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Abstract 

Metabolic engineering of cellular systems to maximize reaction fluxes or metabolite concentrations still 

presents a significant challenge by encountering unpredictable instabilities that can be caused by 

simultaneous or consecutive enhancements of many reaction steps. It can therefore be important to select 

carefully small subsets of key enzymes for their subsequent stable modification compatible with cell 

physiology. To address this important problem, we introduce a general Mixed Integer Non-Linear 

Problem (MINLP) formulation to compute automatically which enzyme levels should be modulated and 

which enzyme regulatory structures should be altered to achieve the given optimization goal using 

nonlinear kinetic models of relevant cellular systems. The developed MINLP formulation directly 

employs a stability analysis constraint and also includes nonlinear biophysical constraints to describe 

homeostasis conditions for metabolite concentrations and protein machinery without any preliminary 

model simplification (e.g. linlog kinetics approximation). The framework is demonstrated on a well-

established large-scale kinetic model of the Escherichia coli central metabolism used for the optimization 

of the glucose uptake through the phosphotransferase transport system (PTS) and serine biosynthesis. 

Computational results show that substantial stable improvements can be predicted by manipulating only 

small subsets of enzyme levels and regulatory structures. This means that while more efforts can be 

required to elucidate larger stable optimal enzyme level/regulation choices, no further significant increase 

in the optimized fluxes can be obtained and, therefore, such choices may not be worth the effort due to the 

potential loss of stability properties. The source for instability through saddle-node and Hopf bifurcations 

is identified, and all results are contrasted with predictions from Metabolic Control Analysis. 

 

Kew words: Mixed Integer Non-Linear Problem (MINLP), simulated annealing, sequential quadratic 

programming, biochemical engineering of cellular systems, kinetic models 
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1. Introduction 

A systematic development of optimal bioprocesses and application of metabolic engineering in 

biotechnology and biomedical studies requires a deep understanding of microbial organization 

and function (Bailey 1991; Stephanopoulos et al. 1998). While bioinformatics tools and related 

technology will continue to dominate in the field within the next decade (Overbeek et al. 2005), 

these efforts are, by themselves, insufficient and should be complemented by the development of 

alternative tools to relate static genomes to dynamic nonlinear cellular physiology and population 

response. One way to approach this goal is to construct plausible mathematical models 

incorporating relevant molecular details (Bailey 1998; Palsson 2006; Shuler 2005; Tomita 2001). 

Intrinsic complexity of cellular systems and, as a result, of the corresponding mechanistic models 

necessitates further development of modeling concepts and computational tools to rapidly extract 

valuable information from such complex models. 

Mathematical models have been extensively used in microbiology since the Monod’s 

discovery of the relationship between the specific growth rate and the concentrations of limiting 

substrates (Monod 1949). Microbial population studies can now be complemented by nuclear 

magnetic resonance (NMR) experiments to measure intracellular fluxes and metabolite levels, 

which can be economically designed using multi-level computational optimization-based 

frameworks employing stoichiomertic reaction networks (Ghosh et al., 2006). Credible 

overproduction strategies have recently been suggested based on cellular stoichiometry alone 

(Alper et al. 2005; Burgard et al. 2003, 2004; Ibarra et al. 2002; Lee et al. 2005, 2006; Pharkya et 

al. 2004; Pharkya and Maranas 2006). Because stoichiometry does correctly define overall 

barriers and limits for steady state reaction fluxes under fixed ‘defined medium’ constraints, 

genome-scale stoichiometric models have been very successful in many instances in fundamental 
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and applied research (Palsson 2006). However, predictive capability of such stoichiometric 

models is limited to calculations of ‘instant phenotype snapshots’ and, therefore, such models 

cannot capture non-stoichiometric dynamic effects (Mahadevan et al. 2002), enzyme regulation 

(Pharkya et al. 2003), and dynamic responses in protein machinery and genetic control (Laffend 

and Shuler 1993; Schmid et al. 2004). Alternative advances toward the rational analysis of 

cellular function are known as Metabolic Control Analysis (MCA) (Heinrich and Rapoport 1974; 

Kacser and Burns 1973) and Biochemical Systems Theory (BST) (Savageau 1976).  

