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1. Introduction to Skeletal Tissues 

The fossil records and phylogenetic systematics indicate that mineralized tissues have 

existed in a myriad of chemical forms and in numerous configurations for millions of 

years. Close examination of fossilized long bones and vertebrae indicates that both 

osseous and cartilage-like tissues appeared early in evolution, indeed, it was thought 

that cartilage, a poorly organized tissue, may have predated bone. However, closer 

examination indicates that while a cartilaginous skeleton is an optimal structure for 

organisms living in aqueous environments, it was likely preceded by the denser and 

mechanically stronger mineralized bone. Romer noted in his paper to the NY Academy 

of Sciences that: 

“the early vertebrates had a considerable degree of ossification which was followed in a 

majority of cases by a slump toward a cartilaginous condition. Bone is an ancient, 

rather than a relatively new, skeletal material in the history of vertebrates”
 1

 

We are just now beginning to understand the complex interplay between all of these 

mineralized tissues and other tissues in the body. For example, Karsenty’s laboratory 

has shown that regulation of bone mass is coordinated with both energy metabolism 

and even fertility. 2 

Not surprisingly, bone mass,  structure and function is tightly regulated. In the adult, this 

is achieved by two active and coupled processes, bone resorption and bone formation. 

Prime regulators of these processes include hormones, especially estrogen, parathyroid 

hormone (PTH) and parathyroid hormone-related protein (PTHrP) and vitamin D 

metabolites. Bone marrow-derived osteoblasts are responsible for new bone formation  

while macrophage-like osteoclasts mediate the resorptive process. The activities of 

these cell types are linked through a bone remodeling cycle (Fig 1).  Osteoclasts 

activate the cycle by inducing the resorption of old bone; this activity is followed by a 

formative phase during which osteoblasts synthesize new bone to replace the resorbed 

tissue. Those osteoblasts that become engulfed in the mineralized bone, osteocytes, 

play a pivotal role in functionally adapting the tissue to applied mechanical forces As will 

be highlighted in this review, autophagy is relevant for the  survival and function of each 

of these cell types within their highly specialized matrices.  

When the equilibrium between these two processes is disturbed, and there is excessive 

bone formation this can lead to over mineralization of bone or osteopetrosis. More 

frequently, there is increased bone loss leading to a porotic state i.e. osteopenia or 

osteoporosis.  Osteoporosis, or more commonly post-menopausal osteoporosis, is a 

condition which increases bone fracture risk thereby challenging the quality of life and 

longevity of elderly women and men.3. The relationship between the autophagic 

pathway and osteoporosis, was highlighted in a Genome-wide Association Study 

(GWAS) of wrist bone mineral density; the pathway-based analysis showed significant 
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associations with regulation-of-autophagy genes including ATG (autophagy related 

gene)12, PIK3C3, , PRKAA2, ATG5 GABARAPL1, BECN1, IFNA13 and ATG74. The 

authors related variants in these genes to the pathogenesis of osteoporosis in terms of 

modulating factors required for bone formation and/or remodeling.   

While a great deal of new information is accruing concerning skeletal cell homeostasis, 

there is growing awareness that autophagy enables osteoblasts, osteoclasts and 

chondrocytes to survive within a hypoxic, and even hypertonic environment. In this way, 

cells can overcome stressor challenges and nutrient deficiencies and, for osteocytes 

and articular chondrocytes fulfill their fates as exceedingly long-lived terminally 

differentiated cells. The focus of this review is to examine the significance of the 

autophagic process in terms of the functional demands of the skeleton in growth and 

homeostasis, and to provide evidence that disregulation of autophagy is involved in the 

pathogenesis of diseases of bone (Paget’s disease of bone, PDB) and cartilage 

(osteoarthritis, OA, and the mucopolysaccharidoses, MPS).  (see Table 1) 

 

2. Osteoblast and Osteocyte Function and Autophagy 

Signaling Pathways Regulating Osteoblast Activity and Autophagy: Osteoblasts 

secrete the organic matrix of bone (osteoid) and participate in its mineralization. During 

its encasement in bone, the osteoblast becomes fully differentiated and assumes the 

morphology and function of an osteocyte (see later and Fig. 1). It is likely that the 

physiological stimulus for new bone formation is linked to intermittent shifts in PTH 

levels and the resorptive activities of osteoclasts which release growth factors such 

transforming growth factor-β (TGF-β), insulin-like growth factors and bone 

morphogenetic proteins (BMPs), from the extracellular matrix of the bone. In addition, a 

neuronal involvement cannot be excluded since bone mass is responsive to the 

sympathetic tone of the nervous system, through modulation of the β2-adrenergic 

receptor/cAMP signaling system.5 During resorption, release of these buried agents 

from the resorbing tissue promotes osteoblast migration, activation and even new bone 

formation.  

The BMPs are clinically powerful bone forming agents that bind to a common cognate 

receptor on osteoblasts, and transduce signals through the Smad signaling system. The 

functional activity of the BMP ligands are regulated by extracellular protein antagonists 

that include noggin, chordin and sclerostin.6 That BMPs may regulate autophagy is 

suggested by the studies of Cao et al.7 who showed that noggin reduced LC 

(microtubule-associated protein 1 light chain)3-II levels, albeit in acute pancreatitis cells; 

this was overcome by administration of BMP-2 which  increased the levels of both 

BECLIN I and LAMP2. Indeed, a mutation in the BMP type I activin receptor-like kinase 

2 causes a rare and very disabling disease, Fibrodysplasia Ossificans Progressiva. 
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Whether disease progression is related to expression of an autophagic phenotype 

awaits further study. 

