


















has not been fully defined and the effect of Blimp-1
on anti-leukemia response is unknown. In this study,
phenotypic and functional analyses of PBMCs col-
lected from AML patients were performed. We fo-
cused on dissecting the role of Blimp-1 in modulating
the T cell response in AML. Our study demonstrates
that expression of Blimp-1 in both CD4+ and CD8+ T
cells is significantly increased in AML patients com-
pared to that in healthy donors. Consistent with ex-
haustion, Blimp-1+ T cells express high levels of co-
inhibitory receptors such as PD-1 and TIGIT. In
addition, they are phenotypically skewed toward
terminal effector differentiation and functionally im-
paired in their production of cytokines and potential
for cytotoxicity. Importantly, the functional defect is
reversed by inhibition of Blimp-1 via siRNA knock-
down. To our knowledge, this study is the first to

display an immune suppressive role of Blimp-1 in
AML. Our finding suggests that Blimp-1 associates
with T cell exhaustion and suppresses T cell function,
which may subsequently impair anti-leukemia im-
mune response. Therefore, targeting Blimp-1 may
provide effective therapeutics for AML.
We observed a wide variation of Blimp-1 expression

in T cells among AML patients. Clinically, the initial
presentation of AML is highly heterogeneous [53].
Some patients seek medical attention earlier during
the disease course due to their high sensitivity to
leukemia-related symptoms or occasionally incidental
abnormal laboratory findings; others present later
when the leukemia has developed for a longer period
of time. The large variation of Blimp-1 expression
among the AML patients may represent their differ-
ent disease status. In fact, we found a significant

Fig. 4 Blimp-1+ T cells from AML patients display functional defects by showing less cytokine production and capacity of cytotoxicity. a, b PBMCs
collected from AML patients were stimulated in vitro with anti-CD3 and anti-CD28 before intracellular staining with Blimp-1, IFN-γ, and IL-2. a
Flow cytometry data showing Blimp-1 expression in both CD4+ and CD8+ T cells. Fluorescence-minus-one (FMO) stains were used as negative
controls. b Intracellular production of IFN-γ and IL-2 among Blimp-1− vs. Blimp-1+ T cells from AML patients (n = 15) were dissected. Shown are
representative dot plots (left) and a plot of frequency (right) for IFN-γ and IL-2, respectively. Data of both CD4+ and CD8+ T cells are shown. c Flow
cytometry data showing Blimp-1 expression in CD8+ T cells without in vitro stimulation. d Intracellular stain of perforin by Blimp-1+CD8+ vs.
Blimp-1−CD8+ T cells from AML patients (n = 15). Representative flow data (left) and plot of the percentage of perforin+ CD8+ T cells (right) are
shown. P values were obtained by paired t test.
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association of Blimp-1 expression with the number of
circulating leukemia blast. Patients who express high
levels of Blimp-1 in their CD4+ T cells present with
high blast counts, indicating a correlation of Blimp-1
expression to late phase leukemia development. This
situation might provide persistent leukemia antigen
that is ideal for induction of T cell exhaustion, which
is consistent with our finding that Blimp-1+ T cells
associate with exhaustion and display functional im-
pairment. Thus, we speculate that treatment ap-
proaches targeting T cell exhaustion may be more
effective in patients with higher expression of Blimp-1
as T cells in this patient population are more likely
exhausted. Therefore, testing Blimp-1 expression in T
cells might provide a crucial biomarker for effective
leukemia treatment. Although promising, further stud-
ies of large size of samples are needed to make a de-
finitive conclusion.

The mechanisms by which Blimp-1 regulates T cell re-
sponses are not fully understood. In our study, we ob-
served a strong correlation between Blimp-1 expression
and upregulation of inhibitory receptors such as PD-1 and
TIGIT. Several studies have demonstrated an important
role of PD-1 in inhibiting anti-leukemia T cell responses
[20, 21, 24]. In addition, our recent study revealed that
TIGIT contributes to T cell impairment in AML and asso-
ciates with poor clinical outcomes [26]. We hypothesize
that in AML, Blimp-1 suppresses T cell function through
positive regulation of these inhibitory pathways. In the
present study, we demonstrated a strong binding of
Blimp-1 protein to the promoters of the genes encoding
PD-1 and TIGIT. Importantly, inhibition of Blimp-1 by
siRNA knockdown significantly decreased mRNA expres-
sion of PD-1 and TIGIT in T cells collected from AML
patients. Consistently, cells overexpressing Blimp-1
showed upregulation of PD-1 and TIGIT. Therefore,