 The MCA, linlog and BTS approaches have been successfully used to improve control 

architectures in metabolic reaction networks (Hatzimanikatis et al. 1996ab). Their method has 

been recently generalized by Vital-Lopez et al. (2006) to include knockouts by proposing a 

general computational procedure determining which genes/enzymes should be eliminated (i.e. 

knocked out), repressed or overexpressed to maximize the metabolic flux of interest. In that 

work, automatic linearizations according to basic function approximations for arbitrary kinetic 

representations are combined with binary variables introduced to remove reactions from the 

linearized kinetic model. Insightful ‘universal’ perturbation methods were developed to increase 

desired concentrations and fluxes within complex networks (Kacser and Acerenza 1993; Small 

and Kacser 1994). Based on this universal approach, a conception of group flux and 

concentration control coefficients was introduced and then used for the optimal selection of 

small subsets of key enzymatic reactions with the maximum impact on the targeted flux 

(Stephanopoulos and Simpson 1997). The metabolic design analysis based on the moiety 

conservation information has been recently discussed in the context of genome-scale conserved 

moiety pools spanning many metabolic subsystems (Nikolaev et al. 2005). 
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 Although the discussed analyses are based on important approximations (Heijnen 2005) 

of inherently nonlinear metabolic pathways, genetic manipulations can however cause metabolic 

networks to deviate significantly from the original stationary state. Besides, both stoichiometric 

flux balance (FBA) and MCA do not provide any means to check the stability of predicted 

optimal states. Simultaneous or consecutive modifications of many reaction steps can often lead 

to unpredictable instabilities and, therefore, can be experimentally infeasible (Stephanopoulos 

and Simpson 1997). In response to these limitations and challenges, a number of research groups 

have undertaken the development of plausible large-scale kinetic models. Prominent modeling 

projects include large-scale kinetic models of Saccharomyces cerevisiae (Hynne et al. 2001; 

Rizzi et al. 1997) and Escherichia coli (Chassagnole et al. 2002; Visser et al. 2004), the kinetic 

model of central metabolism coupled with tryptophan gene expression in E.coli (Schmid et al. 

2004), and computer models of single cells capturing dynamic effects of chromosome replication 

and changes in the cell geometry (Atlas et al., 2008; Castellanos et al. 2007; Domach et al. 1984; 

Nikolaev et al. 2006). The discussed models are highly nonlinear, stiff and include many kinetic 

parameters which are hard to identify from the measurements. To reduce the model stiffness and 

to minimize the number of kinetic parameters, an important advantage in the current problem of 

parameter identifiability, rigorous mathematical and computational frameworks have been 

recently developed (Gerdtzen et al., 2004; Nikerel et al., 2009). Different approximation 

frameworks require the development of powerful algorithms allowing for the evaluation of 

information contents and predictive capabilities of such approximations by translating 

biochemical models from one kinetic format to another (Hadlich et al., 2009).  

While the discussed optimization-based frameworks essentially utilize similar concepts 

based on the traditional linearization and linlog approximation, combined with a Mixed Integer 
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Linear Programming (MILP) approach, the goal of this work is substantionally different. For the 

first time, we introduce a large-scale nonlinear optimization computational approach which 1) 

can be applied to the original kinetic model without any preliminary model simplification such as 

linearization and size reduction which could result in potential loss of important (e.g. nonlinear 

dynamics) information; 2) utilizes a more general nonlinear optimization formulation; 3) 

includes explicitly a stability constraint to detect unstable optimal solutions and the type of 

bifurcation; and 4) allows for the straightforward incorporation of additional important context-

dependent biophysical nonlinear constraints. The developed approach is based on a general 

Mixed Integer Non-Linear Problem (MINLP) formulation to compute automatically which 

enzyme levels should be modulated and which enzyme regulatory structures should be altered to 

achieve the given optimization goal. To solve a complex MINLP formulation, a hybrid 

deterministic-stochastic computational method is used. Specifically, a stochastic simulated 

annealing is employed to navigate through the discrete space of enzyme levels and regulatory 

structures, while a sequential quadratic programming method is utilized to identify optimal 

enzyme levels and regulatory kinetic parameters. The framework is demonstrated on a well-

established kinetic model of the E. coli central metabolism (Chassagnole et al. 2002), used for 

the optimization of the glucose uptake through the phosphotransferase transport system (PTS) 

and serine biosynthesis. 

 

2. Mathematical Model  

A mathematical model of relevant processes in cellular metabolism and protein machinery can 

be represented in the form (Laffend and Shuler 1993; Mauch et al. 2001; Schmid et al. 2004). 
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Here Ci is the concentration of metabolite i, Sij is the stoichiometric coefficient of metabolite i in 

reaction j with rate ),,max( KRC,
j
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jr  is the maximal specific rate of reaction j; C is the 

vector of metabolite concentrations, R is the vector of all regulatory parameters (e.g. allosteric 

parameters), and K is the vector of all other kinetic parameters (e.g. Michaelis-Menten constants 

etc.). The index sets N  = {1,…,N}, M  = {1,…,M}, and R  = {1,…,R} correspond to all 

metabolites, reactions, and regulatory parameters, respectively. 

