Bone mineral density in mucopolysaccharidosis IVB

Francyne Kubaski
Nemours/Alfred I. duPont Hospital for Children; University of Delaware

Heidi H. Kecskemethy
Nemours/Alfred I. duPont Hospital for Children

Howard T. Harcke
Thomas Jefferson University; Nemours/Alfred I. duPont Hospital for Children, howard.harcke@jefferson.edu

Shunji Tomatsu
Nemours/Alfred I. duPont Hospital for Children; University of Delaware

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/radiologyfp

Part of the Radiology Commons

Recommended Citation
http://jdc.jefferson.edu/radiologyfp/43

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University’s Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Radiology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Bone mineral density in mucopolysaccharidosis IVB

Francyne Kubaskia,c,1, Heidi H. Kecskemethya,b,⁎, H. Theodore Harcke a,d, Shunji Tomatsu a,c

1. Introduction

Mucopolysaccharidosis IVB (MPS IVB, Morquio syndrome type B) (OMIM#253010) is an autosomal recessive inherited metabolic disorder caused by deficiency of β-galactosidase (GLB1) [1]. This hydrolyase is responsible for the catabolism of terminal β-galactose residues as keratan sulfate (KS) and GM1 ganglioside [2,3]. Keratan sulfate accumulation in patients with MPS IVB causes skeletal dysplasia, growth retardation, keratan sulfaturia, corneal clouding, and impaired cardiac function [2,4]. The incidence of MPS IV is variable among different populations (1 per 75,000 in Northern Ireland to 1 per 640,000 in Western Australia) [5,6]. To date more than 180 mutations have been described on GLB1 (HCMC) [7], but fewer mutations are associated with the clinical phenotype of MPS IVB [2,4,8,9]. There is no cure or established treatment for MPS IVB.

Bone and cartilage are the main tissues affected in patients with MPS IVB, resulting in skeletal dysplasia. However, skeletal and cartilage involvement are not only caused by the primary GAG accumulation but also by disruption of several secondary mechanisms and pathways as: signaling transduction pathways, regulation of humoral factors (chemokines and cytokines), endocytosis, autophagy, apoptosis, oxidative stress, innate and adaptive immune responses [10].

The growth deficits and bone deformities seen in MPS IVB are less severe than those observed in MPS IVA, resulting in a milder phenotype with greater functional abilities. Lack of ambulation is known to negatively impact BMD of the lateral distal femur (LDF) in patients with other medical conditions including cerebral palsy, Duchenne muscular dystrophy, and spina bifida [11–15]. A strong association was demonstrated between low BMD at the LDF and fracture history in children with cerebral palsy and Duchenne muscular dystrophy [16]. Several reports have demonstrated low BMD in MPS IVA [17–20]. One of those reports [17] employed a height adjustment methodology to the DXA results, the HAZ method described by Zemel [21]. The appropriateness of using the HAZ method for children with skeletal dysplasia and who have severe height deficits is questionable [20,22]. Kecskemethy and colleagues reported low BMD of the lower extremities (LDF DXA) in patients with MPS IVA, indicating that the LDF, due to the presence of metallic hardware, intolerance of required position for scan acquisition,
and spine abnormalities, is the most accurate and feasible site to measure BMD in MPS IVA [20].

To date, no reports exist describing BMD for MPS IVB; this is the first report of BMD in MPS IVB. We describe BMD measured by DXA at standard body sites and the LDF [23,24], and examine clinical correlates (anthropometric measures, medical and fracture history, and ambulation). Investigation of bone mineral density (BMD) in patients with MPS IVB contributes to understanding of disease pathology.

2. Methods

2.1. Subjects

This cross-sectional study prospectively evaluated three patients with MPS IVB (two females) ranging in age from 17.7 to 31.7 years (mean age 26.9 years) who were enrolled in this study at the Nemours/Alfred I. duPont Hospital for Children (AIDHC). Patients were diagnosed biochemically by enzyme assay. Functional abilities, medical history, Tanner score, and height Z-score were reviewed. Radiographs of the lateral spine were used to aid in correct region of interest placement on the lumbar spine (LS) DXA. Age and gender-matched norms were used to calculate Z-scores. Height and weight measures were obtained and height Z-scores were calculated using National Health and Nutrition Survey (NHANES) LMS tables (CDC 2000, accessed 9/5/15) [25]. The maximum age available (19.9 years) was used for patients over this age. Informed consent was applied and the study was approved by the Institutional Review Board of the Institution (338578).

2.2. BMD assessments

Bone mineral density was assessed by DXA at the whole body (WB), lumbar spine LS, and LDF using a Hologic Discovery A model bone densitometer (Hologic, Bedford, MA, USA) located in the AIDHC Medical Imaging Department. All scans were acquired and analyzed by the same DXA technologist. The DXA Z-scores were calculated based on age and gender-matched manufacturer-provided norms and published normative values for the LDF [21]. The oldest normative LDF values available (18 years) were used for the two patients older than 18 years.

