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FIGURE 1 | Studied melanoma bionetwork: glycolysis, PPP, TCA cycle, ααα-ketoglutarate-glutamate, and oxaloacetate-aspartate exchange through
the malate-aspartate shuttle, anaplerosis through (a) pyruvate carboxylase activity, (b) succinyl-CoA, and (c) glutaminolysis through mitochondrial
glutaminases (GLS and GLS2); pyruvate recycling through cytosolic (ME1) and mitochondrial malic enzymes (ME2), lactate dehydrogenase activity,
de novo fatty acid synthesis, and transport processes. Metabolic flux map and energy metabolism with predicted oxygen consumption rate MRO2 in the
human melanoma DB1 bionetwork at hyperglycemia and normoxia. Numbers indicate fluxes in millimoles per liter-cell per hour. See Table 1 for definitions and values
of the derived fluxes.

and νpj
i and νuk

i are the corresponding stoichiometric coefficients.
The following general dynamic mass balance equations were used
to describe the extracellular boundarymetabolites in themedium:

dMe

dt = rie × Jtri , (3)

where extracellular species concentration isMe, and rie is the ratio
of cell volume to media volume. We also included an additional
term for the medium flow rate. Note that we do not assume here
that media boundary metabolites are at constant concentration.

Bonded Cumomer Analysis
One can monitor flux through the biochemical network model
by measuring changes in isotopic enrichment of individual car-
bons in a molecule containing N carbon atoms. This yields a
total of N-independent time-courses or steady-state values. How-
ever, by considering all the different combinations of labeled and

unlabeled carbons, isotopomer models take full advantage of the
biochemical information that can be obtained from the NMR
spectra, yielding a total of 2N − 1 independent variables for a
molecule with N different carbon atoms. Because not all possible
isotopomers are detectable byNMR, amodel including all possible
isotopomers would be unnecessarily complex. The concept of
bonded cumomers leads to a reduced number of equations as well
as a more simple derivation of these equations compared to a
model, including all possible istopomers, while retaining all the
NMR measureable isotopomer information.

Let M{i} denote the isotopomer of a metabolite M, where {i} is a
set of integers i1, i2,. . ., in indicating the positions of all the labeled
carbons. We refer to m{i} as the isotopomer fraction [M{i}]/[M] of
molecules M labeled exactly at positions i1, i2. . ., in. A cumulative
isotopomer fraction (or cumomer fraction), noted as pM{i} is by
definition, the sum of isotopomer fractions for all isotopomers
labeled at least at positions i1, i2. . ., in, whatever the label at the
other positions. We refer to the size n of the set {i} as the order of
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the p-function. For example, assuming that M has a total of four
carbons, the second order p-function pM{1,3} can be expressed as:

pM{1,3} = m{1,3} + m{1,2,3} + m{1,3,4} + m{1,2,3,4} (4)

For example, the cumomer fraction pM{1,3} for cumomerM{1,3}
is the probability that both the first and third carbon atoms of
this molecule are labeled. Shestov et al. (45) have presented a
complete exposition of the bonded cumomer formalism. Here, we
will present examples of how this formalism can be utilized to
efficiently monitor flux through the various metabolic pathways
in Figure 1 in various types of perfused cells and in xenografts
of these tumor cells in immunosuppressed mice. These examples
illustrate the type of information that can be obtained from similar
dynamic studies performed on human tumors in situ or from
extracts of biopsy or surgically excised freeze-clamped specimens
of these tumors measured at isotopic steady state.

Isotopomer dynamics of this system together with the initial
metabolome state vector M0 ∈ RN and fluxome Fo ∈ RM (sub-
script “0” refers to baseline steady-state values and reaction rates)
are formulated as an initial value problem for ordinary differential
equations (ODE) in terms of Bonded Cumomer fractions as the
state variables. Metabolite 13C cumomer mass balance for parallel
monomolecular reactions was expressed in the form:

[M]
dπ(i)

dt =
∑
j
Fjπσj(i) −

(∑
k

Fk

)
π(i), (5)

where metaboliteM with pool size [M] is downstream of metabo-
lites Sj. While π(i) and πσj(i) represent the ith cumomer frac-
tion of metabolite M and metabolite Sj (i Bonded Cumomer),
respectively. The total outflux ΣFk balances influx ΣFj.

Shestov and coworkers (45) have described how isotopomer
balance equations have been derived for every metabolite Bonded
Cumomer of orders 1, 2, 3 (e.g., glutamate, glutamine, aspartate).
This resulted in a set of ~210 differential equations with fine
structure multiplets completely described by each metabolite’s
Bonded Cumomers of order 1, 2, and 3. Wiechert et al. (43) first
proposed the term cumomer, and the concept of cumomer was
used by Muzykantov and Shestov (57) in early studies. There are
connection matrices between the “Bonded Cumomer” π vectors
(which reflect subsets of metabolite isotopomers) and the vec-
tors of “fine structure” multiplets of 13C NMR spectra (singlets,
doublets, triplets, and quartets of 13C-labeled metabolite). Using
matrix connection equations, one derives kinetic equations in the
form of fine-structure spectroscopic-defined NMR data.

