November 2012

Novel approach to monitoring renal perfusion with the use of continuous renal oximetery in the setting of aortic dissection

Hitoshi Hirose
Thomas Jefferson University, Hitoshi.Hirose@Jefferson.edu

Philip Batista
Thomas Jefferson University, Philip.Batista@jefferson.edu

Nicholas C. Cavarocchi
Thomas Jefferson University, nicholas.cavarocchi@jefferson.edu

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/surgeryfp

Part of the [Surgery Commons](http://jdc.jefferson.edu/surgeryfp)

Recommended Citation

Aortic dissections commonly extend beyond the renal arteries with varying effects ranging from asymptomatic to renal failure. We report a case of aortic dissection with initial renal compromise, which was continuously monitored utilizing direct renal oximetry for evaluation of real-time renal perfusion and function.

65 year-old female with a long history of hypertension presented with acute retrosternal chest pain radiating to the back for 12 hours. MRA demonstrated a type A dissection. Left renal artery perfused via the false lumen. Initial serum creatinine of 1.6mg/dl. Operative management: aortic root repair with graft.

FORE-SIGHT oximetry monitoring was placed on each kidney utilizing pre-operative imaging. Absolute renal tissue oxygen saturation was recorded for 3 consecutive days post-operatively. Right kidney = 31 hours at >60% saturation (89%) Left kidney = 32 hours at >60% saturation (92%) Neither kidney recorded saturations below 52% Serum creatinine cleared to baseline CT angiography confirmed perfusion in both kidneys.

Distal organ perfusion can be a difficult assessment to make in the setting of aortic dissection. The laser technology utilized by FORE-SIGHT implements precise and narrow wavelengths proven to provide more accurate and absolute oxygen saturation values. By utilizing FORE-SIGHT oximetry in conjunction with imaging for precise placement, our group was able to accurately monitor renal perfusion in real time as opposed to waiting for contrast CT scan or traditional secondary markers such as serum creatinine and urine output. Saturations were maintained at expected levels throughout the post-operative course and renal function improved. This novel approach may serve a role in adjusting for renal oxygenation and subsequent perfusion in order to prevent renal failure in variety of settings from aortic injury to open cardiac procedures.

Renal oximetry may serve as an additional tool in evaluating, and potentially preventing, renal injury in the setting of aortic dissection as well as other poor perfusing states such as ECMO and cardiovascular surgery.