
Thomas Jefferson University
Jefferson Digital Commons

Department of Neurology Faculty Papers Department of Neurology

7-1-2012

B-vitamin deficiency in patients treated with
antiepileptic drugs.
Scott Mintzer
Thomas Jefferson University, scott.mintzer@jefferson.edu

Christopher T Skidmore
Thomas Jefferson University, Christopher.Skidmore@jefferson.edu

Michael R Sperling
Thomas Jefferson University, Michael.Sperling@jefferson.edu

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/neurologyfp

Part of the Neurology Commons

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas
Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly
publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and
interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in
Department of Neurology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact:
JeffersonDigitalCommons@jefferson.edu.

Recommended Citation
Mintzer, Scott; Skidmore, Christopher T; and Sperling, Michael R, "B-vitamin deficiency in patients
treated with antiepileptic drugs." (2012). Department of Neurology Faculty Papers. Paper 48.
http://jdc.jefferson.edu/neurologyfp/48

http://jdc.jefferson.edu?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/neurologyfp?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/neurology?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jeffline.jefferson.edu/Education/surveys/jdc.cfm
http://jdc.jefferson.edu/neurologyfp?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/692?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.jefferson.edu/university/teaching-learning.html/


 

 

As submitted to:  

Epilepsy and Behavior 

And later published as: 

B-Vitamin Deficiency in Patients Treated with Antiepileptic 

Drugs 

Volume 24, Issue 3, July 2012, Pages 341-344 

DOI: 10.1016/j.yebeh.2012.04.132 

 

Scott Mintzer, MD, Christopher T. Skidmore, MD, Michael R. Sperling, MD 

 

Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson 

University, Philadelphia, PA 

 

 

 

 

Corresponding author: Dr. Mintzer, 900 Walnut Street, Suite 200, Philadephia PA 19107; e-mail 

scott.mintzer@jefferson.edu; phone 215-955-1222; fax 215-955-0606 

 



 

 

ABSTRACT 

 

Enzyme-inducing antiepileptic drugs (AEDs) produce many alterations in metabolism, including 

vitamin levels. Whether they produce clinically-relevant deficiency of B vitamins has rarely been 

assessed. We obtained B vitamin levels in patients who were being converted from an inducing 

AED (phenytoin or carbamazepine) to a non-inducing AED (levetiracetam, lamotrigine, or 

topiramate), with measurements both before and ≥ 6 weeks after the switch. A group of normal 

subjects underwent the same studies. Neither folate nor B12 deficiency was seen in any patient. 

Vitamin B6 deficiency was found in 16/33 patients (48%) taking inducers, compared to 1/11 

controls (9%; p=0.031). After switch to non-inducers, only 7 patients (21%) were B6 deficient 

(p=0.027). The incidence of deficiency was similar regardless of which inducing or non-inducing 

AED was being taken. Our findings demonstrate that treatment with inducing AEDs commonly 

causes pyridoxine deficiency, often severe. This could conceivably contribute to the 

polyneuropathy sometimes attributed to older AEDs, as well as other chronic heath difficulties. 



 

 

INTRODUCTION 

 Enzyme-inducing antiepileptic drugs (AEDs) produce a considerable number of 

metabolic alterations, including changes in serum lipids, hormones, bone turnover, and various 

vitamin levels [1]. Some of these parameters, such as cholesterol, are appropriately examined in 

a continuous fashion, as their contribution to disease is graded. In contrast, other measures are 

best examined in a dichotomous fashion, as their contribution to clinical disease is generally felt 

to depend upon whether a patient’s level declines below a certain critical threshold. 

 The B vitamins folate, cyanocobalamin (B12), and pyridoxine (B6) belong to the latter 

category. A number of studies have examined the effects of enzyme-inducing and other AEDs on 

these vitamins, but most have looked at them as continuous variables [2-4]. This approach is less 

than ideal for determining clinical relevance in some respects, as a patient whose vitamin level 

declines a bit due to AED therapy will suffer no clinical consequences as long as that level 

remains in the range that will appropriately support normal function. Whether AEDs produce 

frank deficiency of vitamins has been little-studied. B6 deficiency in epilepsy patients has been 

the subject of only a single uncontrolled study[5]. One large study did examine folate and B12 

levels in a dichotomous fashion, finding that deficiency of one or both these vitamins was more 

common in patients taking a number of AEDs, including many inducers (phenytoin, 

carbamazepine, primidone), some newer drugs with limited enzyme-inducing capacity 

(oxcarbazepine, topiramate) and several non-inducers (gabapentin, pregabalin, valproate) [6]. 

This study was limited by its cross-sectional design, reducing its ability to attribute these 

deficiencies to the effects of drugs. These authors did not examine B6 levels. 