The fitted time-courses for [1,6-13C2] glucose perfusion were:
Glu4Tot (Tot-total), Glu4s, Glu4d34, Glu3Tot, Glu3d, Glu2Tot,
Glu2s, Lac3Tot, and acyl methylene (–(CH2)n–) resonance, for
a total of nine curves from which we determined the following
free fluxes: melanoma TCA cycle FTCA, PC FPC, exchange between
glutamate and α-ketoglutarate FX, anaplerotic exchange and net
flux at the level of SucCoA, FANA, mitochondrial malic enzyme
(ME2+ME3) activity, de novo FA production, glutaminolysis,
aspartate efflux, and three other parameters – Michaelis–Menten
lactate transport VLAC

max and KLAC
m and total cellular lactate concen-

tration. Based on flux balance analysis including non-oxidative

glycolytic flux CMRlac and others, we also calculated other
fluxes and parameters, including the Warburg parameter (ratio
of flux from pyruvate to lactate vs. pyruvate to the MPC).
Using the Runge–Kutta fourth-order procedure for stiff sys-
tems in terms of Bonded Cumomers, we solved these differ-
ential equations to obtain time courses for all possible fine
structure 13C multiplets of glutamate, glutamine, and aspartate.
Minimization of the cost function was performed using Broy-
den–Fletcher–Goldfarb–Shanno or Simplex algorithms. By veri-
fying that goodness-of-fit values were close to expected theoretical
values, we confirmed proper mean-square convergence. Monte
Carlo simulations with experimental noise levels were used to
calculate parameter errors (58). All numerical procedures were
carried out in Matlab (Mathworks, Natick, MA, USA).

Liquid chromatography-mass spectrometry data without
detailed flux analysis were utilized to compare fluxes under
different conditions (e.g., hyperglycemia vs. euglycemia) since no
statistically significant change was observed between the different
medium glucose concentrations.

Metabolic Isotopomer Control Analysis for
Bonded Cumomer Models
Metabolic control analysis (MCA) was originally proposed to
quantify sensitivity – i.e., to measure the effect of changes in
any parameter of a system on the other variables in that system.
This approach was developed independently by two groups in the
1970s (59, 60) and has been limited to systems at steady state.
In this approach, the sensitivity of changes in variables, such as
metabolite concentrations due to changes in other parameters is
quantified by control coefficients. Metabolic control coefficients
are used for comparison of many parameters that span several
orders ofmagnitude. A control coefficient is defined as the relative
change in the variable per relative change in the parameter, when
infinitesimal changes are introduced:

CR
p =

(
∂R/R
∂p/p

)
ss

=
(

∂lnR
∂lnp

)
ss
, (6)

where p is varied parameter and R is a system response, e.g.,
concentration or flux; the subscript ss indicates steady state. Sensi-
tivity analysismeasures the robustness of themetabolicmodel and
network topology to variations in parameter values. The robust
parameters with greatest influence on model simulation can help
to identify critical fluxes and pathways. These fluxes also have
less experimental error. Here, we extend the MCA technique to
dynamic metabolic flux analysis in which the behavior of interest
occurs in the temporal responses. First, we introduce the dynamic
isotopomer control coefficient or the sensitivity function:

ICCi
k =

(
∂π(i)/π(i)

∂Fk/Fk

)
, (7)

where π(i) represents the ith cumomer fraction of metabolite M,
and Fk is a certain parameter, such as a flux. By introducing these
variables, isotopomer sensitivity equations can be derived by dif-
ferentiating dynamic bonded cumomer balance equations (Eq. 5)
with respect to identified fluxes or other parameters that yield
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the corresponding initial value Cauchy problem for non-linear
ODE. The dynamic sensitivity equations determine the time evo-
lution of isotopomer control coefficients. These consist of a large
number of equations that must be solved simultaneously with the
initial system (1) resulting in double the number of differential
equations. These characteristics of the output sensitivity matrix
with respect to the flux vector F and other parameters provide
a framework for analysis of isotopomer model robustness. By
simulating the dynamic time course of sensitivity functions, one
identifies the fluxes most sensitive to a particular bonded cumo-
mer of a metabolite and 13C fine structure multiplet. Figure 2A
displays calculated values of those dynamic isotopomer control
coefficients (or relative sensitivity functions).

