypes clearly exists.

Herein, we describe the development of a panel of MAbs
generated using a recombinant non-toxic HC50 binding do-
main of BoNT/A and characterize the epitope of MAb F90G5-
3, an antibody that binds BoNT/A with nanomolar efficiency

that may serve as an important immunoreagent for diagnostic
assay development.

Materials and Methods

Clostridium botulinum neurotoxin immunogens
and antigens

Gene segments of BoNT/A (strain 62A; amino acids [aa]
861-1296; accession no. X52066), BoNT/B (strain Okra; aa 853-
1291; accession no. M81186), and BoNT/E (strain NCTC
11219; aa 840-1252; accession no. X62683) were used to clone
and express recombinant HC50/A, HC50/B, and HC50/E
binding domains as previously described.(19) Antibody reac-
tivity with whole BoNT was assessed using available com-
mercial plates (Metabiologics, Madison, WI) in an ELISA
protocol. The whole BoNT toxins correspond to BoNT/A
from strain Hall A, BoNT/B from strain Okra B, and BoNT/E
from strain Alaska E.

Cloning, expression, and purification of BoNT/A
HC50 subdomains HCN25/A and HCC25/A

Gene segments encoding the N-terminal half (HCN25/A; aa
865-1100) and the C-terminal half (HCC25/A; aa 1077-1296) of
the BoNT/A HC50 receptor-binding domain (strain 62A; aa
865-1296, accession no. M30196) were cloned into the vector
pET30a + (Novagen, San Diego, CA), yielding expression
plasmids pETHn25A and pETHc25A, respectively. Expres-
sion was conducted for 12 h at 20�C in Escherichia coli BL21-
codon plus(DE3)-RIL (Stratagene, Cedar Creek, TX), grown in
Terrific Broth (1.2% peptone, 2.4% yeast extract, 0.94%
K2HPO4, 0.22% KH2PO4; Difco, Sparks, MD), by the addition
of 0.5 mM final concentration of IPTG. Bacterial cells were
harvested by centrifugation and resuspended in bacterial
protein extract reagent (Pierce, Rockford, IL) containing
0.1 mg/mL lysozyme (Sigma, St. Louis, MO), 0.01 mg/mL
DNase (Sigma), and a protease inhibitor cocktail (Roche, In-
dianapolis, IN). The cell suspension was passed twice through
a French pressure cell (Thermo Scientific, Ottawa, Canada). A
50 mM sodium phosphate buffer containing 300 mM NaCl,
5 mM imidazole, and 0.1% b-Octyl D-glucopyranoside (b-OG,
pH 8.0) was added to the lysed cell suspension and allowed to
stand for 30 min followed by centrifugation at 27,000 g for
40 min to remove the precipitate. HCN25/A or HCC25/A were
purified from the clarified supernatant by Ni-NTA chroma-
tography (Superflow column, Qiagen, Toronto, Canada). The
recombinant proteins were eluted using an imidazole gradi-
ent (20–250 mM imidazole in 50 mM sodium phosphate buffer
containing 300 mM NaCl and 0.1% b-OG [pH 8.0]). The active
fractions (which eluted with*80 mM imidazole) were pooled
and dialyzed against 25 mM sodium phosphate with 0.1% b-
OG (pH 6.8). The dialysate was centrifuged at 27,000 g for
30 min to remove the precipitate. This clear supernatant was
loaded onto a cation-exchange column containing 4 mL of CM
Sepharose Fast Flow (GE-Healthcare Bio-Sciences, Piscat-
away, NJ) equilibrated with 25 mM sodium phosphate with
0.1% b OG (pH 6.8). The column was washed with 50 volumes
of 25 mM sodium phosphate with 0.1% b OG (pH 6.8). Bound
protein was eluted from the column with an NaCl gradient (5–
500 mM NaCl in 25 mM sodium phosphate buffer with 0.1% b
OG [pH 6.8]). The active fractions, which eluted with
*200 mM NaCl, were pooled and dialyzed against PBS with
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0.1% b OG. Approximately, 1 to 2 mg of each polypeptide was
obtained from 1 L of bacterial culture. The purity of the two
polypeptides was confirmed by 10% SDS-PAGE and detected
by Western immunoblot using rabbit antisera against BoNT
HC50.