Activities of proteins of the Wnt/β-catenin pathway are major regulators of chondrocyte 

and osteoblast function. Wnt signaling plays a major role in regulating stem cell 

commitment to the osteoblast lineage and osteoblast differentiation. In tumor and 

hepatic cells, Wnt signaling has been negatively linked to autophagy. This is mediated 

through the interaction of Dishevelled (Dvl2) which binds to the autophagy receptor 

sequestosome 1 (SQSTM1)/p62 (see later) which in turn facilitates LC3-mediated 

autophagosome recruitment, ubiquitylation and degradation.8 Likewise, activation of the 

Wnt/β-catenin pathway is central to the pathogenesis of both rheumatoid arthritis and 

OA. While it is tempting to speculate that activation of this pathway suppresses 

autophagy and enhances osteoblast or chondrocyte death, this relationship has not as 

yet been fully established.  

The functional role of autophagy in the osteoblast is still largely unexplored, particularly 

in vivo. However, several autophagy-related proteins profoundly impact osteoblast 

biology. The autophagy receptor Neighbor of Breast Cancer Susceptibility 1 gene 

(NBR1) is involved with targeting ubiquitinated cargos to the autophagosome. 9 It fulfills 

this function by interacting with ATG8 (LC3) protein family members through its LC3-

interacting region (LIR) and with target proteins through the ubiquitin-associated (UBA) 

domain. A knock-in mouse model with deletion of both LIR and UBA domains in the 

NBR1 locus results in increased osteoblast differentiation and activity. 10 This aberrant 

osteoblastic activity appears to be dependent on p38 MAPK hyperactivation. The 

moderate increase in the autophagy receptor SQSTM1 in osteoblasts isolated from 

NBR1 knock-in mice can impair proteasomal function and activate the stress responsive 

transcription factor NF-E2 related factor (NRF2), which results in the induction of many 

cytoprotective genes. 

At least two families of transcription factors with known roles in autophagy control 

osteoblast survival and function. Of these, family of forkhead transcription factors 

(FOXO) serves key roles in cell growth, cell proliferation, DNA repair, cell cycle arrest, 

reactive oxygen species (ROS) generation, energy homeostasis and glucose 

metabolism.11 FOXO1, 3, 4 and 6 are downstream of early signaling events in the 

insulin pathway and negatively regulate serine/threonine protein kinase (AKT) 

signaling.12  FOXO activation potently induces autophagy by directly binding to the 

promoter regions of target genes.  Genetic deletion of FOXOs in osteoblasts induces 

oxidative stress and increased apoptosis mimicking the aging process. Conversely, 

FOXO3 overexpression prevents bone loss associated with aging.13 Since autophagy 

has an important cytoprotective role against oxidative stress and other aging related 

phenotypes, and with glucosamine promotes autophagic flux in chondrocytes, 14  it is 
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tempting to consider that the role of FOXO in maintaining bone homeostasis is at least, 

in part, mediated by the induction of autophagy. 

Activating transcription factor 4 (ATF4), a member of the CREB family of B ZIP proteins, 

is required to maintain osteoblast function and promote terminal differentiation; it also 

protects cells from amino acid starvation and enhances amino acid import into cells.  

Changes in ATF4 activity have been linked to skeletal manifestations of two human 

genetic diseases, Coffin-Lowry syndrome and neurofibromatosis type I. It was shown 

that this transcription factor induces osteoblast-specific gene expression in fibroblasts 

together with osteocalcin synthesis, thus predisposing these cells to aberrant mineral 

deposition.15 Interestingly ATF4 is thought to promote cell survival through the 

transcription of several autophagy genes including MAP1LC3B and ATG5. Elefteriou et 

al. 16 noted that   the increased bone-mass phenotype resulting from neurofibromin 

(NF1) deficiency can be rescued through nutritional restriction of protein intake, a 

finding that would strongly suggest that a link exists between expression of this protein 

and autophagic flux.   

Autophagy and the Osteoblast–Osteocyte Transition: In contrast to the short half 

lives (days/weeks) of osteoblasts, osteocytes are very long-lived cells that exhibit an 

architecture closer to neurons than cartilage or bone cells. The basic features of the 

osteocyte is a cell subsumed into mineralized bone lacunae with a large number of long 

dendritic processes contained in bone canals (canaliculi) many of which interconnect 

with other osteocytes to form a syncytium as well as interacting with osteoblasts and 

bone lining cells (Fig. 1). It is likely that their primary role is mechanotransduction i.e. 

converting mechanical forces on the bone into biological signals that serve to promote 

the remodeling process. While supporting little biological activity, there is evidence that 

like osteoblasts, these cells can express the cytokine Receptor activator of nuclear 

factor kappa B ligand (RANKL) (see later) and thereby influence osteoclastogenesis 

and resorption. Osteocytes can also secrete sclerostin which inhibits signaling and 

possibly enhances osteocyte apoptosis through the Wnt signallng pathway. Not 

surprisingly, studies by Zahm et al.17 clearly showed that in situ a considerable number 

of osteonal osteocytes display a punctuate distribution of LC3-II protein indicative of a 

basal level of autophagy (Fig. 1).  