We also computed the sensitivity of the mean squared differ-
ence between experimental and correspondingmodel output (i.e.,
error) to finite changes in parameter values. The sensitivity to each
parameter was calculated as the relative change in mean squared
error (MSE) due to 5% change in the given parameter value:

Si =
max |(E (pi ± 0.05pi) − E (pi))|

0.05pi
pi ∗ E (pi)

, (8)

where E represents the minimum mean squared difference
between model simulation and experimental data. These sensi-
tivity values represent the degree to which the theoretical curves
are sensitive to the value of individual parameters. High values of
the sensitivity parameter Si indicate that changing a parameter pi

results in a significant change in the simulated curves and in the
MSE E.

Figure 2B shows calculated MSE sensitivities for several free
fitted fluxes.

Applications of Metabolomics to
Melanoma and Lymphoma
To illustrate the application of these techniques to studies of
human cancer, we will describe studies of human melanoma
models grown in culture, as perfused tumor cells grown on
solid microcarrier beads and as xenografts in immunosuppressed
mice. The cell studies will be utilized to validate the bonded
cumomer model and to estimate the contributions of glycolytic
metabolism and mitochondrial metabolism to ATP production
under hyperglycemic (26mM) and euglycemic (5mM) condi-
tions. Effects of euglycemia and hyperglycemia on glutamine
metabolism, flux through the pentose shunt and FA metabolic
pathways will also be evaluated using both 13C MRS and bonded
cumomer analysis as well as LC–MS and fragmented cumomer
analysis.

To demonstrate how 13CMRS and LC–MS can be used to detect
response to signal-transduction inhibitors, we will present data
on the effect of rapamycin, a well known inhibitor of the mTOR
pathway, on DLCL2 human diffuse large B-cell NHL cells grown
in culture as perfused cells immobilized by encasement in agarose
beads and as xenografts in immunosuppressed mice. We will

FIGURE 2 | The dynamic multiplet control coefficients and sensitivity analysis. (A) In the left panel, the dynamic multiplet control coefficients are shown with
respect to glutaminolysis flux for the glutamate-C4 total and doublet C4d34 and singlet C4s multiplets and the glutamate-C3 and glutamate-C2 total and their
multiplets (right panel) during perfusion with medium containing [1,6-13C2] glucose and unlabeled glutamine. Data show the time courses of normalized multiplet
sensitivities to variation of the glutaminolysis flux. For simulation, the conditions were chosen to optimize extracted fluxes, while glutaminolysis flux was set at 5% of
the TCA cycle flux. The glutamate doublet 4d34 is the most sensitive glutamate multiplet to measure glutaminolysis net flux during the first ~1.5 h, and afterwards the
4s singlet becomes more sensitive. The data in the right panel demonstrate the superior sensitivity of the glutamate 3d doublet at the beginning and glutamate 2s
singlet after ~1.5 h. (B) Total relative mean squared error (MSE) sensitivity function output during perfusion with medium containing [1,6-13C2] glucose and unlabeled
glutamine with respect to free fitted fluxes. Upper panel shows the sensitivities to the TCA cycle, anaplerotic net flux at the level of SucCoA and mitochondrial malic
enzyme activities; and lower panel shows MSE sensitivities to the pyruvate carboxylase (pc), exchange flux α-Kg↔glu (x), exchange flux at the level of SucCoA (ana)
and glutaminolysis flux (gls). Note also the significant sensitivities for the fluxes in the upper panel and higher sensitivity for glutaminolysis compared to other fluxes in
the lower panel.
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demonstrate that response to this inhibitor can also be monitored
by 1H MRS lactate imaging in cells and in xenografts. Ultimately,
the goalwill be to translate thesemethods into the clinic tomanage
humanNHLpatients. Preliminary studies leading to this approach
have been published (15).

MATERIALS AND METHODS

Cell Culture
The human DB-1 melanoma cell line was derived by David Berd
from a lymph node metastasis of one of his patients (Thomas Jef-
ferson University Hospital, Philadelphia, PA, USA) before admin-
istration of any treatment. Cells were cultured from the tumor
and cryopreserved after the 16th passage. Monoclonal antibodies
were used to confirm cell surface antigens (61). DB-1 cells were
grown as monolayers for routine culture at 37°C in 5% CO2 in α-
MEM medium supplemented with 10% fetal bovine serum, 2mM
glutamine, 26mM glucose, and 1% (v/v) non-essential AAs and
10mM HEPES buffer. In tissue culture flasks, the doubling time
was 48 h (50). The V600E BRAF mutation is expressed by the
DB-1 cells.