Immunization of mice and generation
of hybridoma cell lines

Immunization of mice and generation of the hybridoma cell
lines described herein was conducted as described.(32) MAbs
were first cloned from semi-solid agarose and then clones of
interest underwent another 2 rounds of limiting dilution
subcloning to ensure they were monoclonal. The MAb iso-
types were determined using a commercial dipstick assay
(Roche, Indianapolis, IN). The MAbs were manually purified
from serum-free cell supernatant using HiTrap protein G
columns (GE-Healthcare Bio-Sciences), according to the
manufacturer’s recommendations. MAb and antigen protein
concentrations were conducted using BCA reagent assay
(Pierce).

ELISA

Reactivity of the antibodies via ELISA was conducted fol-
lowing the standard operating procedures described previ-
ously by Corbett and colleagues.(32) For lower limit of
detection, HC50/A was coated in a concentration range from
125 ng to 122 fg. The lower limit of detection was defined at
the lowest concentration of antigen where binding was ob-
served with a value at least four times greater than back-
ground. For competitive ELISA, 62.5 ng/mL F90G5-3 was
incubated with 10mg/mL BSA, BoNT/A HCC25/A, or
HCN25/A overnight at 4�C with constant end-over-end rota-
tion. The pre-incubated MAb was then diluted 2-fold across a
96-well plate coated with 100 ng/well HC50/A and the ELISA
processed as above. Whole toxin ELISAs were conducted
using plates coated with BoNT/A, BoNT/B, or BoNT/E, per
the manufacturer’s recommendations (Metabiologics).

SDS-PAGE and Western immunoblotting

SDS-PAGE gels and Western immunoblots were per-
formed essentially as described previously.(33) Briefly, 2 mg of
HC50/A, HC50/B, HC50/E, HCN25/A, HCC25/A, or irrele-
vant antigen (bovine serum albumin) were electrophoresed
on a 4–20% Criterion Precast polyacrylamide gel (Bio-Rad,
Hercules, CA) followed by electrophoretic transfer to
Immobilon-P membranes (Millipore, Bedford, MA). The im-
munoblots were blocked using 0.4% BSA and washed three
times with Tris-buffered saline 0.1% Tween-20 (TBS-T).
Bound antibody was detected by incubation with HRP-
conjugated goat anti-mouse IgG (H + L) antibody (Southern
Biotech, Birmingham, AL), diluted 1:1000 with 0.1% skim–
0.1% TBS-T, and developed using 4-chloro-1-napthol sub-
strate (Sigma), according to the manufacturer’s instructions.

Surface plasmon resonance

The measurement of the affinity of the MAb for BoNT/A
HC was performed essentially as described previously,(34–36)

using a Biacore 2000 (Biacore, Uppsala, Sweden). BIAeva-
luation 3.2 software was used to measure and plot the kon and
koff values directly, which were then used to calculate the
binding affinity (KD).

Pin peptide epitope mapping

Peptides covering the sequence of BoNT/A HC were syn-
thesized as 15-mers, overlapping by five residues, coupled to
nylon support pins in a 96-well format (Pepscan Systems,
Lelystad, Netherlands). All manipulations of the pin peptide
assemblies were performed by placing the tips of the pins in
the wells of ELISA plates (MaxiSorp, Nalge-Nunc, Rochester,
NY). The pins were blocked with 4% BSA/PBS for 1 h at room
temperature, followed by incubation with MAb F90G5-3 (di-
luted in 2% BSA/PBS) for 1 hour at room temperature, and
washed three times in 0.9% saline–0.05% Tween-20 with
moderate shaking. To detect MAb binding the pins were in-
cubated with secondary antibody and developed as above for

FIG. 1. Reactivity of MAbs developed against the HC50 binding domain of BoNT/A. Anti-HC50/A MAb reactivity assessed by
ELISA, as described previously.(32) One clone, F90G5-3, elicited strong reactivity with whole BoNT/A and was chosen for further
characterization.
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Western immunoblot. Pins were regenerated according to the
manufacturer instructions for re-use.