In addition in culture, using pre-osteocyte-like murine (MLO-A5) cells, autophagy was 

found to be upregulated following nutrient deprivation and hypoxic culture, stress 

conditions that osteocytes encounter in vivo (see Fig.1, Table 1).  Furthermore, in 

response to calcium stress, the transcription factor hypoxia inducible factor (HIF)-1 

regulated MLO-A5 autophagy, indicating that low pO2 may serve as a positive regulator 

of autophagy in this cell type. Lastly, it should be mentioned that low-dose 

glucocorticoid therapy profoundly influences osteocyte function and increases 

autophagic activity and anti-oxidative responsiveness 30-fold. High doses reduce both 
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the expression of genes encoding anti-oxidant proteins and the number of autophagic 

osteocytes.18 Bone formation, measured by serum osteocalcin and surface-based 

histomorphometry, was greatly reduced by chronic or high dose glucocorticoid 

treatment. Xia et al. 19 proposed that modification of the oxidative and autophagic 

pathways may provide promising new targets for maintaining bone formation in the 

presence of glucocorticoids while preserving bone mass.  

 

3. Osteoclastogenesis, Osteoclast Function and Autophagy  

Regulation of Osteoclastogenesis: At remodeling sites, hematopoietic mononuclear 

myeloid stem cells, mostly resident in the bone marrow, commit to the osteoclast 

phenotype and migrate to the tissue surface. When activated, the terminally 

differentiated osteoclast becomes tightly adherent to the bone surface.  Attachment is 

mediated through one or more specialized structures termed podosomes. The 

podosome contains bands of actin filaments, as well as F-actin and actin monomers. At 

the bone surface, circumferentially bounded by the podosome, secretory lysosomes 

fuse with specialized domains of the plasma membrane to form a ruffled border.  This 

undulating membrane is the site for secretion and externalization of proteases and 

hydrochloric acid; the acid dissolves the mineral phase of bone, while key proteases 

such as matrix metalloproteinase (MMP)9 and13 and cathepsin K, hydrolyse the 

collagen-rich organic bone matrix.20  

Differentiation of the adherent cells into an active osteoclast is dependent on 

macrophage colony-stimulating factor (M-CSF) and RANKL. 21 Following fusion with 

other mononuclear precursors of the macrophage–monocyte lineage, they form 

multinucleated giant cells. 22 Recruitment is chemokine-dependent, especially 

chemokine (C-X-C motif) ligand (CXCL) 12 which regulates cell migration. Recently, a 

lysophospholipid-derived from sphingomyelin, sphingosine 1-phosphate (S1P), has 

been shown to be an osteoclast chemoattractant. 23  Osteoclasts express the S1P 

receptor, and by modulating the activity of mechanistic target of rapamycin (MTOR), 

S1P counteracts autophagy and promotes apoptosis. 24 Lee et al. 25have shown that 

S1P levels were higher in postmenopausal women and possibly due to increased bone 

resorption, its action is associated with low bone mineral density.  

While differentiating osteoclasts populate the surface and interior of bone trabeculae, 

the local environment is probably hypoxic. Arnett et al. 26 showed that a low pO2 

promoted increased expression of BCL2/adenovirus E1B 19kDa interacting protein 

(BNIP)3. BNIP3, increased autophagic flux and LC3 recruitment to autophagosomes 

and osteoclast differentiation. These observations fueled the speculation that a HIF-1α--

BNIP3 signaling pathway promoted osteoclastogenesis and differentiation. DeSelm and 

colleagues showed that ATG5, ATG7 and ATG4B and LC3 are required for 

osteoclastogenesis and activation of bone resorption. 28 ATG5 and ATG7 promoted 
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bone resorptive activities in vivo and in vitro and serve to target lysosomes to the actin 

ring of the functioning osteoclast. However, neither protein influenced 

osteoclastogenesis, the numbers of nuclei in the osteoclasts, the presence of secretory 

lysosomes or even the expression of actin ring proteins. ATG4B modulation of LC3, 

blocked both resorptive activity and expression of cathepsin K. These findings lend 

support to the notion that lysosomal targeting is regulated by Atg5, Atg7, LC3, and 

Atg4B, while control of bone resorption is independent of autophagic activity. 28 This 

concept was further developed by Chung et al who knocked down LC3 and confirmed 

that it did not influence multinucleation, although it inhibited actin ring formation, and 

cathepsin K release. 29 Using the ATG5 knockdown, these workers showed that the 

lowered amount of LC3-II protein levels caused a loss in Cdc42 activity and actin ring 

disruption. This was especially marked at the periphery of the actin ring where it co-

localized with LC3. Based on these findings, the possibility exists that LC3 can regulate 

bone-resorbing activity via Cdc42-dependent actin ring formation and ruffled border 

organization. 29 Overall these observations confirm an important, non-canonical role for 

autophagy in the regulation of osteoclast formation and function. 

Osteoclast Function and Autophagy: There is a considerable amount of new 

evidence that points to a role for the autophagic process in the clearance of cytotoxic 

protein aggregates – these accumulate in disease states due to impairment of the 

ubiquitin proteasome system (UPS) system. Aberrant, misfolded proteins, along with 

chaperones, are commonly found in p62 and ubiquitin-positive aggregates 

(sequestosomes) which are precursors to the inclusion bodies seen in many age-related 

neurodegenerative and liver diseases. 30  Several proteins that have been linked to 

autophagic regulation of protein aggregates include autophagy-linked FYVE protein 

(ALFY), SQSTM1/p62, NBR1, nuclear dot protein (NDP)52, optineurin (OPTN) and 

valosin containing protein (VCP).  Currently, it is not clear if their involvement is limited 

to selective autophagy or bulk autophagy in response to starvation. However, as noted 

previously some of these proteins act as autophagy cargo receptors (e.g. NBR1 and 