 Let je  be the level of the enzyme catalyzing reaction j. We introduce enzyme level/regulation 

subset SD of size D, SD = EL U RQ, which is constructed of the two subsets, EL of modulated 

enzyme levels and RQ of altered regulatory parameters. EL corresponds to a subset of enzyme 

levels ),...,(
1 Ljj ee  or, equivalently, maximal specific rates, ),...,( maxmax

1 Ljj rr , EL = {j1,…,jL}, 

EL ⊆  M , L ≤ M. Set RQ corresponds to a subset of regulatory parameters ),...,(
1 Q

kk θθ , 

RQ = {θ1,…, θQ}, RQ ⊆  R , Q ≤ R, D = L + Q. Following these definitions, we use model (1) for 

the optimal selection of set SD such that the best possible reaction rate ), ,( max

00
KRC, rr jj  can be 

achieved for targeted enzyme j0 of interest. 

Since detailed mechanistic equations describing dynamic changes in all enzyme levels je  

are not available, reasonable context-dependent modeling assumptions and ‘coarse-grained’ 

approximations are necessary. We follow a general approach (Chassagnole et al. 2002; Mauch et 

al. 2001), accounting for homeostasis and limited protein biosynthesis machinery in the cell. To 

capture the cell’s limited protein biosynthesis efforts, constraint (2) is used,  
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Constraint (2) can be interpreted as a stress-related restriction for allowable genetic 

manipulations that could otherwise potentially lead to crowding of overexpressed enzymes. Due 

to the homeostasis condition, allowable concentration changes  relative to the original stationary 

concentrations C0 should also be restricted, 
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Equation (1), constraints (2) and (3) are still, by themselves, insufficient to describe coordinated 

changes in both modulated and non-modulated enzyme levels. In the previous optimization-

modeling studies (Schmid et al. 2004; Vital-Lopez et al. 2006), this issue is approached by 

assuming that the levels of all non-modulated enzymes can be kept unchanged. However, 

experimental observations show that overexpression of even one enzyme can already lead to a 

significant decrease in all other enzyme levels as reported, for example, for Zymomonas mobilis 

(Bakker et al. 1995). Based on this observation, we introduce constraint (4) to generalize a 

complex systems response of the protein-synthesizing system (PSS) as described below in detail, 
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Here ''
1,..., Kjj  are the indices of non-modulated enzymes, K  = M - L, L is the number of 

modulated enzymes, and γ is a proportionality coefficient chosen for simplicity uniformly for all 

non-modulated enzymes as discussed below. Coefficient γ can be calculated from (2) and (4) as  
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The control of PSS, consisting of ribosomes, mRNA, tRNA, and the enzymes that make and 

modify these molecules is very complex. Therefore, additional modeling assumptions are 

required to formalize the complex processes. Following (Segre et al. 2002), we derive the 

approximation of the adjustments for the non-modulated enzyme levels (4) by assuming that the 

perturbed cell attempts to preserve the ratios between non-modulated enzyme activities equal or 

close to those established at the reference non-perturbed ‘wild-strain’ cell, 
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Here, p ≠ q, and p and q correspond to non-modulated enzyme levels. Eq. (6) may be interpreted 

as corresponding to important cellular function when it is the ratio of specific rates and not their 

absolute magnitudes may be important and preserved (Browning and Shuler 2001). Using simple 

algebraic manipulations, (6) can be transformed to the equivalent form 
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Using γ=0max,max
'' /
qq jj

rr  in (7) and then approximating (7) by the exact equality, we obtain  
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We note that (4) is equivalent to (8). When more molecular details on the complex protein 

machinery become available, (4) can be replaced by more accurate mechanistic equations 

without affecting the presented modeling framework. 
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 Model (1) incorporates 30 enzymes and 13 enzyme regulatory structures shown in Table 1 

and Figure 1. Because enzyme regulation can be extremely complex by  encompassing many 

kinetic parameters (Chassagnole et al. 2002), we have implemented 13 additional dimensionless 

‘generalized regulatory’ parameters ( 131 ,...,αα ) to activate or disable the entire regulatory 

structures. The modified model includes 43 optimization parameters ),...,( 431 pp , 

),...,,,...,(),...,( 131

maxmax

431
301

ααrrpp = . The simplest example is phosphoglucoisomerase (PGI) 

inhibition by 6-phosphoglucoconate (6pg), 
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Here parameter 2α  is introduced to alter the regulatory properties of PGI mediated by the 

concentration of 6-phosphogluconate (i.e. 6pgC ). Specifically, the unit value of 2α  (i.e. 12 =α ) 

corresponds to the original enzyme regulatory properties, while altered values, 12 <α  or 12 >α , 

correspond to decreased or increased regulation of PGI by C6pg, respectively.  

