


Figure 7. Splitting of 70S ribosomes in the presence of polyamines. (A) Ribosomes were split in physiological concentrations of polyamines, but not
in 2mM spermidine (Spd). The 70S ribosome preparation (0.6 mM) was incubated in the presence of polyamines and sedimented through the sucrose
gradient containing polyamines as indicated in the figure. The 30S peak was not clearly visible due to the presence of polyamines in the gradient. The
ratio of 50S subunits to 70S ribosomes are shown below the 50S peaks. (B) The effect of various concentrations of GTP on the splitting of 70S
ribosomes in the presence of physiological concentration of polyamines. Ribosomes were incubated, as in (A), in buffer containing physiological
concentrations of polyamines, GTP, RRF and EF-G and sedimented through sucrose gradient in buffer R containing no polyamine. (C) Control of
(B). The effect of IF3 without RRF/EF-G. The numbers below and above the profiles in (B) and (C) are conversion and percentages of 70S
ribosomes, respectively. The 70S ribosome split was represented by % conversion=100 � (62.7 – percentage of 70S in P buffer with factors and
GTP)/62.7; 62.7 represents percentage of 70S ribosomes in P buffer with 4.5 mM IF3 (left profile).
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unless IF3 was added. Direct evidence with the use of
SDGC for the subunits formation by RRF and EF-G
without IF3 was obtained by inclusion of the reaction
components in the sucrose gradient (Figure 3).

Constant GTP requirement for the splitting of 70S ribosomes

The GTP requirement for the EF-G/RRF-dependent
splitting of 70S ribosome was different from that for the
EF-G-dependent translocation in two aspects; first, the
splitting required a constant supply of GTP to keep
the subunits separate (Figures 1–3). In contrast, the results
of translocation was irreversible when the E-site was
empty (52,53). Second, a single round of translocation
took place with nonhydrolyzable GTP analog (44),
though slowly (45), while a single round of splitting,
even in the presence of IF3 was strictly dependent on
GTP but not on the nonhydrolyzable analog (23,27,28).
Perhaps the inability of GMPPCP to cause the splitting
may be because, in the presence of GMPPCP, the EF–G/
GMPPCP complex remains on the ribosome (39,54). The
bound EF–G/GMPPCP may function to bridge two sub-
units together, resulting in the inability of GMPPCP to
catalyze the splitting. This possibility was strengthened by
our recent observation that yeast 80S ribosomes were sta-
bilized by eEF2 (eukaryotic homolog of EF-G) and
GMPPCP (Demeshkina,N., Hirokawa,G., Kaji,A. and
Kaji,H., unpublished data).

When GTP was limiting, as shown in Figures 1 and 2,
only a limited amount of splitting took place because GTP
was exhausted in the reaction mixtures. It was unlikely
that the need for 2mM GTP concentration for the split-
ting (Figure 5) was to stimulate the rate of the reaction
because Kd value of GTP for EF-G was about 20 mM (55).

The requirement for 2mM GTP to split 1 mM ribosome
must therefore be due to the actual need for the energy to
split with this amount of ribosome.

Does the RRF/EF-G-dependent splitting of the 70S
ribosome occur in vivo?

The time course of the splitting of the 70S ribosomes
shown in Figures 2C and 6 is in agreement with our ori-
ginal and other time-course studies on the disassembly of
the post-termination complex (27,56). However, the velo-
city of the splitting as shown in Figure 6 is much slower
than that reported recently with a similar light scattering
method (24). Splitting of post-termination complexes
observed through the FRET change of fluorescence-
labeled ribosomes with mRNA (28) was also much
faster than these time courses. This may be partly because
it deals with post-termination complexes and partly
because the FRET change may include internal structural
change before the actual physical separation of the sub-
units (57). We observed that 5 mMEF-G split 0.1mM ribo-
some in about 2min (Figure 6). This means that it will
take 100min to split 20 mM ribosomes for 20 mM EF-G.
Since the lag phase of E. coli is about 180min under our
experimental conditions (58), this rate is sufficient to split
most of the vacant 70S ribosomes during the lag phase.
The data shown in Figures 4 and 5 indicate that the shift
of equilibrium due to the increase of the 70S ribosomes
concentration was overcome by physiological concentra-
tions of GTP (2mM) and RRF/EF-G (20 mM each). This
gives further support for the concept that RRF- and EF-
G/GTP-dependent splitting of vacant 70S ribosomes takes
place in vivo. In a recent paper, Pavlov et al. suggested that
splitting of stored ribosomes at lag phase may be carried

Figure 8. Spermidine (2mM) inhibited anti-association activity of IF3. The 70S ribosome preparation was split into subunits in the low magnesium
buffer (profile 1). Subunits thus prepared were mixed with Mg-acetate to the final concentration of 6mM Mg2+ and incubated in the absence (profile
2) or presence (profile 4) of IF3. Profile 3 indicates subunits exposed to 2mM Spd in addition to 6mM Mg2+. Profile 5 shows the ribosomes after the
subunits were exposed to IF3 followed by the addition of 2mM spermidine and Mg2+. Profiles 6 and 7 are identical experiments to profile 5 except
that the polyamine concentrations were changed as indicated. Ribosomal sedimentation profiles were analyzed as described in Materials and methods
section. The percentages of 70S ribosomes are indicated above the 70S peak in each profile.
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out by IF1 and IF3 as originally shown by Godefroy-
Colburn et al. (22) but the rate (24) and extent (23) of
the vacant ribosome splitting by RRF, EF-G and IF3
were more than those by IF1 and IF3 suggesting the
major role of RRF for activation of the dormant
ribosomes.
However, Umekage and Ueda (32) recently suggested

that the splitting of 70S ribosomes by RRF and EF-G
may not take place in vivo. This was based on the lack
of splitting of 0.6–1.2 mM ribosomes by physiological con-
centration of EF-G/RRF using the modified PURE buffer
containing 2mM Spd. In contrast, as shown in Figure 7,
in the presence of EF-G, RRF (20mM each), 2mM GTP,
0.3mM Spd and 15mM ptc, 0.6 mM ribosomes were
dissociated. The concentrations of the aforementioned
components were those of in vivo (34–38,51). The con-
centration of polyamine in the original PURE buffer is
1mM Spd, 8mM ptc (42) and the polymix buffer designed
to obtain maximum in vitro protein synthesis (33) con-
tained 8mM ptc and 1mM Spd. Therefore, the Spd con-
centration used by Umekage and Ueda is higher not
only than the physiological concentration of Spd but
also than that of those buffers used by other laboratories.
It appears, therefore, that the reason why Umekage and
Ueda were not able to observe splitting of 70S ribosomes
was the use of an unusually high concentration of Spd
(2mM).
It has been shown that paromomycin, which inhibited

the RRF activity (59) strongly inhibited the anti-
association activity of IF3 (60) by binding to helix 69 of
the 50S subunits (12,61). It appeared that 2mM Spd had
similar inhibitory effects on the anti-association activity of
IF3. This explains the lack of splitting by RRF and EF-G
in the presence of 2mM Spd even in the presence of IF3.
We conclude that the RRF/EF-G-dependent splitting
occurs in vivo.
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