Mouse protection assay

The functional activity of MAb reactive with whole BoNT/
A was assessed using a mouse protection assay (MPA) as
previously described.(37) The MPA was conducted following
the guidelines of the Institutional Animal Use and Care
Committee of Thomas Jefferson University (Philadelphia,
PA). The MAb-mediated protection was assessed in vivo by
mixing 50mg MAb with 5LD50 of BoNT/A toxin, incubating at
ambient temperature for 1 h, followed by injection into the tail
vein of 25 gm Swiss Webster mice (n = 5); this was followed by
monitoring percent survival for 5 days.

Results

MAb development and characterization

Spleens from mice immunized with the recombinant
BoNT/A HC50/A fragment were used in two hybridoma
fusion procedures. The two fusions resulted in the devel-
opment of eight anti-HC50/A MAb producing hybridomas
against BoNT/A HC50 receptor binding domain of BoNT/
A(32) (Fig. 1). All of the MAbs, except F90G5-3 (IgG2a/k), were
of the IgG1/k isotype. Assessment of the BoNT/A reactivity
revealed only one MAb, F90G5-3, had strong reactivity with
whole BoNT/A neurotoxin, and was therefore chosen for
further characterization (Fig. 1). The specificity and reactivity
of MAb F90G5-3 were assessed against the HC50 domains of
BoNT/A, BoNT/B, BoNT/E,(32) and the BoNT/A HC50

FIG. 2. Reactivity and specificity of MAb F90G5-3. (A) ELISA demonstrating concentration-specific reactivity of F90G5-3
with HC50/A and HCN25/A; no reactivity is observed with HCC25/A. (B) Lower limit of detection ELISA illustrating that
F90G5-3 can detect as low as 8 ng HC50/A. (C) Western immunoblot depicting specific reactivity of F90G5-3 with denatured
HC50/A (lane 5) and HCN25/A (lane 3). No reactivity is observed with irrelevant antigen, BSA (lane 1), HCC25/A (lane 2),
HC50/B (lane 6), or HC50/E (lane 7). Molecular mass markers (kDa), 194, 128, 87, 39, 32, 17, 0.6 (lane 4). (D) Competitive
ELISA demonstrating that pre-incubation with HCN25/A (-) decreases F90G5-3 reactivity with whole HC50/A, whereas pre-
incubation with HCC25/A (:) or irrelevant protein (BSA, C) does not decrease reactivity.
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subdomains, HCN25/A and HCC25/A (Fig. 2A and C). As we
demonstrated previously in a high-throughput method de-
velopment study, F90G5-3 has excellent serotype specificity
for HC50/A domain with no observed cross-reactivity with
HC50/B or HC50/E.(32) Indeed, the MAb was reactive with the
HCN25/A subdomain and no reactivity was observed for the
HCC25/A subdomain via ELISA or denaturing Western im-
munoblot analysis (Fig. 2A and C, respectively). The lower
limit of detection of F90G5-3 for BoNT/A HC fragment in
indirect ELISA was about 8 ng when assayed using ELISA
conditions employed within this study (Fig. 2B).

Reactivity of MAb with F90G5-3 with HCN25/A (as
demonstrated in ELISA and Western immunoblot analysis)
indicates that the antigenic site for F90G5-3 resides in the
N-terminal HCN25/A fragment. To further assess the speci-
ficity of F90G5-3 for the HCN25/A subdomain, a competi-
tion ELISA was conducted. Indeed, decreased reactivity of
F90G5-3 for HC50/A was observed when the MAb was pre-
incubated with HCN25/A, and no competition was observed
with pre-incubation of F90G5-3 with HCC25/A or irrelevant
protein (BSA) (Fig. 2D).

The reactivity of F90G5-3 with denatured HC50/A and
HCN25/A also suggests that the antibody binds to a linear
epitope. To further define the linear epitope recognized by
F90G5-3, pin peptide mapping was conducted where over-
lapping pin peptides covering the sequence of BoNT/A HC50
receptor-binding domain (corresponding to BoNT/A aa res-
idues 865-1296) were utilized. The data showed that F90G5-3
predominantly bound to the peptide epitope corresponding
to amino acids 985WTLQDTQEIKQRVVF999 (Fig. 3), which
is found in both the HC50/A and HCN25/A recombinant
proteins.