Cell Perfusion and NMR Spectroscopy
ForNMR studies of perfused tumor cells, DB-1 cells were cultured
in DMEM with 1% non-essential AAs (Invitrogen, Grand Island,
NY, USA), 10% fetal bovine serum, 10mM HEPES, 4mM glu-
tamine, and 26mM glucose (complete DMEM). Approximately
5× 108 cells were grown on the surface of non-porousmicrocarri-
ers that had amean diameter of 170microns (Solohill, AnnArbor,
MI, USA). These microcarriers were coated with either collagen
or ProNectinF® to enhance cell attachment and proliferation and
tightly packed inside a 20mm NMR tube in which they were
perfused continuously in the open bioreactor system. Mancuso
et al. (62) have published a detailed description of the perfusion
system, including flow rates, cell adhesion procedures, etc.

The method of Bental et al. (63) was used to immobilize lym-
phoma cells (DLCL2) by encapsulation into agarose beads. In
brief, we thoroughly mixed 1.5ml of ~5× 108 cells in culture
medium with an equal volume of the low-temperature-gelling
agarose at 37°C andmagnetically stirred themixture after addition
of 3ml paraffin oil at 37°C generating the cell-encapsulated spher-
ical beads with 100–200 μm diameters. The beads were cooled by
continuous stirring, and the oil was removed by centrifugation.
The encapsulated cells were then loaded into a 10mm NMR tube
connected to the perfusion system.

Medium was circulated through the microcarriers or agarose
gel at a flow rate of 12ml/min with a peristaltic pump (Masterflex,
Cole Parmer, Chicago, IL, USA). A gas-exchange module consist-
ing of a siliconemembrane (thin-wall silicone tubing) was situated
before the perfusion chamber along the medium flow path for
removal of carbon dioxide and addition of oxygen. The oxygen
level was measured continuously with a polarographic oxygen
probe (Mettler-Toledo, Columbus, OH, USA) situated at the inlet
port to the perfusion chamber and maintained at a steady-state
pressure near air saturation. The medium was then warmed to
40°C, and a second polarographic oxygen probe was used to
detect the oxygen level of the medium coming out of the NMR

tube permitting the oxygen consumption rate of the culture to be
monitored continuously from the decrease in pO2. A pH probe
(Mettler-Toledo, Columbus, OH, USA) was inserted downstream
of the outlet oxygen probe. Adjustment of the level of CO2 in
the gas-exchange module was used to modify/maintain the pH of
the medium. The temperature of the medium entering the NMR
tube was monitored with a thermocouple at the exit port of the
perfusion chamber andwas fine-tunedwith amicrostat-controller
and an electrical resistance heater to 37.0± 0.2°C. The glucose
concentration in the recirculating medium was maintained at a
constant level (clamped) by continuously feeding fresh medium
typically at a flow rate of 24ml/h and removing depleted medium
from a recirculation bottle while maintaining the total volume of
recirculating medium at 120ml. During 13C experiments, 32mM
[1,6-13C2] glucose was fed into the system, and the recirculating
glucose level was clamped at 26mM by adjusting the feed rate.

13C NMR spectra were acquired with standard 1H decou-
pled NOE 13C acquisition on a 9.4 T/89mm vertical bore Varian
spectrometer (Varian Inc., Palo Alto, CA, USA) with acquisition
parameters: 60° pulse angle, 1.2 s repetition rate, 25,000Hz spec-
tral width, 16,384 points, and 750 transients per spectrum. Free-
induction decays were apodized by exponential multiplication
(2Hz) for signal to noise enhancement and peak areas were mea-
suredwithNutsNMR(AcornNMR, Fremont, CA,USA) software.
The number of cells in the NMR tube was determined from the
total NTP level measured by 31P NMR as described previously
(64) using the following spectral parameters: 60° pulse angle, 1 s
repetition rate, 15,000Hz, 1,200 transients.

Melanoma cells were initially studied under normoxic hyper-
glycemic (26mM glucose) conditions to enhance lactic acidosis
(65, 66) and subsequently under normoxic euglycemia (5mM
glucose) to more closely simulate in vivo conditions. The effect
of these changes in glucose concentration on flux through various
pathways of tumor metabolism was determined over a ~6 h time
course during which the kinetics of labeling of lactate, glutamate
and other metabolites was monitored. The estimated TCA cycle
flux was compared to the oxygen consumption flux to test the
accuracy of the calculations.

In vivo animal studies
Immunosuppressed mice were used for in vivo studies. Tumors
were developed by subcutaneous implantation of tumor cells to
the flanks of nude mice. NMR studies on mice were performed
using a home-built 13C/1Hdual-tuned probe at 9.4 T (Varian Inc.).
All animal studies were approved by the Institutional Animal Care
and Use Committee (IACUC) of the University of Pennsylvania,
and performed in accordance with its regulatory standards.

Statistical Analysis
Student’s t-test was used to calculate p-values. P-values <0.05 were
considered significant.

RESULTS AND DISCUSSION

Melanoma Studies
Determination of the relative levels of glycolytic and oxida-
tive metabolism of specific tumors plays an important role in
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