 

3. Computational Method 

3.1. Mixed Integer-Non-Linear Problem (MINLP) formulation 

To select alternative optimal targets for practically feasible modulations of enzyme levels and 

genetic mutations of regulatory properties (e.g., inhibitory affinities), optimal solutions of the 

following Mixed Integer Non-Linear Problem (MINLP) are calculated,  
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The first constraint in (10) corresponds to the steady state in (1). The second and third constraints 

result from the protein limited biosynthesis constraint (2) and the conditions for non-modulated 

enzymes (4) and (5), respectively. The forth constraint is the homeostasis condition (3). The fifth 

constraint enforces the optimal solution stability property. Here iλRe  is the real part of 

eigenvalue iλ  calculated from the linearization of the right-hand side of equation (1) at the 

steady state concentrations, and 0λ  is an appropriate small positive number. Formulation (10) 

allows for the simultaneous elucidation of two optimal subsets EL (i.e. a subset of modulated 

enzyme levels) and RQ (i.e., a subset of altered regulation parameters), SD = EL U RQ, such that 

the best possible targeted rate ),,,( max

00
KRCjj rr  can be achieved. In (10), the indices of enzyme 

levels and regulatory parameter correspond to integer variables, while the magnitudes of the 

enzyme levels and regulatory parameters correspond to continuous variables. 

 

3.2. Computational implementation 

The optimization framework and MINLP formulation (10) have been demonstrated on a large-

scale nonlinear model of central carbon metabolism for a glucose-limited culture of E. coli 

(Chassagnole et al. 2002). The model is comprised of 30 enzymes and 17 metabolites with the 
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objective of maximizing fluxes through the phosphotransferase system (PTS) and serine 

production reaction (see Figure 1). Initial reference values of non-perturbed specific maximal 

rates (i.e., 0max,
r ), kinetic parameters, and steady state metabolite concentrations (i.e. C0) have 

been used as suggested in (Chassagnole et al. 2002). 

 To solve (10) numerically, we have implemented a simulated annealing (SA) algorithm 

(Kirkpatrick et al. 1983) to navigate through the discrete space of enzyme levels M  and 

regulatory parameters R . In our approach, subsets SD of increasing fixed sizes D, D = 1, …, 10, 

are separately investigated, where D = L + Q,  L and Q are the numbers of modulated enzyme 

levels and altered regulatory parameters, respectively. For each randomly selected SD, the 

optimal values of specific reaction rates ),...,( maxmax

1 Lj
j

rr  and regulatory parameters (
Qθθ αα ,...,

1
) 

are calculated by utilizing gradient-based algorithms (e.g. an SQP-algorithm). To evaluate 

rate ),( max

00
KR,CSS, rr jj , steady state concentrations Css are calculated using Newton-based 

solvers. Because Newton-based solvers can converge to both stable and unstable solutions, the 

stability of Css is investigated by computing the eigenvalues of the Jacobian matrix readily 

available from such solvers.  

 Random multistarts have been used to check the robustness of the SQP search and no 

alternative global optima was found as earlier reported by Visser et al. (2004). Tight absolute 

(i.e. abs = 10-11 - 10-9) and relative (i.e. rel = 10-9-10-7) tolerances have been enforced to keep 

integration errors low due to the enormous ‘stiffness’ of the model. Also, δ = 0.1 is used in (3) 

for an allowable 10% change in the metabolite concentrations to preserve stability properties. 

The optimization modeling framework is implemented in Matlab on a Linux cluster with Intel 

CPU 3.06 GHz computers. Typical computational requirements are in order of minutes for small 
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SL+Q (i.e. with L + Q ≤ 3), up to 30-40 hours for large enzyme subset SL (i.e. with Q = 0), and up 

to 60-90 hours for large enzyme level/regulation subsets SL+Q (i.e. with Q > 0).  