SQSTM1), whilst others are adaptors (e.g. ALFY) which facilitate autophagosome 

membrane formation around the cargo to be degraded.31In osteoclasts, ALFY interacts 

directly with SQSTM1 (via its PH-BEACH domain), ATG5 (via its WD40 repeat domain) 

and phosphatidylinositol-3-phosphate (PI3P) (via its FYVE domains) and forms large 

cytoplasmic aggregates (see section 4). 32  

Using an ALFY siRNA knock Filimonenco et al. 33 showed that while there was no 

direct effect on starvation-induced autophagic clearance of Htt poly Q protein, ALFY 

nuclear localization and shuttling may be the rate limiting step for aggregate clearance 

in HeLa and N2a cells. When compared to mononuclear precursors, amino acid 

starvation of mature multinucleated cells resulted in ALFY rapidly relocating to the 

cytoplasm and interacting and co-localizing with SQSTM1 in cytoplasmic aggregates. 
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Importantly, ALFY together with the proteins mentioned above can be linked to skeletal 

homeostasis; SQSTM1 and VCP mutations as well as OPTN genetic variants are linked 

to human disorders associated with a skeletal phenotype (see section 4) while NBR1 

regulates osteoblast function (see section 2). 10,34 The important role of autophagy in 

mature osteoclast function and survival is probably best illustrated by consideration of 

the osteoclast-specific effect of SQSTM1 mutations observed in patients with Paget’s 

disease of bone (PDB).  

 

4. Autophagy and the Pathogenesis of Paget’s Disease of Bone  

 

Pathogenesis of PDB: PDB is a common age-dependent skeletal disorder 

characterized by focal areas of increased and disorganized bone turnover. Clinically, if 

left unchecked, PDB can cause bone deformity and fracture. 35 PDB is principally a 

disorder of the osteoclast, characterized by an increase in their number, size and 

activity within the bone lesion. PDB osteoclasts exhibit increased sensitivity to RANKL 

in vitro and appear to be more resistant to apoptosis.36 The underlying cause(s) of the 

abnormal osteoclast activity and function in PDB is unclear, although evidence for a 

secondary involvement of osteoblasts in lesion development, is now emerging.35 

The etiology of PDB involves a complex interplay between genetic and environmental 

factors 37-39 with some studies implicating paramyxovirus infection.40 Interestingly, many 

viruses exert their effects by subverting autophagy, although to date no studied have 

directly determined the impact of viral infection on osteoclast autophagy. As many as 

40% of patients have a positive family history of disease and PDB is 7–10 times more 

common in first-degree relatives of affected individuals.41 Current thinking is that PDB is 

caused by a combination of rare, high-penetrance variants in small number of genes, 

together with common variants in other genes which together increase the risk of 

developing the disorder. 

The only gene to date identified as being causally related to PDB is SQSTM1, which 

encodes the autophagy receptor SQSTM1/p62 protein.42 However, SQSTM1 mutations 

are found only in 5-20% of PDB patients.43 The functional domains of SQSTM1 include 

a UBA domain, an N-terminal PB1 domain and two internal regions representing an LIR 

and KIR (KEAP1-interacting region). It co-localizes with LC3 in cellular ‘protein bodies’, 

including those containing aggregated mutant proteins, a process dependent on both 

the UBA and Phox and Bem1p (PB1) domains.30 The direct interaction (via the LIR) of 

SQSTM1 with LC3 facilitates the autophagic degradation of ubiquitin-modified cytosolic 

protein aggregates and organelles.44,45 However, the precise complement of autophagic 

substrates of SQSTM1 in vivo remains to be fully clarified.  
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Consistent with its role as a cargo receptor for the autophagic degradation of ubiquitin-

modified targets, SQSTM1 is up-regulated by various stressors including starvation, 

proteasome inhibition, and NF-κB and NRF2 activation. Functionally, it cooperates with 

the autophagy receptor NBR1via PB1 domain-mediated interactions, and as was noted 

earlier in osteoclast-like cells with ALFY to facilitate degradation of misfolded 

proteins.32,45 Further, interaction of SQSTM1 via its KIR region regulates the levels of 

this adapter protein. ,47, 48 KEAP1 in turn controls levels and activity of the NRF2 

transcription factor which regulates the expression of cytoprotective genes, thus 

contributing to the cell’s capacity to defend itself against chemical and oxidative stress 

and controls proliferation and differentiation of osteoblasts. 49 Interestingly, KEAP1 is 

also reported to down-regulate TNFα-induced NF-κB activation through autophagic 

degradation of IKKβ 
50,51  Recent work shows a direct and functional interaction between 

SQSTM1 and components of mTORC1, establishing it as key regulator of nutrient 

sensing.52 In terms of regulation of SQSTM1-mediated autophagic function at the 

molecular level,, phosphorylation of the UBA domain at Ser403 was found to serve as a 

signal to promote autophagy.53 Ser403 phosphorylation appears to regulate the 

ubiquitin-binding ability of p62 and a phosphomimetic mutant (S403E) was shown to 

promote the formation of ‘sequestosomes’, presumed to be precursors of 

autophagosomes.53 Genetic inactivation of SQSTM1 in mice results in impaired 

osteoclastogenesis in vitro and in vivo.52  and importantly, in a mouse carrying a P394L-

p62 missense mutation (equivalent to the most common PDB-associated P392L human 

mutation), a PDB-like disorder was seen with altered osteoclast autophagy (see later).  