The MAb F90G5-3 binds to the HC50/A fragment with
nanomolar affinity. Measurement of the affinity of MAb
F90G5-3 for HC50/A was performed via surface plasmon
resonance analysis. The kon and koff rates were 4.8 · 103/Msec)
and 1.5 · 10 - 4/sec, respectively, and the resultant KD was
3.5 – 1.1 nM. This is typical of affinity matured MAbs raised to
BoNT and other toxins during T cell dependent immune re-
sponses, indicating that the HC50/A immunogen was a suit-
able surrogate immunogen and is able to portray the native N
terminus of the toxin.(38)

FIG. 3. Analysis of the HC50/A epitope bound by MAb F90G5-3. (A) Pepscan analysis: pin peptide epitope mapping of
MAb F90G5-3. Reactivity of F90G5-3 (;) and negative control (:) with overlapping synthetic 15-mer peptides spanning the
entire amino acid sequence of HC50/A. F90G5-3 binds specifically to one linear epitope, 985WTLQDTQEIKQRVVF999, which
is found in both HC50/A and HCN25/A. (B) Sequence alignment of the residues in BoNT/B and BoNT/E corresponding to
residues W985–F999 in BoNT/A, demonstrating the primary amino acid sequence diversity in this region. *, identical
residues; :, conserved residues; ., semi-conserved residues. Residues unique to BoNT/A are represented in blocks. (C)
Schematic of crystal structure of BoNT/A (reproduced from Lacy and associates(12) created with Raswin software). Enzy-
matic (light chain) is represented in yellow, HN50 translocation domain represented in green, HCN25 in blue, and HCC25 in
magenta. The F90G5-3 epitope, residues W985–F999, is highlighted in red. BoNT/A GT1b ganglioside binding residues
identified by Rummel and colleagues(16) are depicted in orange space. Residues identified to interact with the neutralizing
antibodies CR1 and AR2(40) are depicted in pink and cyan space fill.
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The sero-specificity and endpoint ELISA titers were also
determined for whole BoNTs. No cross-reactivity with
BoNT/B or BoNT/E was observed, and F90G5-3 had an anti-
BoNT/A titer of 3.1 ng/mL in whole BoNT/A toxin ELISA
(Fig. 4A). The functional activity of MAb F90G5-3 was as-
sessed using the mouse protection assay (MPA). Mice were
challenged with 5LD50 of BoNT/A pre-incubated with MAb
F90G5-3. Although MAb F90G5-3 was not able to neutralize
all toxin activity, as death was observed in the treated mice,
F90G5-3 treatment resulted in a slightly increased time to
death ( p < 0.005, Fig. 4B).

Discussion

We used recombinant HC50/A to develop a MAb to
BoNT/A that binds a linear epitope in the HCN25/A sub-
domain (985WTLQDTQEIKQRVVF999) with nanomolar af-
finity. Moreover, the use of non-toxic HC50 antigens for the
development of MAbs against whole BoNTs provides a safe
alternative for the development of BoNT detection reagents.
Within this study, only one MAb out of eight was highly
reactive with whole BoNT/A and thus selected for further
study.

The fact that we were able to develop antibody to this
epitope utilizing the HC50/A receptor-binding domain and
selecting for those that cross-react with whole BoNT/A is not
surprising, as the epitope is surface exposed within the full-
length BoNT/A (Fig. 3C). One can observe slight reactivity in
the Pepscan (Fig. 3A) with a second peptide corresponding to
amino acids 1195TNASQAGVEKILSAL1209. Given that F90G5-
3 is a monoclonal antibody, this reactivity is most likely due to
cross-reactivity with similar amino acid residues and thus an
artefact of the in vitro pepscan assay, as this sequence is lo-
cated within HC25/A sub-region of BoNT/A with which
F90G5-3 does not specifically react (Fig. 2). Interestingly,
comparison of the primary amino acid sequence in the region
corresponding to the 985WTLQDTQEIKQRVVF999 epitope in

BoNT/A to BoNT/B and BoNT/E reveals that five of 15
residues are identical between all three toxins, whereas paired
comparison of BoNT/A with BoNT/B or BoNT/E shows only
two of 15 and one of 15 are conserved and semi-conserved
between all three BoNTs, respectively (Fig. 3B). Indeed, only
six residues are unique within this region in BoNT/A, indi-
cating that BoNT/A residues TQE-K-R are critical for F90G5-3
binding and strongly suggesting that this region is under in-
tense immune or environmental selection pressure.