 

4. Results and Discussion 

4.1. Comparative analysis of optimally selected subsets 

The best found flux ratios for PTS and serine (i.e. SerSynth) rates in the optimized and original 

models, respectively, are presented in Table 2 for the following three distinct cases: (i) all 13 

generalized regulatory parameters are altered, while all enzyme activities are kept unchanged, (ii) 

all 30 enzyme levels are modulated, while regulatory parameters are kept fixed, and (iii) the 

maximum possible number of enzyme levels and regulatory parameters is manipulated until the 

pathway stability is lost. We find from Table 2 that the alteration of enzyme regulation alone 

does not lead to any significant improvement in the targeted fluxes. This can be explained by a 

limited capacity of an enzymatic reaction to ‘channel’ a large flux without a substantial increase 

in the enzyme specific activity. At the same time, no further impressive increase in the serine 

flux has been observed compared to the modulation of enzyme levels alone (see Table 2). These 

observations are biologically meaningful since PTS is a tightly regulated enzyme, while the 

SerSynth reaction lacks any kind of pathway regulation (see Figure 1).  

 The analysis of small optimal enzyme level/regulation subsets leads to the following facts and 

conclusions. First of all, substantial improvements in the desired fluxes can be predicted by 

manipulating only small enzyme level subsets (see Figure 2a and 3a). We find that no substantial 

increase in the desired PTS and serine flux can be obtained for the best mixed enzyme/regulation 

subsets of small sizes (i.e., D = 1, 2, and 3) (solid circles in Figure 2a and 3a, respectively), 

compared to enzyme level modulations alone (white circles in Figure 2a and 3a, respectively). 
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For larger mixed enzyme level/regulation choices, a significant additional flux increase can be 

predicted, though at the expense of the loss of stability properties due to the attenuation of 

negative feedbacks, evolved to ensure the robustness of cellular systems, and the amplification of 

positive feedbacks always destabilizing the cellular system. Specifically, we could not find any 

stable optimal steady state solution for the serine overproduction by navigating enzyme 

level/regulation subsets of size 8, 9 and 10, where the saddle-node bifurcation (Kuznetsov 2004) 

leading to the disappearance of steady state solutions was detected. This conclusion is supported 

by plotting the values of the leading real eigenvalue that sharply tends to the zero level around 

the subset size 7 as depicted in Figure 2b. Beyond the bifurcation point, solutions to (1) became 

unbounded violating homeostasis constraint (3). The disappearance of the pathway stable steady 

state can be interpreted by the loss of the balance between the increased large demand for the 

serine biosynthesis and the limited activity of the cellular system which cannot support the non-

physiologic product demands. This observation is in line with the bifurcation analysis of the 

model (Vital-Lopez et al., 2006). Despite the importance of the situation for the dynamic 

optimization, we have not studied the dynamics of the system in detail after the loss of stability. 

Indeed, the model and its parameters are carefully selected to study stationary regimes only. 

Specifically, the concentrations of all co-factors, ATP, ADP, AMP, NAD, NADH, NADP and 

NADPH are kept fixed under stationary physiological conditions (Chassagnole et al. 2002). 

Therefore, freeing the co-factor concentration is needed to study the dynamic regimes beyond the 

model applicability condition limited to stable steady states.  

 The Hopf bifurcation giving rise to small amplitude stable periodic oscillations has been 

encountered in the case of the PTS optimization for mixed enzyme level/regulation subsets of 

size 8, 9, and 10. Plotting the real parts of the leading eigenvalue has revealed multiple solution 
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branches and their bifurcations as depicted in Figure 3. We observe that for the mixed enzyme-

regulation subsets, the corresponding optimal steady-state solution loses it stability via a saddle-

node bifurcation when the subset size is 5. However, another branch of optimal steady-state 

solution does exist when the subset size is 6. The latter stead-state solution branch then loses its 

stability via a Hopf bifurcation when a couple of complex-conjugated pairs of eigenvalues 

crosses the imaginary axis in the complex plane (Kuznetsov 2004).  The steady-state solution 

does not disappear at the Hopf bifurcation point and, instead, becomes unstable for the cases of 

the mixed subsets of size 8, 9, and 10. Here, a branch of stable two-dimensional small amplitude 

sinusoidal limit cycles emanates from the critical steady-state at the bifurcation moment. 

Although the stability of limit cycles can be practically checked by direct integration, we note 

that the stability of the periodic solutions near the Hopf point can also be systematically 

determined by calculating appropriate nonlinear terms in the Taylor series at the critical steady 

state (Khazin and Shnol, 1991; Kuznetsov, 2004). The appearance of oscillations can be 

attributed to the well-known autocatalytic properties of glycolysis (Heinrich and Schuster 1996), 

enhanced by the increased glucose uptake through the optimized PTS. Similarly to the 

bifurcation analysis done in (Vital-Lopez et al., 2006), only small-amplitude periodic regimes 

existing within small parameter regions have been identified and no large-amplitude regime has 

been found from the stochastic search. This model’s inability to generate large-amplitude 

oscillations can again be attributed to the model intrinsic properties limited to the steady-state 

conditions by freezing the co-factor concentrations. 