Disease Mechanisms: At the protein level, most of the disease-associated mutations 

affect the UBA domain of SQSTM1 and cause a loss of ubiquitin-binding activity.54-55 

While the PDB-mutant SQSTM1 causes an increase in osteoclast activity involving NF-

κB signaling, 56,57 little is known of the impact of the mutation on autophagy. As there is 

crosstalk between the two systems,58 changes in NF-κB activity and autophagic function 

could be expected. For example, induction of autophagy in macrophages in response to 

TLR4 is associated with TRAF6-mediated ubiquitination of BECLIN-1 59 and TRAF6 may 

be degraded by a form of autophagy that is dependent on NDP52 (although not 

associated with the canonical conversion of LC3-I to LC3-II). 60 Further, the IKK 

complex, which is an essential mediator of the RANK-NF-κB pathway, contributes to the 

induction of autophagy and is activated by multiple autophagy inducers, without 

affecting NF-κB nuclear translocation.61 Conversely, levels of IκB, the inhibitor of NF-

κB, appear to be regulated by autophagy.51 Further emphasizing common pathways, 

under resting conditions BECLIN-1 forms a complex with the TGFβ-activated kinase 1 

(TAK1)-binding proteins (TAB) 2 and 3; during autophagy, BECLIN-1 activate IKKβ and 

induces autophagy. 62,63 NF-κB activation can also limit autophagy activators (BNIP3, 
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JNK1, and ROS) and increase expression of autophagy inhibitors (A20 and BCL-2/XL) 

(see review by Salminen et al 64). 

PDB-Associated Mutations of SQSTM1 and Autophagy: Indirect evidence supports 

the notion that alterations in autophagy are linked to the pathogenesis of PDB: disease-

causing mutations increase osteoclast activity; autophagy positively regulates 

osteoclast activity28 and SQSTM1, which is commonly mutated in PDB, is an autophagy 

receptor.  Further, PDB-associated mutations map to regions of SQSTM1 which are 

relevant for its autophagy-dependent function: principally the UBA domain,42, 65,  but also 

the LIR (D335E)66 and the KIR (S349T) domains. 67  

Earlier observations that SQSTM1 is over-expressed in PDB patient samples, 

regardless of SQSTM1 mutation status, were the first indication that autophagy may be 

altered in the pagetic state (Table 1). 68 However, perhaps the best evidence of 

alterations in autophagic function comes from studies of the P394L-p62 mouse, which, 

as noted earlier, develops a PDB-like bone disorder with focal bone lesions. 60 

Osteoclast precursors from the mutant animals, exhibit increased expression of 

SQSTM1, ATG5 and LC3 along with increased LC3-II protein levels in the presence of 

Bafilomycin (BAF) suggesting a possible increase in autophagic flux (and consistent 

with the known relationship between autophagic and osteoclastic activity). 28 In a cell 

model of PDB with SQSTM1 mutations, a preliminary report describes alterations in 

autophagic flux. 68 

Other Related Disorders and Autophagy: Curiously, SQSTM1 mutations, including 

some UBA domain mutations which are associated with PDB, have also been reported 

in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration.69,70 

Interestingly, several of the recently identified new genes for ALS represent autophagy 

receptors including OPTN (also linked to PDB), UBQLN2 and VCP.69 The latter is 

perhaps the most relevant, given that VCP mutations are a cause of the multi-system 

disorder inclusion body myopathy associated with PDB and frontotemporal dementia. 

Although its precise role in autophagy is unclear, in muscle cells the mutant VCP 

appears to be linked to alterations in autophagy.71 Indeed, its expression was 

associated with accumulation of non-degradative autophagosomes and a failure to 

degrade aggregated proteins.72 In knock-out animals with mutant VCP there was 

increased levels of LC3B-II in muscle cells, osteoclast precursors exhibited increased 

sensitivity to RANKL, and there were focal bone lesions. 73 Finally, OPTN, encodes the 

autophagy receptor, OPTN/optineurin which been implicated in PDB74 with preliminary 

studies suggesting that it negatively regulates osteoclast activity. 75 

 

 5. Autophagy in the Growth Cartilage 
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Function of the Growth Plate: The epiphyseal growth plate is a transient form of 

cartilage located at sites of long bone growth and composed of chondrocytes embedded 

in a matrix containing collagen II and proteoglycan. In comparison with articular 

cartilage (see below), chondrocytes in the growth plate have a very short half-life (days, 

not years) 76. During growth, a number of well-defined zones can be delineated; most 

obvious is a columnar cell zone that contains proliferating cells. As these cells mature, 

they become terminally differentiated hypertrophic chondrocytes. Mineralization of the 

mature cartilage begins in the deep hypertrophic zone in cell-derived particles, matrix 

vesicles. Enzymes in the matrix vesicle, remove local inhibitors of mineralization, 

enhance calcium transport and localization and promote mineral deposition.77 During 

the growth period, there is evidence of chondrocyte autophagy and indeed treatment of 

rats with the autophagy activator rapamycin impairs longitudinal growth.78 

Autophagy and Chondrocyte Function: Regulation of the cellular changes described 

above is complex and involves aninterplay between  agents generated by chondrocytes, 

(PTHrp and Indian Hedgehog), cytokines and systemic factors including hormones of 

the hypothalamus-pituitary axis. 79, 80 Once mineralization has begun, there are 

autophagic changes in hypertrophic chondrocytes: reorganization of LC3-II and 

BECLIN-1 proteins into punctate granules.  In addition, transmission electron 

microscopy studies indicate the presence of double membrane vacuoles. Not 

surprisingly, suppression of MTOR causes a marked increase in chondrocyte 

autophagy. 81 Following autophagy, chondrocytes are deleted from the plate by the 

initiation of programmed cell death. 80These terminal changes and the control of growth 

through Wnt signaling pathway would suggest that autophagy serves not just to regulate 

the final stages of the chondrocyte life cycle, but also the rate at which chondrocytes 

enter the maturation process.  