 The present study assessed B vitamin deficiency in a group of patients transitioning from 

an older, enzyme-inducing AED to a newer generation AED. The crossover design, together with 

a normal control group, permits attribution of drug effects. Our goal was to determine whether 

inducing AEDs produce clinically relevant deficiency of B vitamin levels. 

 

 

 



 

 

METHODS 

 We studied patients with epilepsy on CBZ or PHT monotherapy whose treatment 

regimen was being changed to monotherapy with one of the newer agents LEV, LTG, or TPM. 

Patients were participating in one of two studies designed to examine the effects of AED 

conversion on lipids and other vascular risk factors [7, 8]. Any patient undergoing such a drug 

switch was asked to participate. Patients had been taking the former drugs for at least one month, 

and the decision to alter therapy was made by the patient’s treating physician for clinical reasons 

(e.g., side effects, inadequate seizure control, or concerns about chronic AED use). These 

patients were compared to the same group of normal subjects utilized in our previous 

investigation[7]. The drug-treated patients provided a fasting blood sample during therapy with 

the initial drug, and a second sample following AED conversion, at least 6 weeks after the 

inducing agent had been discontinued. Target doses of AEDs were generally low: 500 mg BID of 

LEV, 100 - 200 mg BID of LTG, and 50-75 mg BID of TPM (except for a single patient taking 

TPM at 150 mg BID).  In the normal subjects, two fasting blood samples were taken 10 weeks 

apart (comparable to the the anticipated inter-sample time in the drug-treated patients, whose 

inducer would be gradually tapered over several weeks).  

 Blood samples were analyzed for folate, pyridoxal-5’-phosphate (B6), and B12 levels in 

serum, as well as the level of the AED the patient was taking at the time. We excluded from the 

present analyses any patients with conditions which might be expected to have a major impact 

upon nutrient absorption, such as pernicious anemia, celiac disease, active inflammatory bowel 

disease, or prior bariatric surgery. In addition, we excluded patients who had a major change in 

health state during the study period (e.g. pregnancy) which might be expected to alter vitamin 

levels over the course of the study. Subjects taking high-dose B vitamin supplements were also 

excluded. Those taking multivitamins were found to have B6 levels which were markedly higher 

than all other subjects at baseline, and as a consequence were excluded from B6 analyses. Folate 

and B12 levels in these latter patients at baseline did not differ from those of the other subjects. 

Some individual measurements were not carried out in certain samples due to laboratory or 

handling errors. The total number of patients was n=28 for folate, n=29 for B12, and n=33 for 

B6; for normal subjects n=14 for folate and B12 and n=11 for B6. Vitamin levels were 



 

 

performed by Quest Diagnostics (San Juan Capistrano, CA). Folate and B12 were measured 

using chemiluminescent immunoassay with a total allowable error of 30% and coefficients of 

variation of 6.0-8.3% and 3.3-9.0% respectively. B6 was measured in normal subjects and in the 

majority of the patients using a radioenzyme assay method with a coefficient of variation of 

13.3-14.4% and lower limit of quantitation of 2.5 ng/mL. The laboratory subsequently updated 

its technique for this measure, such that in the remainder of the patients B6 was measured using 

liquid chromatography and tandem mass spectometry with a lower quantitation limit of 2.0 

ng/mL and a total allowable error of 25%. The correlation between the two B6 detection methods 

is >97%.  Comparison of B vitamin deficiency in drug-treated and normal subjects was 

performed using the Fisher’s Exact or Chi-squared tests. The incidence of B6 deficiency in drug-

treated patients before and after drug switch was analyzed using the McNemar test. Analyses 

were performed using InStat 3.0 (GraphPad, San Diego, CA).  

 

 

RESULTS 

 

The epilepsy patients averaged 44 years of age (range 18-88) and were 57% female. With 

regard to ethnicity, the group was approximately 77% Caucasian, 13% of African descent, 7% 

Latino, and 3% from other ethnic groups. They had been treated with their initial medication for 

anywhere between 30 days and 35 years. Those taking CBZ had serum levels ranging from 1.9- 

16.6 µg /mL (mean: 8.7), with all but one patient having a level > 4.0. Among those taking PHT, 

levels ranged from 3.3 - 28.9 µg /mL (mean: 15.1); two patients had levels of 3.3 and 5.1, with 

all the rest having levels ≥8.9. The total time between the two blood draws ranged from 42 to 

308 days (mean: 123). The normal subjects not taking AEDs who served as comparators were 

described in a previous publication[7]. This group was similar in age, gender, and race to the 

patient cohort. 

 Using a threshold value of <3 ng/ml, folate deficiency was not seen in any of the patients 

during treatment with the older AEDs, nor when they were switched to the newer AEDs. A 



 

 

single PHT-treated patient had a folate level right at the cutoff (3 ng/ml), and this increased to 

3.5 ng/ml after  switch to a newer AED. Thus, while folate levels were lower during inducer 

treatment (data not shown), this did not produce threshold deficiency. None of the normal 

subjects were folate deficient at either blood draw. 