 Although the model utilized in this study cannot be used to suggest dynamic optimal 

engineering strategies far from the reference steady-state, the observed small-amplitude periodic 

regimes can provide important insights into the potential of oscillatory optimal states compared 
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to the optimal steady-state conditions. To compare optimal small-amplitude periodic and steady-

state predictions, we have averaged the solutions along the observed periodic solutions and 

plotted the data on Figure 2a. We observe a noticeable increase in the optimal averaged PTS rate 

for the small-amplitude periodic processes compared with the stead-state case. Given the fact 

that the annual production of amino-acids worldwide is approximately two million metric tons 

(Pharkua et al., 2003), the observed increase in the PTS rate can lead to a significant 

improvement in certain amino-acid production, when recalculated using absolute values. We 

emphasize that these preliminary studies require further analysis that goes beyond the scope of 

this work as summarized in the conclusion and outlook section below. 

 In all cases considered, the calculations demonstrate a saturation type of the optimal behavior 

for the entire reaction network (see Figure 2 and 3) due to the fixed external conditions and the 

imposed protein limiting machinery constrains (2) - (4). This means that while more efforts can 

be required to elucidate larger stable optimal enzyme level/regulation choices, no further 

significant achievement in the corresponding targeted flux can be obtained and therefore such 

choices may not be worth the effort. 

 

4.2. Calculation of control coefficients 

To obtain quantitative insights into how successive small enzyme level/regulation subsets can be 

selected to meet overproduction requirements, MCA can be used to calculate sensitivity and 

control coefficients (Stephanopoulos et al. 1998). Taking into account that both enzyme levels 

and kinetic regulatory parameters can significantly contribute to the targeted pathway flux J, the 

following coefficients have been evaluated, (i) the flux control coefficient (FCC), 
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(ii) the flux response coefficient (FRC) with respect to a regulatory parameter (i.e. α), 
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(iii) the enzyme elasticity coefficient (EEC) quantifying the potential of parameter α to affect the 

individual reaction rate r under isolated conditions, 
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απ  satisfy the simple identity (Heinrich and Schuster 1996), 
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Using a log-log finite-difference approximation of (11) - (13), identity (14) has been numerically 

checked to ensure the robustness of all numeric calculations in the stiff model (see Table 3).  The 

calculated control coefficients reveal a distributed control on the targeted fluxes, allocated within 

a group of several rate-limiting steps exerting the highest control as seen from Figure 3. Namely, 

the same group of rate limiting steps (i.e., PTS, PFK, GAPDH, PDH, PEPxylase, and G6PDH) is 

identified for potential practical enzyme level modulations and regulatory structures genetic 

mutations for both cases of the PTS and serine optimizations. Since the control coefficients are 

readily available from the measurements (Stephanopoulos et al. 1998), we will compare local 

MCA-based predictions with those obtained from the nonlinear optimization framework. 

 

4.3. The PTS rate optimization results 

We begin with the discussion of the best enzyme level choices presented in the left side of Table 

4. First, the best enzyme level choices are in most cases found to be in a good agreement with the 
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MCA-based predictions. However, the detailed analysis of Table 4 reveals that both local FCC-

based and nonlinear optimization predictions lack the additivity property in a sense that the best 

enzyme choices alone cannot be combined with one another to significantly improve the PTS 

rate. For example, the triplet of enzymes PTS, phosphofructokinase (PFK), and pyruvate 

dehydrogenase (PDH) exerting the highest total control (see Figure 3) is absent from Table 4. 

These enzymes are present in all larger subsets (i.e., with D ≥ 5). Importantly, while MCA 

suggests decreasing the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exerting 

high negative control (see Figure 3), the level of this enzyme is increased in all nonlinear 

optimization studies (see Table 4). This observation is in line with the previous optimization 

study (Visser at al., 2004). Therefore, even for a rate limiting step with a high control coefficient, 

the direction of the corresponding enzyme level modulation cannot be solely predicted by MCA 

alone. We also find from Table 4 that almost half of all modulated enzymes present in larger 

subsets are near-equilibrium enzymes exerting negligibly small control coefficients. Note that 

which of such near-equilibrium enzymes should be modulated cannot be predicted from MCA.  