Metabolic Control of Chondrocyte Autophagy: Chondrocytes generate metabolic 

energy through anaerobic glycolysis, an environmental adaptation that permits them to 

survive in the restricted vascular supply of cartilage. HIF-1 is expressed at high levels in 

hypertrophic chondrocytes. Conditional inactivation of the HIF-1α gene caused a 

reduction in the number of maturing hypertrophic cells, an elevation in numbers of 

apoptotic cells and a disorganized layer of subchondral (metaphyseal) bone. 82 To 

further explore this activity and relate it to autophagy, a chondrocyte line was developed 

(N1511) that mimics many of the phenotypic changes expressed by epiphyseal 

chondrocytes.83 When serum-stressed, these cells robustly expressed punctate LC3 

protein and BECLIN-1.83 

Not surprisingly, at a low pO2, the cultured chondrocytes are refractory to an apoptotic 

challenge. It was noted that HIF-1 suppressed BECLIN-1, leading to enhanced cell 

death. The observation that BECLIN-1 suppression resulted in increased BH3 

interacting-domain death agonist (BID), cleavage and caspase-8 activation clearly links 
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apoptosis with autophagy. Thus, BECLIN-1 served to maintain chondrocyte survival 

activity, possibly by regulating the activities of pro-apoptotic genes.83 Another HIF target 

is AMPK , a protein that responds to the energy status of the cell, and activated in a 

HIF-1-dependent manner. As might be expected this protein is robustly expressed in the 

glycolytic growth plate.884 A number of studies have shown a connection between 

AMPK (AMP activated protein kinase) and MTOR. Once activated, AMPK 

phosphorylates tuberous sclerosis protein 2 (TSC2) which then suppresses MTOR and 

hence promotes autophagy. By down-regulating the phosphorylation of targets S6K1 

and 4E-BP1, MTOR integrates multiple signals including those from nutrients, as well as 

metabolic signals from glycolysis and ATP.85  

From a physiological viewpoint, in the growth plate, autophagy is controlled by two 

environmental sensors: AMP kinase and MTOR and probably HIF via the prolyl-4-

hydroxylase domain (PHD) oxygen sensors 84. The hypoxic plate would foster the 

expression of HIF-1 and the high glycolytic activity would elevate AMP levels and 

suppress MTOR. Once autophagy is activated, it would serve to maintain the lifespan of 

the hypertrophic cell, thus allowing the cells to reach their final maturation stage. 

Eventually, extended autophagic activity would lead to sensitization of terminally 

differentiated chondrocytes to local and intrinsic signals, resulting in apoptosis, deletion 

of cells from the growth plate and bone growth.86 

6. Autophagy and the Pathogenesis of Lysosomal Storage Disorders 

(LSDs): The Mucopolysaccharidoses (MPSs) 

Lysosomal Storage Disorders: LSD are recognized as a cohort of nearly 60 different 

inherited disorders, each with a genetic defect that renders the lysosomal system 

dysfunctional and unable to degrade specific molecules. As a consequence, many 

tissues and organ systems are affected, including bone and cartilage.87 The MPSs 

comprise a group of LSDs caused by deficiency in the enzymes catalyzing the 

degradation of glycosaminoglycans (GAGs), which are long, repeating chains of 

complex sugar molecules, normally degraded in the lysosome.88 Multiple Sulfatase 

Deficiency (MSD) is a very severe form of MPS due to mutations in the Sulfatase 

Modifying Factor 1 (SUMF1) gene. 89 The SUMF1 protein is responsible for an essential 

post-translational modification of the sulfatase enzymes, a class of hydrolases that 

remove sulfate groups from different molecules including GAGs. Many sulfatases are 

lysosomal, and thus one of the major consequences of the lack of sulfatase activity is 

the accumulation of multiple sulfated substrates in the lysosomes. 90 The Sumf1-/- 

mouse recapitulates most of the features of the human MSD disease and in particular 

displays a remarkable skeletal dysplasia, characterized by severe shortening of the 

axial and appendicular skeleton.91 Multiple measurements of autophagy in 

Sumf1−/−chondrocytes revealed severe lysosomal vacuolization and an increased 

number of autophagosomes compared to wild-type chondrocytes. Since cells treated 
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with an inhibitor of lysosomal acidification (BAF) accumulate autophagic vacuoles and 

present with low ATP content, it is likely that the decreased survival of the 

Sumf1−/−chondrocytes is directly linked to the defective digestion of the autophagic 

cargo. 92  

Pathogenesis of the MPS: While the pathogenic mechanisms are still unclear, 

defective autophagy is a generalized phenomenon occurring in many LSD; cells and 

tissues isolated from patients and mouse models of LSD display higher number of 

autophagosomes compared to controls, most likely the result of a defective lysosome-

autophagosome fusion (Table 1). As a consequence, autophagic substrates, such as 

polyubiquitinated proteins and dysfunctional mitochondria, are significantly elevated in 

LSD cell and tissue samples. 93,94 Providing a direct insight into the biochemical defect, 

Sumf1-/- mice exhibited a significant accumulation of cholesterol in lysosomal 

membranes. As a consequence, there is impaired distribution of the SNARE (soluble 