 With regard to B12 deficiency, using the standard cutoff value of <200 pg/ml, there was 

no B12 deficiency seen among any of the epilepsy patients, either under treatment with an 

inducing AED or under treatment with a non-inducing drug. In fact, there was more B12 

deficiency among the normal subjects: none were deficient at the first draw, though several were 

close to the cutoff, and 3 actually declined into the deficient range at the time of the second draw. 

Thus, we found no evidence of clinically-relevant B12 deficiency among AED-treated epilepsy 

patients. 

 Results with respect to B6 deficiency are shown in Figure 1. Using the standard cutoff of 

5 ng/ml, 16 of 33 epilepsy patients (48%) were B6 deficient, as compared to 1/11 normal 

subjects (9%). B6 deficiency was significantly more common at baseline in the inducer-treated 

patients than in the normal subjects (Fisher’s Exact, p=0.031). The degree of B6 deficiency was 

not trivial, with 10 of these 16 patients, or 30% of the entire cohort, having levels at or below the 

limit of detection of the predominant assay (≤2.5 ng/ml). In fact, using that number as a stringent 

cutoff, B6 deficiency remained more common in patients than in controls (Fisher’s Exact, p= 

0.046). Using the more lenient threshold of <7.5 ng/ml, the high prevalence of deficiency 

remained a trend (Fisher’s Exact, p = 0.096). Following switch to a non-inducing AED, B6 

deficiency was seen in 7 of 33 epilepsy patients (21%), a significant decline from the 48% 

incidence in those same patients during inducing-drug treatment (McNemar, p=0.027) (Fig.1). 

 The findings do not appear meaningfully related to the specific assay used, as B6 

deficiency was seen in 12/27 patients (44%) using the radioenzyme assay and in 4/6 patients 

(66%) using the newer mass spectrometry assay.  The findings also do not appear related to the 

specific inducing or non-inducing AED used, as B6 deficiency was seen in 7 of 12 patients while 

taking PHT (58%) and in 9 of 21 patients taking CBZ (43%). When PHT- and CBZ-treated 

patients were considered as separate groups and compared to normal subjects, the incidence of 

B6 deficiency remained significant (Chi-squared, p=0.046). Once crossed-over to a non-inducing 



 

 

AED, B6 deficiency appeared in nearly-identical proportions regardless of whether the patient 

was switched to LEV, LTG, or TPM (Figure 2). 

 



 

 

 

DISCUSSION 

 

 A number of studies have examined B vitamin levels in AED-treated epilepsy patients, 

generally in the context of their potential contribution to homocysteine levels. As a consequence, 

the majority of these studies have been concerned with the magnitude and statistical significance 

of any serum level changes, since changes throughout the range of values may impact upon 

homocysteine levels. Yet for most other clinical concerns, changes in vitamin levels within the 

normal range are unlikely to be clinically relevant. For this reason, we undertook to specifically 

examine the issue of whether treatment with enzyme-inducing AEDs contributes to threshold 

deficiency of B vitamins. 

 The major result of the present investigation was the finding that B6 deficiency is very 

common in the inducer-treated population, and in most cases was improved by switch to a non-

inducer. Several studies have found reduced B6 levels in CBZ-treated patients, and in two of the 

studies this could clearly be attributed to CBZ [2, 4, 9]. However, none of these studies reported 

the incidence of B6 deficiency, so that the clinical relevance of these changes, other than their 

potential contribution to homocysteine deficiency, remained uncertain. Only one previous study 

examined B6 deficiency in a categorical fashion, finding as we did that the majority of PHT- and 

CBZ- treated patients were B6 deficient; however, this study did not include a control group[5]. 

Thus, to our knowledge, ours is the first study to demonstrate that frank B6 deficiency is more 

common in CBZ- and PHT-treated patients with epilepsy than in control subjects, and that this 

deficiency is very likely caused or exacerbated by the drugs themselves. 

 Furthermore, the degree of B6 deficiency in these patients was remarkable, with 30% of 

the entire inducer-treated cohort having B6 levels that were undetectable or nearly so. Relatively 

little is known about the consequences of B6 deficiency, as it is distinctly uncommon in adults. 

Among the most well-established clinical consequences of B6 deficiency is peripheral 

neuropathy, generally encountered in the context of treatment with the antitubercular drug 

isoniazid, which forms a complex with B6 and thus reduces its availability to tissues[10]. It is 

standard clinical practice to supplement isoniazid-treated patients with B6 to avoid the depletion 



 

 

that can otherwise occur via this mechanism. This neuropathic action of isoniazid, and the 

present findings, are of interest in light of the evidence  that PHT may be neuropathic[11, 12] . 