 The optimization results also show how the best enzyme level choices emerge. Although, the 

best choices lack the additivity property, the best smaller choices repeatedly enter the best larger 

subsets (see Table 4). This means that control of flux does not shift between different groups of 

enzymes due to the compensating effects of global regulation and homeostasis. The absence of 

the shift in distributed control additionally emphasizes the importance of reaction steps with high 

values of control coefficients for enzyme subsets of different size. 

 Enzymes with large flux control coefficients are not always the ones to be modified, 

especially if they are involved in feedback control loops. It may be the removal or attenuation of 

certain negative-feedback loops that should be considered and not the amplification of the 
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activity of the corresponding enzymes (Bailey 1991; Hatzimanikatis et al. 1996b; 

Stephanopoulos and Vallino 1991).  These and similar important theoretic predictions are 

exemplified by the optimal selection of the best mixed enzyme level/regulation choices, 

presented in the right side of Table 4. Importantly, the regulatory properties (see Table 1) and not 

enzyme levels of all three tightly regulated enzymes, PTS (i.e. PTS↓g6p(-)), PFK (i.e. 

PFK↑amp(+)), and PEPxylase (i.e. PEPxylase↑fdp(+)), have been chosen to alter, while their 

levels were automatically adjusted due to the limited protein machinery constraints (4) and (5). 

These nonlinear optimization observations are also found in a good agreement with calculations 

of response coefficients presented in Table 3. For example, the amplification of the positive 

regulation of PFK by amp (i.e. PFK↑amp) with FRC = 0.065 is more preferable than the 

amplification of the positive feedback by adp (i.e. PFK↑adp) with FRC = 0.00605. Although 

many enzymes are present in both left and right sides of Table 4, different manipulations of these 

enzymes are automatically suggested by the computational procedure, based on the presence or 

absence of regulatory structures in the selected enzymes. 

 Figure 5 further compares flux control coefficients and relative optimal enzyme levels, 

calculated for the six best enzyme choices selected to increase the PTS flux (i.e. PTS, PFK, TIS, 

GAPDH, PDH, and PEPxylase in Table 4). The corresponding distributions of steady state 

fluxes are shown in Figure 6. The levels of the modulated enzymes (see Figure 5(b)) are for the 

most part proportionally changed accordingly to the changes in their flux control coefficients.  

Specifically, the change in the sign of the FCCs for GAPDH (i.e., negative values are changed to 

positive values) correctly predicts a substantially increased level of the enzyme when both the 

enzyme levels and the regulation of all selected enzymes are allowed to vary. 
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4.4. The serine optimization results 

Similar results have been obtained for the optimization of the serine production flux as shown in 

Table 5. We note that small enzyme/regulation choices are intuitive as the PTS (i.e. PTS(+) in 

Table 5) supplies metabolism with the initial substrate, while SerSynth (i.e. SerSynth(+) in 

Table 5) leads to the final serine production. Similarly to the case of the PTS flux optimization, 

larger enzyme level/regulation choices encompass enzymes with both high and negligibly low 

values of FCCs. 

 Because of the importance of the robustness and stability issues for application, we have 

chosen two intermediate cases of (i) the best six enzyme levels PTS(+), PFK(+), GAPDH(+), 

TIS(-) , PDH(+), SerSynth (+), and (ii) the best mixed enzyme level/regulation choices, 

PTS↓g6p(-), PFK↑amp(+), GAPDH(+), TIS(+), PDH(+), SerSynth (+), to discuss the optimal 

enzyme activities and regulatory properties in more details (see Table 5). Recall that these cases 

already provide an increase in the serine production of about 80% of the best predictions shown 

in Figure 2(a) (white and solid circles). The optimal distributions of the steady state fluxes 

allocated within the pathway towards the serine overproductions are shown in Figure 8. We find 

that an increase in the serine demand (see Figure 7(b)) reallocates the strength of metabolic 

control from the serine synthesis (SerSynth in Figure 7(a)) towards the supply block (i.e. PTS) 

and the pyruvate removal block (i.e. PDH) (see Figure 7(a)).  

 Although the nonlinear optimization observations are in many cases found in a good 

agreement with calculations of response coefficients (RFC) presented in Table 3, there are 

several discrepancies. For example, the amplification of the positive regulation of PFK by amp 

(i.e. PFK↑amp) with small FRC = 0.0376 calculated in Table 3 has proved to be more preferable 
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than the attenuation of the negative feedback by pep (i.e. PFK↓pep as in Table 1) with FRC = -

0.287 of much larger magnitude. 