NSF attachment protein receptors) that are key components of the cellular membrane 

fusion machinery. 95 Interestingly, wild-type cells “loaded” with cholesterol in vitro mirror 

the fusion defects observed in LSD cells. Conversely, lowering cholesterol levels 

restores normal lysosomal function. From this perspective, the lysosome-

autophagosome fusion defect in LSD reflects the abnormal lysosomal membrane lipid 

composition. 95 

 

7. Autophagy and the Pathogenesis of Osteoarthritis (OA) 

 

Pathogenesis of Osteoarthritis: OA is among the most prevalent aging-related 

diseases and the most prevalent joint disease. 96 The two main risk factors for OA are 

aging and mechanical load. Excessive mechanical loading can occur in the acute 

setting of joint injury or chronically due to abnormal joint shape, malalignment or as a 

result of occupational and recreational activities. 97 The earliest changes in cartilage are 

enzymatic degradation of GAGs and cartilage proteins, and loss of chondrocytes in the 

superficial zone; this region is exposed to shear and compressive forces during 

movement. 98 With depletion of many of the original chondrocytes, there is emergence 

of clusters of densely packed cells, which are phenotypically distinct from the original 

cartilage cells. Cell activation in OA cartilage has been interpreted as an unsuccessful 

attempt at tissue repair and as the condition progresses, it leads to further cartilage 

defects.99 

Changes in autophagy protein expression and activation in aging and OA: 

Conceptually, autophagy in normal adult articular cartilage is an important mechanism 

for cellular homeostasis. Thus, cells in the superficial zone display a robust expression 

of autophagy proteins BECLIN-1, ATG5 and LC3. 100 When LC3 was tagged with GFP, 



 15 

the highest GFP signal was observed in cells present in the superficial and middle 

zones of the knee articular cartilage (Table 1). Few cells in the deep cartilage zone 

exhibited detectable levels of GFP-LC3 signal. As with other tissues, starvation 

increased the number of autophagosomes in chondrocytes.14 

During the aging process in mouse and human knee articular cartilage, there is a 

decrease in ULK1, LC3, and BECLIN-1 protein expression. The reduction of these key 

regulators of autophagy is accompanied by increased apoptosis.14 Using a rapidly 

progressing experimental mouse of OA, a time-dependent reduction in these autophagy 

proteins was noted.100 Since this reduction was observed in relatively young mice it is 

apparently not a consequence of aging-related events. However, for both surgical OA 

and mechanically injured cartilage, the increase in cell death suggests that autophagy 

may contribute to survival mechanisms. 

In contrast to the reduction in autophagic proteins in non-proliferating chondrocytes, the 

cell clusters in OA cartilage express high levels of these proteins100 thereby confirming 

an earlier study that suggested that chondrocytes in OA cartilage displayed numerous 

autophagic LC3 puncta.101 Levels of LC3-II were also increased in the superficial and 

middle zones in a rat model of OA.14 When full thickness cartilage explants were 

subjected to high impact mechanical compression, there were immediate matrix 

changes and a low level of cell death, accompanied by a short and transient increase in 

the levels of LC3-II, and a marked reduction in ULK1, LC3, and BECLIN-1.100 Thus, 

during the development of OA, increased autophagy may reflect an adaptive stress 

response. Further, failure to mount an autophagic response may lead to further 

degeneration. 

Consequences of dysregulated autophagy in OA: The reduction in autophagy 

protein levels and activity lends strong support to the hypothesis that basal autophagic 

activity decreases with age, thus contributing to the accumulation of damaged 

organelles and macromolecules and susceptibility to aging-related diseases.102 Indeed, 

prior studies demonstrated mitochondrial dysfunction in various animal models and in 

human OA.103 In addition, mitochondrial DNA mutations are known to increase in OA 

chondrocytes.104 Damaged mitochondria, producing high levels of ROS, promote pro-

inflammatory signaling, as they initiate formation of inflammasomes and activation of 

other inflammatory pathways.105 In knee chondrocytes, IL-1- or NO - dependent 

increase in expression of LC3 and BECLIN-1 activates autophagy.106 Further, 

autophagy activation prevents IL-1-mediated suppression of cartilage matrix 

degradation while reducing the levels of MMP-13, ADAMTS, (a disintegrin and 

metalloproteinase with a thrombospondin type 1 motif) 5 and ROS. Given that one of 

the cytoprotective functions of autophagy is removal of damaged mitochondria107, the 

IL-1–induced OA-like gene expression changes might possibly occur through reduction 

in the intracellular ROS level via elimination of damaged mitochondria. 
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As discussed earlier, HIF proteins have recently been linked to the regulation of 

autophagy in chondrocytes. 88 With respect to HIF-1, in the superficial cartilage zone, 

there is moderate level of protein expression; both expression and autophagy is 

increased in OA cells. 101 It is likely that HIF-1 upregulation due to the hypoxic state of 

the tissue serves to promote chondrocyte autophagy.  With respect to HIF-2α, in young 

animals, the highest expression level is in the superficial zone. In this case, upregulation 

of HIF-2α lowers intracellular ROS levels by promoting the activities of the dismutating 

proteins, catalase and superoxide dismutase; from this perspective, it can be regarded 

as cytoprotective. In OA cartilage, HIF-2α expression is induced in the earlier stage of 