The LDF scans were analyzed for three distinct regions of interest, described by Henderson et al., to assess bone density in different types of bone [24]: Region 1 (R1), the most distal region, is predominantly trabecular bone; region 2 (R2) is a mix of trabecular and cortical bone; and region 3 (R3), the most proximal region, is primarily cortical bone (Fig. 1). The LDF BMD was assessed bilaterally, left and right femur BMD values were averaged, and Z-scores were calculated. Abnormal DXA results were defined as more than two standard deviations (SD) below the normal mean, expressed as Z-score < −2 [26]. Radiographs of the LS, including inter-vertebral assessment by DXA, were reviewed by a radiologist and were used to aid in correct region of interest placement on the LS DXA.

3. Results

Three Caucasian patients (two females) with MPS IVB were evaluated; aged 17.7, 31.4 and 31.7 years. Mean height was 131.2 cm (average Z-score − 5.4), and mean weight was 39.9 kg (average Z-score − 4.0) (Table 1). All patients were ambulatory: two walked independently without any aids and one used a wheelchair and occasionally (once per month) used a wheelchair. One patient sustained two fractures (arm and femur) due to trauma (fall and motor vehicle accident, respectively). All three subjects were post-pubescent.

The presence of metallic artifact from prosthetic hips on every WB scan precluded valid assessment of the results (Fig. 2). Metal is interpreted as bone on DXA and therefore the presence of metal artificially elevates BMD. Two of the three patients had vertebral overlap at T12 and L1, invalidating LS scan results. The one technically valid LS scan resulted in a normal BMD Z-score of −0.8, but wedging of L3, which can elevate LS BMD DXA results, was noted [27] (Fig. 3). The LDF yielded technically valid results for all patients, and Z-scores were low at all three regions of interest with average Z-scores of −3.1, −2.3, and −2.1 at R1–R3, respectively (Fig. 4). Every region of interest for all measurements (both femurs) was consistently below normal.

4. Discussion

In this study, we evaluated and reported the BMD of three patients with MPS IVB. The skeletal abnormalities seen in patients with MPS IVB are primarily caused by the accumulation of KS. The exact mechanism of low BMD in MPS IVB is still unknown, although as undegraded substrate accumulates, normal bone and cartilage formation is disrupted leading to impaired homeostasis which could affect BMD [10,28]. Low BMD has also been reported in other lysosomal disorders [28] (e.g. Gaucher’s) and skeletal dysplasias [29] (e.g. achondroplasia and hypochondroplasia).

In general, patients with MPS IVB exhibit a less severe phenotype than those with MPS IVA. This fact is evidenced by greater functional ability (all patients were ambulatory) and less severe growth deficits in height resulting in an average height Z-score of −5.4, compared with a group of patients with MPS IVA where nine of 18 patients were fully ambulatory and had an average height Z-score of −7.4 [20].

Ambulation is preservative of bone density as demonstrated by studies examining DXA of the lower extremities in patients with cerebral palsy, Duchenne muscular dystrophy, and spina bifida [11–16]. Henderson et al. described a strong association between fracture and LDF BMD in children with Duchenne muscular dystrophy and cerebral palsy [16]. All of our patients were essentially full-time ambulators (one used a walker and a wheelchair once per month). Despite this ambulation, the LDF BMD was uniformly below normal in all three patients. There was no history of non-traumatic fracture, often seen in patients with low BMD of the lower extremities. It is impossible to examine
the relationship between BMD and fracture in this limited number of patients.

While DXA is the most commonly used and clinically available technology to assess BMD, there are known limitations with a two-dimensional assessment of a three-dimensional object, like bone. Dual-energy X-ray absorptiometry is an areal measurement that uses values for area and bone mineral content, taken from a two-dimensional image to determine BMD in gm/cm² — this is frequently designated areal BMD (aBMD). Abnormally-shaped vertebrae that are wedge-shaped or beaked are common in MPS IVB (Fig. 3). Utilizing DXA to measure atypically shaped vertebrae can yield variable aBMD results [27]. This is a limitation of using the LS DXA to assess BMD in patients with MPS IV (A and B). Careful review of LS radiographs should be made to determine both the technical validity and correct identification of vertebrae on the LS DXA scan when assessing BMD in MPS IVB. Only one of three LS DXA scans in this study was valid, and still an elevation in overall LS BMD from wedging noted at L-3 may have resulted.

