Evaluation of Echogenic Material on Transvenous Leads by Transesophageal Echocardiography in Patients with and without Lead-associated Endocarditis

Toshimasa Okabe, MD
Thomas Jefferson University Hospital, Toshimasa.Okabe@jefferson.edu

Praveen Mehrotra, MD
Thomas Jefferson University Hospital, praveen.mehrotra@jefferson.edu

Henry Siu, MD
Thomas Jefferson University Hospital, henry.siu@jefferson.edu

Arnold J. Greenspon, MD
Thomas Jefferson University Hospital, arnold.greenspon@jefferson.edu

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/cardiologyfp

Recommended Citation
Okabe, MD, Toshimasa; Mehrotra, MD, Praveen; Siu, MD, Henry; and Greenspon, MD, Arnold J., "Evaluation of Echogenic Material on Transvenous Leads by Transesophageal Echocardiography in Patients with and without Lead-associated Endocarditis" (2014). *Cardiology Faculty Papers*. Paper 45.
http://jdc.jefferson.edu/cardiologyfp/45
Evaluation of Echogenic Material on Transvenous Leads by TEE
In Patients with and without Lead-associated Endocarditis

Toshimasa Okabe, MD, Praveen Mehrotra MD, Henry Siu MD, Arnold J. Greenspon, MD
Division of Cardiology, Thomas Jefferson University, Philadelphia, PA

Disclosures: None

Introduction

- Transesophageal echocardiography (TEE) is often required to diagnose lead-associated endocarditis (LAE) in patients with cardiovascular implantable electronic device (CIED) and persistent bacteremia.
- TEE may detect echogenic material (EM) on CIED leads in up to 10% of patients without infection.
- The objectives of the study were:
 1. To determine the incidence of EM in patients with and without LAE.
 2. To define the specific morphologic features of infected vs. non-infected EM detected by TEE.
 3. To characterize the echocardiographic parameters associated with EM in non-infected patients.

Methods

- Consecutive TEE studies performed in patients with CIED between 1/1/2009 and 3/31/2014 were retrospectively analyzed by an echocardiographer (PM) blinded to clinical information.
- Lead-associated EMs were classified as mass-like or linear densities and then evaluated for morphologic characteristics (multi-lobulation, calcification, and mobility), size, the total number of EMs.
- A clinical diagnosis of LAE was adjudicated using the modified Duke criteria.
- Continuous variables were summarized using medians and interquartile ranges (IQR) = 25th percentile value - 75th percentile value. Clinical and echocardiographic variables were compared between patients with and without definite LAE using chi-square tests for categorical variables and Mann-Whitney U for continuous variables. All p < 0.05 were considered statistically significant.

Results

- Table 1: LAE

<table>
<thead>
<tr>
<th>Group</th>
<th>Definite LAE (n=35)</th>
<th>No LAE (n=254)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>70 (55-78)</td>
<td>70 (61-77)</td>
<td>NS</td>
</tr>
<tr>
<td>Male</td>
<td>27 (77.1)</td>
<td>104 (40.6)</td>
<td>NS</td>
</tr>
<tr>
<td>Echogenic material</td>
<td>None</td>
<td>15 (42.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>None</td>
<td>15 (42.9)</td>
<td>3 (1.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Linear</td>
<td>23 (65.7)</td>
<td>26 (10.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Mass</td>
<td>27 (77.1)</td>
<td>104 (40.6)</td>
<td>NS</td>
</tr>
<tr>
<td>Long axis (mm)</td>
<td>13 (10-18)</td>
<td>9 (6-12)</td>
<td>0.001</td>
</tr>
<tr>
<td>Short axis (mm)</td>
<td>9 (6-12)</td>
<td>9 (6-12)</td>
<td>NS</td>
</tr>
<tr>
<td>Long axis > 10 mm</td>
<td>18 (51.4)</td>
<td>21 (29.6)</td>
<td>0.006</td>
</tr>
<tr>
<td>Multiple (>2)</td>
<td>15 (43.4)</td>
<td>10 (14.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Multi-lobulated</td>
<td>17 (48.6)</td>
<td>15 (21.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Calcified</td>
<td>17 (48.6)</td>
<td>15 (21.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Mobile</td>
<td>17 (48.6)</td>
<td>15 (21.1)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Representative Cases

- Representative Case 1 (Group I): A 57-year-old man with a dual-chamber pacemaker and lead-associated endocarditis. Several multi-lobulated mass-like echodensities were seen attached to the RV lead on TEE. Red asterisk (*) denotes the same mass seen on the 2D and 3D images (two orthogonal planes by multi-planar reconstruction). He successfully underwent complete device and lead removal. RA=right atrium, LA=left atrium, Ao=ascending aorta, RV=right ventricle, LV=left ventricle, TV=tricuspid valve.

- Representative Case 2 (Group II): A 62-year-old woman with severe cardiomyopathy and a single-chamber ICD underwent TEE for the assessment of ventricular function. A small mobile linear echodensity was present on the atrial portion of the RV lead. RA=right atrium, LA=left atrium, RV=right ventricle, LV=left ventricle, TV=tricuspid valve.

Conclusion

1. Echogenic material on non-infected CIED leads is a common finding (28%).
2. Several morphologic characteristics of EM (mass-like rather than linear, large (>10 mm), multiple and multi-lobulated) are more commonly seen in LAE. However, these characteristics alone are NOT diagnostic for LAE.
3. Lead-associated EM on TEE should be interpreted within the overall clinical context.