CD27high/KLRG1low CD8+ T cells that persist throughout MCMV infection are highly expansive and have the ability to reestablish MCMV immunity

Michael Quinn1, Holly Turula1 and Christopher M. Snyder1

1Thomas Jefferson University, Philadelphia PA

ABSTRACT:
Cytomegalovirus (CMV) is a herpesvirus that establishes lifelong latency in 60-80% of Americans. Constant immune surveillance is necessary to prevent viral reactivation from latency and results in the accumulation of functional CMV-specific CD8+ T cells (CD8s) over time, a process termed memory inflation. As such, CMV reactivations remain a clinical concern for immunosuppressed patients and reconstituting CMV immunity is critical for the long-term prevention of CMV disease. Understanding the maintenance of memory inflation may reveal novel approaches to restore CMV immunity.

Previous work has shown that the majority of inflationary CD8s express a terminally-differentiated “effector” (T\textsubscript{EFF}) phenotype, have a short half-life and appear unable to sustain long-term CMV immunity. Interestingly, inflationary populations also include a minor subset of CD8s that express a “memory” phenotype (T\textsubscript{M}).

Conclusions:
Utilizing the murine model, MCMV, our data showed that:
1. The minor T\textsubscript{M} population was responsible for the majority of the inflationary population’s expansive capacity following transfer into naive mice and MCMV challenge.
2. Transferred T\textsubscript{M} cells produced both T\textsubscript{M} and T\textsubscript{EFF} progeny, which inflated and persisted in the recipients.
3. When T\textsubscript{M} cells were transferred into chronically-infected mice, they survived and produced T\textsubscript{EFF} CD8s if host immunity was lost.
4. T\textsubscript{M} CD8s appear to be a crucial component for the establishment and maintenance of CMV immunity.

Figure 1: CD8+ T cells for certain MCMV antigens inflate during chronic MCMV infection.
The frequency and number of MCMV-specific CD8s in the blood and spleen was measured by tetramer staining and flow cytometry. T\textsubscript{M} (CD27high/KLRG1low); T\textsubscript{EFF} (CD27low/KLRG1high).

Figure 2: Proposed Model.
A T\textsubscript{M} population persists throughout MCMV infection that divides and differentiates asymmetrically to produce both T\textsubscript{M} and T\textsubscript{EFF} populations.

Figure 3: Adaptive transfer of T\textsubscript{M} or T\textsubscript{EFF} sorted CD8+ T cells. Splenocytes from MCMV chronically-infected mice were CD8-enriched, sorted, transferred into naive C57BL/6 and challenged with MCMV. Purity of the T\textsubscript{M} or T\textsubscript{EFF} populations was ~90% (data not shown).

Figure 4: MCMV-specific T\textsubscript{M} cells expand and produce phenotypically diverse progeny.
50,000 T\textsubscript{M} or T\textsubscript{EFF} CD8 T cells were transferred and challenged as described in Figure 3. Donor tetramer+ CD8 frequency (A) and phenotypic fold change (B) was measured 7dpi in blood and spleen. Number of transferred tetramer+ CD8s was estimated by flow cytometry. A) T\textsubscript{M} donors expand more robustly than T\textsubscript{EFF} cells. B) M38-specific T\textsubscript{M} donors, in contrast to T\textsubscript{EFF} donors, produce phenotypically diverse progeny. Colored boxes indicated the initial phenotype of transferred cells.

Figure 5: MCMV-specific T\textsubscript{M} cells recapitulate memory inflation and reestablish a T\textsubscript{M} population that can inflate again when restimulated.
50,000 T\textsubscript{M}, CD8 T cells were transferred and challenged as described in Figure 3. Donor tetramer+ CD8 frequency (A) and phenotype (B) was measured in the blood at indicated time points. A) M45- and M38-specific T\textsubscript{M} donors follow their non-inflationary and inflationary kinetics, respectively (refer to Figure 1) B) M38-specific T\textsubscript{M} donors produce effector progeny that inflate, but also establish a stable T\textsubscript{M} population. C) Naïve or T\textsubscript{M} OT-1 CD8 T cells were transferred into naïve C57BL/6 mice and rechallenged with MCMV-Ova. Frequency and phenotype of OT-1s was measured in the blood. Even after multiple stimulations, T\textsubscript{M} OT-1s can reproduce inflation and generate a new T\textsubscript{M} population (data not shown).

Figure 7: T\textsubscript{M} and T\textsubscript{EFF} cells are not detectable when transferred into chronically-infected mice.
50,000 T\textsubscript{M} or T\textsubscript{EFF} CD8+ T cells from chronically-infected mice were transferred into chronically-infected mice as described in “A”. Number of transferred tetramer+ CD8s was estimated by flow cytometry. B) Frequency of donor CD8s was measured in the blood of recipients 9-12 weeks post-transfer by flow cytometry (note: the most dominant response was only 0.5% of total CD8s). Data from two independent experiments.

Figure 8: T\textsubscript{M} cells, but not T\textsubscript{EFF} Cells, can expand and differentiate in chronically-infected mice.
A) Host immunity of the mice described in Figure 7 was depleted via intraperitoneal injections of anti-Thy1.1 (Clone HISS1), CD4 (Clone GK1.5) and NK1.1 (Clone PK136). B) Following the depletion schedule, the frequency of tetramer+ donor CD8s in the blood was measured by flow cytometry. T\textsubscript{M} donors did not expand in the absence of antigen. C) T\textsubscript{M} donors made diverse tetramer+ responses in 6/6 recipients. In contrast, T\textsubscript{EFF} donors made a detectable donor response in only 2/6 recipients, and these responses were specific for only one tetramer. (Check marks indicate a tetramer+ donor population of >10 events collected by flow cytometry). D) The phenotype of tetramer+ donor CD8s was determined by flow cytometry. T\textsubscript{M} donors in 6/6 recipients produced phenotypically diverse progeny (representative FACS plots from a single mouse shown). Frequency displayed is the average of the six mice +/- the standard deviation. Data from two independent experiments.

Acknowledgements:
Dr. Christopher Snyder The Snyder Lab
Thomas Jefferson University TJU M.D./Ph.D Program

Work supported by a new faculty start-up package from the Thomas Jefferson University and the grants K22-AI081866 and 1R01AI106810-01 awarded to C.M.S.