Emerging Clinical Imaging Techniques for Spinal Arteriovenous Malformations

Peter G. Campbell, MD, Lisa Tartaglino, MD, Hayan Dayoub, MD, Pascal M. Jabbour, MD, Aaron S. Dumont, MD, L. Fernando Gonzalez, MD, Robert H. Rosenwasser, MD, Stavropoula I. Tjoumakaris, MD

1Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA
2Jefferson Hospital for Neuroscience, Philadelphia, PA

Key Words: MRI, spine, spinal, arteriovenous malformation, dural arteriovenous fistula, AVF

Running Title: Clinical Imaging for Spinal dAVF

Introduction
Spinal arteriovenous malformations (SAVMs) are rare and under-diagnosed entities. If untreated, SAVMs can lead to progressive spinal cord myelopathy. The diversion of arterial blood through dorsal and/or medullary veins can lead to a vascular steal phenomena often accompanying high-flow lesions, or venous hypertension and congestion which ultimately reduces intramedullary blood flow in lower flow malformations1. Therefore, timely diagnosis and a precise understanding of these lesions can determine surgical strategies and prevent delays in treatment.

The “gold standard” diagnostic study to diagnose and evaluate these entities has traditionally been catheter-based intra-arterial digital subtraction angiography (DSA) secondary to its ability to render images with temporal and spatial resolution2. However, even routine spinal angiography has been associated with spinal cord infarct and renal failure3, 4. In the setting of a SAVM, selective catheterization of segmental arteries can lead to spinal cord infarction due to the catheter-related vasospasm.

The purpose of this report is to review recent advancements in the magnetic resonance imaging (MRI) of SAVMs that could lead to more timely diagnoses while reducing the complication profile of spinal angiography.

Diagnostic Imaging of SAVMs
Initially, noninvasive spine imaging is typically performed in the setting of a suspected SAVM. MRI is often carried out to evaluate the spinal column, cord, vasculature and supporting structures. SAVM are often suspected by the demonstration of prominent or conspicuous subarachnoid vessels on with traditional MR imaging techniques. Unfortunately, these standard MR imaging characteristics are nonspecific and lack temporal resolution. This imaging evaluation does not provide for localization of the fistulous connections of the SAVM, which consequently limits its clinical utility in planning definitive treatment plans.

However, a new imaging technique called time-resolved imaging of contrast kinetics (TRICKS) is a new technique in 3D MR angiography that can achieve an adequate temporal and spatial resolution to evaluate AVMs especially when combined with 3 Tesla imaging hardware.5-7 The TRICKS imaging protocol has surmounted the limitations of conventional MR imaging upon temporal resolution, by providing images with a temporal resolution of 3–6 seconds and a spatial resolution of approximately 1 mm. This allows for the AV shunt zone to be visualized, the predominant arterial feeders can be localized, and the venous drainage pattern to be displayed in a single MRA examination.

Utilization of TRICKS in Recurrent Spinal Arteriovenous Malformations
Conventional spinal angiography for the diagnosis of recurrent or residual spinal arteriovenous malformations continues to be a challenge for neuro-interventionalists. Previously clipped or embolized spinal arterial pedicles can be extremely challenging to identify and catheter-
ize during spinal angiography. Furthermore, these patients have higher complication rates from spinal angiography due to their already compromised spinal cord.

In our institution, the utilization of TRICKS MRA in such patients has been extremely useful in the diagnosis of recurrent SAVM. Several angiographically occult spinal lesions have been identified and treated with the aid of this study. As a result, TRICKS MRA is emerging as an adjunct diagnostic tool in the neuro-interventionalist’s armamentarium for the management of SAVM.

Figures 1-4 depict the radiographic progression of a SAVM. Figure 1 shows the spinal angiogram of left T3-4 SAVM, type I spinal arteriovenous fistula. Following surgical ligation of the fistula, clinical deterioration of the patient led to a second spinal angiogram, which was negative (Figure 2). An MRA TRICKS sequence was performed (Figures 3, 4) which showed a small recurrent SAVF at the same level.

Conclusion

Continuing improvement of noninvasive imaging MRA protocols will provide neurosurgeons with more precise localization of SAVMs. This development has the potential to minimize the procedural time needed for spinal DSA and the complication profile for patients undergoing follow-up imaging. Additionally, this technique will provide valuable clinical information for treatment decisions regarding endovascular therapy, open surgical treatment in addition to a potential to decrease the procedural complication profile for patients undergoing follow-up imaging.

References

Corresponding Author

Stavropoula I. Tjoumakaris, MD
Department of Neurological Surgery
Thomas Jefferson University
909 Walnut St, 2nd Floor
Philadelphia, PA 19107

Email: stavropoula.tjoumakaris@jefferson.edu
Phone: 215-503-7008