There is also evidence that other inducing AEDs may contribute to the development of peripheral 

neuropathy [13, 14]. Further clinical investigation is warranted to assess the possibility that this 

could be due to B6 deficiency. Deficiency of B6 may also contribute to anemia and may increase 

the risk of a number of cancers[15]. In addition, there is the well-documented genetic condition 

of B6-dependent epilepsy in infants[16]. It is not clear that B6 deficiency contributes to seizures 

in adults or older children lacking the relevant mutation, though a recent case series suggested 

B6 deficiency as a cause of new-onset refractory seizures in several critically ill patients[17]. 

Specific study would be required to determine whether the kind of extreme B6 deficiency seen 

here might contribute to chronic AED-resistant epilepsy. 

 The mechanism for B6 deficiency caused by inducing AEDs remains unclear. B6 is 

oxidized in the liver prior to urinary excretion[15], and such oxidizing enzymes are frequent 

targets of enzyme inducers, so that it is likely that increased activity of the oxidizing enzyme in 

the presence of PHT or CBZ results in increased catabolism of B6. Another alternative is that, 

like isoniazid, these drugs form a complex with B6 and result in increased urinary excretion. We 

are not aware of any pharmacologic investigation of these hypotheses. 

 The noteworthy negative findings in our study involved the absence of folate or B12 

deficiency in the AED-treated epilepsy patients. The findings with regard to B12 are in good 

agreement with those of Linnebank et al [6], who found that B12 deficiency was uncommon in 

inducer-treated patients (or in patients taking any AED), and no more common than in healthy 

controls. Thus, while both those authors and our group [7]  found that inducers appear to lower 

B12 levels, it is unlikely that this effect is of clinical significance. With regard to folate, those 

authors found that about a quarter of CBZ- or PHT-treated patients were folate deficient, a 

finding which contrasts starkly with our data. Both studies used the same cutoff for folate 

deficiency, and only one of our patients in whom folate was measured was taking a multivitamin 

supplement. It is possible that differences in diet could explain the folate discrepancy, as folate 

supplementation of foodstuffs is common in the United States, but not in Germany. This points 

up a limitation of our study, and indeed of virtually all studies in this area: absence of knowledge 



 

 

regarding subjects’ nutritional intake. Dietary assessments are, in general, difficult and of 

dubious accuracy due to poor subject recall, inability to corroborate food intake, and other 

factors. This makes the use of our repeated measures design particularly valuable, as it is 

unlikely that subjects would have experienced major changes in diet that would have 

meaningfully affected vitamin levels during the period between the two blood draws; 

furthermore, any tendency to alter diet would have been reflected equally in both patient and 

control groups. Thus, even with this limitation, our study points to the effects of inducing AEDs 

as being causative of B6 deficiency. It is also worth noting the ability of folate supplementation 

to mask functional B12 deficiency, a phenomenon which has been specifically reported in the 

epilepsy population[18]. While this could conceivably have been a factor in our cohort, the 

results with respect to B12 were similar to those seen in the study done in Germany, where there 

is little folate supplementation of food. Thus, we feel this is unlikely to have been a meaningful 

contributor to our negative findings with respect to B12. 

 In summary, our data reveal a high prevalence and degree of B6 deficiency in patients 

under treatment with inducing AEDs. While we cannot exclude that some of this might relate to 

the underlying epilepsy, the design of our study makes it clear that PHT and CBZ are responsible 

for the lion’s share of this finding. Further work is also needed to ascertain the potential clinical 

impact of B6 deficiency in this population with regard to peripheral neuropathy, 

homocysteinemia, seizures, or other metabolic consequences. 



 

 

FIGURE LEGENDS 

 

 

 

Figure 1: Vitamin B6 deficiency during treatment with various AEDs 

 

Bars represent the fraction of patients deficient during the period of treatment with a given 

inducing AED (shown in green) or non-inducing AED (in blue). Patient numbers were n=12 for 

phenytoin (PHT), n=21 for carbamazepine (CBZ), n=9 for levetiracetam (LEV), n=13 for 

lamotrigine (LTG), and n= 11 for topiramate (TPM). 

 

 

 

 

 

 

Figure 2: Vitamin B6 deficiency in epilepsy patients and in normal subjects 
 
 
Green bars represent the fraction of patients deficient at baseline, while blue bars represent the 

fraction of patients deficient at the second draw.  *p<0.05 (Fisher’s Exact) for comparison of 

epilepsy patients vs. normal controls at baseline (draw 1).  †p<0.05 (McNemar) for comparison 

of epilepsy patients at baseline (while taking an inducing drug) and at draw 2 (after switch to 

newer-generation drug). 
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