OA, and it is down-regulated at later stages.108,109  

A second aspect of HIF-2α is that it increases expression of RUNX2 (runt-related 

transcription factor 2), a transcription factor, which induces expression of proteins 

associated with chondrocyte hypertrophy (collagen X, MMP13 and vascular endothelial 

growth factor A, (VEGFA).110 As RUNX2 and its target genes are overexpressed in OA 

cartilage, it has been suggested that chondrocytes express a differentiation program 

that is more characteristic of a hypertrophic state111. On this basis, increased HIF-2α-

induced RUNX2 activation and hypertrophic differentiation may promote OA. HIF-

2α over-expression promotes cartilage destruction and conversely, the severity of 

experimental OA is reduced in HIF-2α mutant mice.109, 112 Indeed, when HIF-2 is 

silenced, IL-1β-induced expression of ADAMTS4, MMP1, MMP3, MMP9, MMP12 and 

MMP13 is significantly decreased. Thus, the two HIF isoforms have overlapping but 

differing roles: while HIF-2α appears to be cytoprotective, HIF-1 both promotes 

autophagy while sensitizing cells to local apoptogens, Put another way, HIF-2α 

regulates the extent of the autophagic response and can be viewed as acting as a brake 

to the accelerator function of HIF. Finally it should be noted that stress or cytokine 

induced activation of HIF-2α, could outweigh the homeostatic effects of HIF-1α, and 

promote chondrocyte hypertrophy, cell death and matrix degradation.101 The marked 

inhibition of autophagy would negatively impact chondrocyte survival and differentiation.  

8. Therapeutic targets for skeletal disease 

This review highlighted the import of the autophagic response in relationship to the 

pathogenesis of diseases affecting bone and cartilage. The authors suspect that aside 

from disorders discussed here in some detail, there are hints that autophagic 

dysfunction may influence other diseases of the skeletal tissues. An incomplete list 

would include growth disorders, disregulated endocrine function, osteoporosis, fibrous 

dysplasia, rheumatoid arthritis and degenerative disc disease.  

A priori, before delineating therapies directed at removing dysfunctional organelles and 

accumulated aggregated proteins, the underlying autophagic ‘defects’ needs to be 

defined with care. From what is already known of the autophagic process, it is clear that 

unless the nature of the defect is established, promotion of autophagic flux may well 
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trigger the induction of apoptosis or even senescence.  In this case, for many skeletal 

tissues where cell numbers are normally low and longevity is extended, this type of 

treatment would exacerbate the disease state. In contrast, when the site of aberrant 

dysfunction is known, modulation of the autophagy response may be a rational 

approach for treatment of conditions like the MPS.  

While caution is urged, there have been some attempts to modify skeletal cell function 

through modulators of the autophagic response. Of the drugs examined, in OA tissues, 

the autophagy activator rapamycin has been shown to prevent cell death and GAG loss, 

maintain cartilage cellularity and decrease the expression of ADAMTS-5, an important 

enzyme in cartilage extracellular matrix degradation. 113 Likewise, on the basis of 

PMTOR and or p-p70S6K expression, there is evidence indicating that over 50% of 

chordomas, tumors of the intervertebral disc are responsive to MTOR inhibitors. 
114Since this kinase is the nexus for signals from the AKT/PI3K, MAPK/ERK1/2 and P53 

signaling pathway, as well as nutrient (amino acid) levels and sensors of the oxygen 

and energy status, there is likely to be multiple sites for control of these skeletal tumors. 

Undoubtedly, molecular delineation of the autophagic process in skeletal tissues will 

provide unique functional insights, while at the same time uncover new approaches to 

treating the host of diseases that affect the axial and appendicular skeleton. 
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FIGURE 1. (LEGEND) 
Autophagy in bone, articular cartilage, the growth plate and articular cartilage. A. 
Schematic showing cellular control of bone remodeling. A basic multicellular unit 
consists of osteoblasts (OB) osteoclasts (OC) and bone lining cells (LC). Pro-
osteoclasts (PrOC) and pro-osteoblasts (prOB) enter the unit through capillaries (CAP) 
and home to the bone surface where they undergo differentiation into OB and OC 
respectively. A number of osteoblasts will undergo terminal differentiation and become 
osteocytes (O’CYTES). Under the influence of local factors including those secreted by 
osteoblasts (MCF, RANKL), pro-osteoclasts differentiate and resorb bone liberating 
Ca2+ and amino acids (AA) from the bone matrix. Sclerostin an inhibitor of osteoblast 
activity is also released from the bone matrix. At these sites, a resorption lacuna can be 
seen (RL). Another secreted factor, osteoprotegrin (OPG), inhibits osteoclast mediated 
bone resorption by serving as a physiological inhibitor of RANKL. A number of factors 

are released from the resorbing bone that include BMP and TGFβ. These proteins 
promote osteoblast maturation and osteoid synthesis and mineralization.  B Schematic 
of a long bone showing articular cartilage (AC), growth plates (GP) and bone marrow 
(BM). C. Section through a demineralized osteon showing the presence of autophagic 
osteocytes (inset, stained with an anti LC3 antibody). From Zahm et al., Cells Tissues 
Organs. 2011;194(2-4):274-8D, and with permission from  S. Karger AG.  D. Section 
through the rat growth plate showing the presence of autophagic pre-hypertrophic 
chondrocytes (arrows) stained with an antibody to LC3. From Srinivas et al.,  Cells 
Tissues Organs. 2009;189(1-4):88-92 and with kind permission from  S. Karger AG. E. 
Chondrocyte autophagy in knee cartilage of GFP-LC3 transgenic mice. Confocal 
microscopy rendered reconstruction using 3D IMARIS (Bitplane Inc.) indicating that the 
highest levels of GFP-LC3 signal were observed in chondrocytes in the superficial and 
upper middle zone of the articular cartilage. In contrast, only few cells in the deep zone 
contained detectable levels of GFP-LC3 signal. Mag x 63. 
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