Fig. 5 Blimp-1 knockdown with siRNA increases cytokine production and cytotoxicity capacity in T cells from AML patients. a Histograms of
Blimp-1 MFI show the efficiency of Blimp-1 siRNA knockdown. b Intracellular cytokine production by purified CD4+ and CD8+ T cells from AML
patients (n = 4) upon anti-CD3/anti-CD28 stimulation. c Intracellular production of perforin by purified CD8+ T cells from AML patients (n = 4) upon
Blimp-1 knockdown. Shown are representative flow data (left) and plot of frequency (right). P values were obtained by paired t test.
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Blimp-1 is a transcriptional regulator for these two im-
portant inhibitory receptors. This likely contributes to the
mechanisms by which Blimp-1 suppresses T cell function
in AML. An equally important question is how and why
Blimp-1 is upregulated in AML. In viral infection, Blimp-1
expression is induced during T cell activation upon viral
antigen stimulation [31]. Cytokines including IL-2 have
been reported to be crucial mediators for the upregulation
of Blimp-1. In AML, it has been observed that serum level
of IL-2 is increased in AML patients, and the level is
particularly higher in patients with high WBC at initial
presentation [54]. Consistently, we observed a positive
correlation between the high level of WBC and Blimp-1
expression in our study. We speculate that IL-2 and/or
other cytokines may contribute to the regulation of
Blimp-1 in AML. Further studies are warranted to address
this important question.
In contrast to our finding that Blimp-1 upregulates

the expression of PD-1, Lu et al. have reported that
Blimp-1 inhibits CD8+ T cell expression of PD-1[55].
Of note, their conclusion was drawn from a study of
acute viral infection, in which PD-1 was increased
shortly (hours) after antigen stimulation. The regula-
tion mechanisms may be significantly different in the
setting of chronic infections or cancer. Consistent

with our finding, it has been reported that PD-1+ T
cells expressed a high level of Blimp-1 in patients
with chronic lymphocytic leukemia [56]. In addition,
studies using mouse models of viral infection have
demonstrated that Blimp-1 enhanced the expression
of inhibitory receptors on exhausted T cells during
chronic viral infection and conditional deletion of
Blimp-1 reversed this process [29]. Collectively, these
observations highlight the importance of the context
(disease status)-specific transcriptional mechanisms
during T cell differentiation.
Majority of studies demonstrate a dominant role of

CD8+ T cells in host defense. Features of CD8+ T
cell exhaustion and its effect on dysfunctional im-
mune status have been extensively investigated [57].
Recent observations of CD4+ T cell exhaustion in
chronic viral infections suggest that CD4+ T cells are
also crucial for optimal infection control [58, 59].
Most recently, Hwang et al. reported that Blimp-1 is
upregulated and acts as a critical regulator for CD4+

T cell exhaustion during chronic toxoplasmosis. Con-
ditional deletion of Blimp-1 in CD4+ T cells regained
CD8+ T cell function and improved infection control
[60]. Contributions of CD4+ T cell in leukemia are
not well defined. Our findings demonstrate that, in

Fig. 6 Blimp-1 directly binds to the promoter of PD-1 and TIGIT genes. a 293 T cells were transfected with PD-1 promoter (−1063/+76 bp) or TIGIT
promoter (−2228/+70 bp), PRDM1α or PRDM1β expressing plasmid, and pRL-TK for 24 h. Luciferase activities were measured and normalized to
that of Renilla luciferase. b Schematic diagram of the PCR amplicons for the putative Blimp-1 binding sites in PD-1 and TIGIT promoters. c ChIP
assays were performed using T cells purified from PBMCs of a healthy donor. T cells were stimulated with anti-CD3 antibody for 48 h. Putative
Blimp-1 binding sites in the promoters of PD-1 and TIGIT were examined by qPCR using specific primers as described in the section of methods.
Nonspecific goat IgG was used as a negative control.
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addition to causing CD8+ T cell dysfunction, Blimp-1
plays an equally important role in mediating CD4+ T
cell suppression in AML. Blimp-1 upregulates co-
inhibitory receptors and associates with functional
defect in both CD4+ and CD8+ T cells. Interestingly,
high Blimp-1 expression in CD4+, not CD8+ T cells,
correlates with high circulating leukemia blast
(Table 1), suggesting a potential unique contribution
of CD4+ T cell dysfunction in AML pathogenesis.

Conclusions
Taken together, we demonstrate an inhibitory effect of
Blimp-1 on T cell response in AML patients. Blimp-1
can do so by transcriptionally upregulating inhibitory re-
ceptors including PD-1 and TIGIT. A clinical correlative
study showed an association between the elevated
Blimp-1 expression and high circulating blasts in AML
patients. Our findings have significant clinical impact as
Blimp-1 may be a useful biomarker and an important
target for effective novel leukemic therapeutics.
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