The modest neutralization of BoNT/A by MAb
F90G5-3 demonstrates that interaction with epitope

985WTLQDTQEIKQRVVF999 only slightly decreases the
functional activity of the neurotoxin. This partially neutral-
izing epitope lies within the HCN25/A subdomain of HC50/
A, a region with greater primary sequence homology in
comparison to the HCC25 subdomain, which is more antigenic
and important for host cell ganglioside binding.(11,16,39) In the
schematic representation of BoNT/A, one can observe the
residues important for host cell ganglioside receptor binding
are located on an adjacent surface to the F90G5-3 epitope
(Fig. 3C, orange space fill). The interaction with the host cell
gangliosides is the first low affinity binding interaction that
brings the toxin in close proximity to the host cells in the dual
receptor model of binding.(15) Antibody bound to the F90G5-3
epitope (Fig. 3C, red space fill) may cause steric hindrance to
partially occlude the ganglioside-binding site and thus provide
an explanation for the delayed time to death observed within
this study. While the amino acid residues that interact with the
host cell protein receptor have yet to be clearly elucidated,
Garcia-Rodriguez and colleagues have recently co-crystallized
neutralizing antibody fragments (CR1 and AR2) with BoNT/
A, thus identifying critical contact residues for neutraliza-
tion.(40) The amino acid residues of BoNT/A identified as the
structural binding epitope of neutralizing CR1 are depicted in
the pink color space fill, and the residues identified as part of
the functional epitopes of both neutralizing MAbs CR1 and
AR2 are depicted in the cyan space fill (Fig. 3C).(40) In this

FIG. 4. Reactivity and functional activity of MAb F90G5-3 with whole BoNT. (A) End-point titration of F90G5-3 against
BoNT/A, BoNT/B, and BoNT/E assessed via ELISA demonstrating specificity for BoNT/A. Reactivity with BoNT/A (-),
BONT/B (:), or BONT/E (;) is depicted. (B) Functional activity of MAb F90G5-3 assessed via MPA for BoNT/A neu-
tralization. Although there is not complete neutralization of BoNT/A, delayed time to death is significant ( p < 0.005). F90G5-3
treated mice (;); mock-treated mice (:).
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schematic, it does not appear that the epitope bound by MAb
F90G5-3 interferes with these key neutralizing residues.

Most significantly, MAb F90G5-3 was specific for HC50/A
and bound to a linear epitope (985WTLQDTQEIKQRVVF999)
within the HCN25/A subdomain with nanomolar affinity. A
search of the Immune Epitope Database (www.immuneepitope
.org) reveals that this minimal epitope has been targeted by
antibody responses from other species as a part of longer
contiguous regions. Indeed, the epitope has been studied
through peptide mapping of polyclonal immune serum raised
to the BoNT/A toxin in multiple species.(41) Using a radio-
immunoassay, the C10 peptide (BoNT/A residues 981-999)
was found to be immunodominant in humans and chickens
but recessive in equine and outbred mice. Intriguingly, sera
from 24 of 28 cervical dystonia patients treated with BONT/A
contained neutralizing antibodies that bound the C10 epitope
(residues 981-999).(42) The hybridoma F90G5-3 may thus be a
rare clone or the polyclonal response in inbred mice may not
mirror that observed by Attasi and Dolimbek.(41) While other
studies have evaluated the immunogenicity of this discrete
region as a part of larger polypeptides, the immunogenicity of
this minimal target remains unknown and needs investiga-
tion given the empirical nature of protein immunogens.
Nevertheless, these data reveal the first minimal MAb epitope

985WTLQDTQEIKQRVVF999 to map to this small domain for
F90G5-3. Importantly, our findings that MAb F90G5-3 binds
to a specific epitope region of BoNT/A with high affinity and
that this epitope target is highly immunoreactive in humans
indicates that F90G5-3 is of potential value as a diagnostic
immunoreagent for BoNT/A capture assay development and
bioforensic analysis.
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