While WB DXA scans could reliably be acquired, their validity was compromised by the presence of metallic artifact present with hip replacements (Fig. 4). The LDF measurement was established as an

Table 1
Clinical data for MPS IVB patients.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>17.7</td>
<td>31.4</td>
<td>31.7</td>
</tr>
<tr>
<td>Gender</td>
<td>F</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>129.5</td>
<td>137.2</td>
<td>127</td>
</tr>
<tr>
<td>Height Z-score</td>
<td>−5.2</td>
<td>−5.4</td>
<td>−5.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>33.2</td>
<td>50</td>
<td>36.4</td>
</tr>
<tr>
<td>Weight Z-score</td>
<td>−5.3</td>
<td>−2.5</td>
<td>−4.2</td>
</tr>
<tr>
<td>LS BMD (gm/cm²)</td>
<td>0.915</td>
<td>Invalid</td>
<td>Invalid</td>
</tr>
<tr>
<td>LS BMD Z-score</td>
<td>−0.8</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>LS BMD Z-score</td>
<td>n/a</td>
<td>L1–T12 overlap</td>
<td>L1–T12 overlap</td>
</tr>
<tr>
<td>LDF R1 BMD (gm/cm²)</td>
<td>0.605</td>
<td>0.738</td>
<td>0.6775</td>
</tr>
<tr>
<td>LDF R1 Z-score</td>
<td>−3.6</td>
<td>−2.9</td>
<td>−2.9</td>
</tr>
<tr>
<td>LDF R2 BMD (gm/cm²)</td>
<td>0.886</td>
<td>0.986</td>
<td>0.883</td>
</tr>
<tr>
<td>LDF R2 Z-score</td>
<td>−2.4</td>
<td>−2.0</td>
<td>−2.5</td>
</tr>
<tr>
<td>LDF R3 BMD (gm/cm²)</td>
<td>0.990</td>
<td>1.024</td>
<td>0.961</td>
</tr>
<tr>
<td>LDF R3 Z-score</td>
<td>−2.0</td>
<td>−2.1</td>
<td>−2.3</td>
</tr>
<tr>
<td>Fracture details</td>
<td>N</td>
<td>Y × 2 (trauma)</td>
<td>N</td>
</tr>
<tr>
<td>Fracture history? Y/N</td>
<td>N</td>
<td>L arm from fall; L femur from car accident</td>
<td>n/a</td>
</tr>
<tr>
<td>Ambulation details</td>
<td>Uses walker; manual WC 1×/month</td>
<td>Independent walker - no assistive devices</td>
<td>Independent walker - no assistive devices</td>
</tr>
</tbody>
</table>

LS, lumbar spine; BMD, bone mineral density; LDF, lateral distal femur; R1, region 1; R2, region 2; R3, region 3; F, female; WC, wheelchair; M, male; L, left; MVA, motor vehicle accident.

Fig. 2. Metallic prostheses used in bilateral hip replacements artificially elevate BMD on WB DXA. Every patient had artificial hips, invalidating WB DXA results. BMD, bone mineral density; WB DXA, whole body dual-energy X-ray absorptiometry.

Fig. 3. Lateral spine radiograph used for correct identification of lumbar vertebrae for LS DXA. Note the dysmorphic vertebral bodies with anterior wedging of L-3 and a hypoplastic, wedge-shaped body at T-11. These result in focal areas of kyphosis. There has been spinal fusion in the cervico-thoracic region using metallic fixation. LS DXA, lateral spine dual-energy X-ray absorptiometry.
the typical population is thought to be acquired between 20 and 30 years [26.9 years (range, 17.7–31.7 years)]. However, peak bone mass in the typical population is thought to be acquired between 20 and 30 years of age depending on gender and body site [32]. We know neither the age of peak bone mass accrual in MPS IVB, nor the age at which peak bone is acquired at the distal femur.

In conclusion, despite these limitations, we have presented novel findings about BMD in patients with MPS IVB. We evaluate the technical validity of the DXA scans acquired at different body sites and present BMD findings at an alternative DXA site – the LDF. Images were evaluated and interpreted by a pediatric radiologist ensuring the accuracy of our findings in the presence of potentially confusing skeletal anatomy.

Competing interests

The authors declare that they have no competing interests.

Contributions to the project

Heidi Kecskemethy was responsible for the planning, conduct, data acquisition and analysis, and reporting of the work described in this article.

Francke Kubaski was responsible for the data analysis and reporting of the work described in this article.

Shunji Tomatsu was involved with the planning, conduct, and reporting of the work described in this article.

Theodore Harcke was involved with planning, conduct, and reporting of work described in this article.

Acknowledgments

This work was supported by the Department of Medical Imaging at the Nemours/Alfred I. duPont Hospital for Children. Francke Kubaski was supported by a Conselho Nacional de Desenvolvimento Científico e Tecnológico from Brazil (CNPq). Work by Shunji Tomatsu was supported in part by grants from the Austrian MPS Society grant number 3212482005, The Bennett Foundation grant number 4399, and International Mooroo Organisation (Caroll Ann Foundation) grant number 3212482001, as well as by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of NIH grant numbers R01 HD065767 and R03 HD064749. The content of the article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other sponsors. We also wish to thank the patients and families involved in the study.

10. L.A. Clarke, Pathogenesis of skeletal and connective tissue involvement in the mucopolysaccharidoses: glycosaminoglycan storage is merely the instigator, Rheumatology 50 (2011) v13–v18.

