5-6-2015

Significance of QRS duration in non-ST elevation myocardial infarction.

Chinualumogu Nwakile
Einstein Medical Center

Bhaskar Purushottam
Mount Sinai Health Systems

Vikas Bhalla
Einstein Medical Center

Daniel Ukpong
Einstein Medical Center

Mahek Shah
Einstein Medical Center

See next page for additional authors

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/cardiologyfp

Part of the Cardiology Commons

Recommended Citation
Nwakile, Chinualumogu; Purushottam, Bhaskar; Bhalla, Vikas; Ukpong, Daniel; Shah, Mahek; Yun, Jeong; Morris, D Lynn; and Figueredo, M.D., Vincent M., "Significance of QRS duration in non-ST elevation myocardial infarction." (2015). Cardiology Faculty Papers. Paper 53.
http://jdc.jefferson.edu/cardiologyfp/53

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Cardiology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Authors
Chinualumogu Nwakile; Bhaskar Purushottam; Vikas Bhatta; Daniel Ukpong; Mahek Shah; Jeong Yun; D Lynn Morris; and Vincent M. Figueredo, M.D.
Significance of QRS Duration in Non-ST Elevation Myocardial Infarction

Chinualumogu Nwakile MD1, Bhaskar Purushottam MD4, Vikas Bhalla MD, MSc1, Daniel Ukpong MD1, Mahek Shah MD1, Jeong Yun MD, MPH3, D. Lynn Morris MD1,2, Vincent M Figueredo MD1,2.

1Einstein Institute for Heart and Vascular Health, Einstein Medical Center, Philadelphia, PA.
2Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, PA. 3Brigham and Women’s Hospital, Boston, MA. 4Mount Sinai Heart, Mount Sinai Health Systems, New York, NY.

Key words: ventricular fibrillation, ventricular tachycardia, thirty day mortality, one year mortality, acute coronary syndrome

Running title: Significance of QRS Duration in Non-ST Elevation Myocardial Infarction

Disclosures: No conflicts of interest

Corresponding author:

Vincent M Figueredo, MD
Einstein Heart and Vascular Center
5501 Old York Road, Levy 3232
Philadelphia, PA 19141
Phone: 215-456-8991
Fax: 215-456-3533
Email: figueredov@einstein.edu
Several studies have examined the significance of prolonged QRS duration, in the absence of bundle branch block (BBB), for predicting mortality in patients post ST elevation myocardial infarction (STEMI).1, 2 Few have studied this relationship in the non ST elevation myocardial infarction (NSTEMI) population, especially in the post thrombolytic era. The primary endpoints of this study were to determine whether prolonged admission QRS in the absence of BBB predicts 30 day and one year mortality in NSTEMI patients. A secondary endpoint was to determine the relationship between prolonged QRS and occurrence of in-patient ventricular tachyarrhythmias after NSTEMI.

One thousand nine hundred and sixty patients admitted to Einstein Medical Center, Philadelphia from August 1, 2006 to August 31, 2011 with a diagnosis of NSTEMI were screened. The study protocol was approved by the Einstein Institutional Review Board. The author(s) of this manuscript have certified that they comply with the principles of ethical publishing in the International Journal of Cardiology3.

NSTEMI was diagnosed on the basis of cardiac symptoms and electrocardiographic changes consisting of ST depression in two contiguous leads and positive troponins in accordance with existing guidelines4. Patients with known prior QRS ≥ 110ms, BBB, paced rhythm or incomplete data sets were excluded. Admission EKGs, as well as telemetry data, were reviewed to determine QRS duration and development of inpatient ventricular arrhythmias (ventricular tachycardia (VT) and ventricular fibrillation (VF)) during the index hospital stay. QRS durations from fifty random EKGs were measured by both manual and electronic means and then compared to ascertain accuracy and reliability of the electronic method of collection which was eventually used for EKG measurements ($R^2=0.96$, $P<0.0001$). Data on patient demographics, clinical characteristics, baseline hemodynamic parameters, ejection fraction (obtained from transthoracic
Baseline characteristics of patients with a prolonged QRS ≥ 110 ms versus those with a QRS <100 ms were compared using independent-sample t tests for continuous variables and chi-square for discrete variables. Multivariate Cox proportional hazards regression models were used to evaluate independent predictors of mortality. Kaplan-Meier method was used for generating survival curves and compared using the log-rank test. Effect of each variable was expressed as an odds ratio (OR) and confidence interval (CI). A p value <0.05 was considered statistically significant. Statistical analyses were performed using SPSS, version 22.

The final cohort consisted of 1539 patients with mean age of 66 ± 14 year, 51% were female and the average QRS for the entire cohort was 90.5 ± 13.5 ms. Demographics, clinical and hemodynamic characteristics are listed in Table 1. A cut off of QRS ≥ 110ms was used as it yielded the best specificity, negative predictive value and accuracy for predicting mortality (91%, 91% and 84%, respectively). On multivariate analysis, patients with QRS ≥ 110ms had increased 30-day mortality (HR=1.9, 95%CI 1.10-3.23; p=0.02) (Table 1) and one-year mortality (HR=1.44, 95%CI 1.002-2.059; p=0.05) (Table 1), even after adjusting for known coronary artery disease risk factor variables, chronic kidney disease and revascularization. Chronic kidney disease was predictive of one year mortality, but not for 30 day mortality (Table 1). Kaplan-Meier curves stratified by QRS ≥ 110ms versus QRS <110ms showed an increase in both 30 day and one-year mortality in patients with prolonged QRS (Figure 1).

During hospitalization of NSTEMI patients with QRS ≥ 110ms, 21.8% experienced VT and 3.2%
had VF compared to 10.3% and 0.9% of patients with QRS <110ms. The odds of having in-
patient ventricular tachycardia and ventricular fibrillation was 2.4 (OR=2.4, 95%CI 1.5-3.8) and
3.6(OR=3.6, 95%CI 1.2-11.2) times higher in patients with QRS ≥110ms compared to patients
with QRS <110ms.

Studies have shown that prolonged QRS duration due to the presence of bundle branch block
increased short term mortality in patients presenting with ST elevation myocardial infarction
(STEMI). Even in the absence of bundle branch block, prolonged QRS has been shown to
predict increased mortality in STEMI patients. Several hypotheses have been put forward to
explain this finding. Some postulated that QRS prolongation might be due to scar tissue
formation affecting the conduction system, which could predispose to reentry and ultimately
ventricular arrhythmias. Others hypothesized that QRS prolongation post STEMI may be due
to late potentials which are large enough to affect the surface EKG and they point to extensive
infarcts and involvement of the interventricular system and hence, increased mortality. Few
studies have examined this relationship in NSTEMI patients.

Our study demonstrates that a QRS ≥110ms in patients presenting with NSTEMI is associated
with increased short and long term mortality in the absence of bundle branch block. We believe
that the initial QRS duration measured upon presentation with NSTEMI can help with
stratification of this patient population as we demonstrated that patients with NSTEMI and
QRS≥110ms have a 90% increased risk of dying within 30 days. Given that only 14 patients
need to be aggressively treated to save one life at 30 days post NSTEMI, it is not unreasonable to
use the QRS duration as a tool to stratify at risk patients into a group that might benefit from
more aggressive care. For example these patients could be discharged with a wearable
cardioverter defibrillator to help terminate ventricular arrhythmias and therefore prevent sudden
cardiac death versus having them routinely followed up10.

Study limitations included knowing the specific cause of death after patients left the hospital, such that 30 day mortality was all cause mortality, which is less reliable in demonstrating a direct cause and effect relationship. Finally, our subject population was predominantly black which might limit generalizing our results to other populations.

In conclusion, QRS duration ≥ 110ms, in the absence of a BBB, is an independent predictor of 30-day and one-year mortality after NSTEMI. A QRS duration ≥ 110ms after NSTEMI is also associated with increased occurrence of in-patient ventricular arrhythmias.
BIBLIOGRAPHY

8. Tjandrawidjaja MC, Fu Y, Westerhout CM, Wagner GS, Granger CB, Armstrong PW; APEX-AMI Investigators. Usefulness of QRS score as a strong prognostic marker in patients discharged after undergoing primary PCI for STEMI. *Am J Cardiol* 2010 Sep 1;106(5):630-4

Table Legends

Table 1: Multivariate Analysis for QRS \geq110ms and:

(a) 30 day all-cause mortality

(b) One year all-cause mortality

Figure Legends

Figure 1: Kaplan-Meier Survival Estimates (30 Day Mortality and One Year Mortality)
Table 1

Multivariate predictors for QRS >110ms and 30 day or 1 year all-cause mortality

<table>
<thead>
<tr>
<th></th>
<th>30 DAY MORTALITY</th>
<th>1 YEAR MORTALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>QRS duration on admission</td>
<td>1.88 (1.10-3.23)</td>
<td>0.02</td>
</tr>
<tr>
<td>Age</td>
<td>1.04 (1.02-1.06)</td>
<td>0.01</td>
</tr>
<tr>
<td>Revascularization</td>
<td>0.24 (0.13-0.45)</td>
<td>0.00</td>
</tr>
<tr>
<td>Ejection Fraction</td>
<td>0.27 (0.76-0.95)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>30 DAY MORTALITY</th>
<th>1 YEAR MORTALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>QRS on admission</td>
<td>1.44 (1.002-2.059)</td>
<td>0.05</td>
</tr>
<tr>
<td>Age</td>
<td>1.05 (1.04-1.06)</td>
<td>0.00</td>
</tr>
<tr>
<td>Chronic Kidney Disease</td>
<td>1.60 (1.25-2.06)</td>
<td>0.00</td>
</tr>
<tr>
<td>Ejection Fraction</td>
<td>0.30 (0.14-0.63)</td>
<td>0.00</td>
</tr>
<tr>
<td>Revascularization</td>
<td>0.38 (0.28-0.51)</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Kaplan-Meier Survival Estimates (30 Day Mortality and One Year Mortality)