  The optimization results do confirm the importance of high flux control coefficients, 

estimated at the reference (‘wild-type’) strain which in many cases correctly delineate the most 

important blocks of central metabolism from less important subordinate pathways. Specifically, 

flux is increased through phosphotransferase system (PTS), phosphofructokinase (PFK), a 

committed enzyme in the network, and pyruvate dehydrogenase (PDH) required to removing an 

excess of pyruvate accumulated through the enhanced PTS. Comparing the best enzyme choices 

for the optimal PTS rate and serine flux, we come to a very important observation that in both 

cases the best choices emerge in a similar fashion signifying a common trend in the selection of 

candidate enzyme/regulation subsets, where the best smaller choices repeatedly enter the best 

larger subsets. This property can be apparently attributed to the homeostasis condition and 

negative feedback which attempt to stabilize the system. However, more research is needed to 

support or disprove this intuitive explanation. 

 

5. Conclusions and outlook 

A general stable hybrid deterministic-stochastic nonlinear optimization and modeling 

framework for the optimal selection of enzyme levels and regulatory structures using dynamic 

kinetic models of cellular systems has been introduced, and the corresponding computational 

method has been for the first time demonstrated on a large-scale nonlinear kinetic model of 

central carbon metabolism of E. coli without any preliminary model simplification. 

Computational results show that the modification of all enzyme levels and regulatory properties 

leads to a stable 8-fold increase in the PTS uptake rate and a stable 22-fold increase in the serine 
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biosynthesis rate. Substantial improvements can be predicted by manipulating only small subsets 

of enzyme levels and regulatory structures due to the saturation property of metabolism limited 

by the protein synthesis machinery. For example, the modulation of six enzyme levels already 

leads to a flux increase of 80% of the best predicted serine flux. This means that while more 

efforts can be required to elucidate larger stable optimal enzyme level/regulation choices, no 

further significant increase in the corresponding targeted fluxes can be obtained and therefore 

such choices may not be worth the effort due to the computationally predicted loss of stability 

properties via the Hopf or saddle-node bifurcation. We have also observed a strong synergism 

between the redesign of tightly regulated enzymes (e.g. phosphofructokinase) and the 

overexpression of those enzymes that lack regulation (e.g. glyceraldehyde-3-phosphate 

dehydrogenase). The obtained nonlinear optimization results are contrasted with respect to local-

linear predictions obtained from the well-established metabolic control analysis (MCA). 

Although the implemented stochastic simulated annealing approach does not guarantee 

the convergence to the global optimal solutions and better choices can still be found, the 

solutions discussed, which have been found from a very extensive search, already provide 

valuable candidate enzyme/regulation choices. Such choices can be used in prioritizing theoretic 

and practical studies of important properties of enzymatic reactions, kinetic regulatory structures, 

and providing a systematic framework for designing experiments to better understand regulation 

of cellular function. The framework can also be used as a powerful modeling tool for the direct 

computational validation of context-dependent theoretic assumptions allowing the modeler to 

better understand how the biological mechanisms give rise to biological function. Based on this, 

the modeler can then devise experiments to test the model’s predictions of relevant modes of 

cellular function. The framework also allows for the bifurcation analysis of the critical cases 
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where the stability of the optimized regimes can be lost. Such cases additionally emphasize the 

complexity of large-scale optimization studies and the importance of the careful selection of 

stable small subsets of enzyme levels and regulatory structures for their subsequent practically 

feasible alterations.  

Originally highly nonlinear and (linlog) approximated models have been carefully 

compared in a number of previous studies (Visser et al., 2004; Vital-Lopez et al., 2006). Under 

steady-state conditions, full models and their linlog approximations lead to similar conclusions. 

However, contrasting to the previous steady-state optimization studies, we have made an 

important observation that even small amplitude optimal periodic regimes computed using full 

models can lead to a better prediction compared to those obtained for steady-states cases. It is 

important to note that the idea to use periodic regimes in bioengineering and biotechnology is not 

radically novel and was introduced and discussed long time ago in the context of frequency 

responses (Douglas, 1967; Bailey, 1973; Hatzimanikatis et al., 1993; Hatzimanikatis and Bailey, 

1996). To this end, simulation of sustained periodic DNA replication in the engineered bacterial 

strain can also be used as an important biological criterion of the feasibility of the corresponding 

metabolic engineering strategies and interventions (Atlas et al., 2008).  

We emphasize that our study of optimal dynamics regimes requires further theoretical 

and practical analysis that goes beyond the scope of this work. Specifically, as it has been earlier 

found by Vital-Lopez et.al. (2006), the observed periodic processes exist in the model within 

small parametric ranges and are very close to the boundary of the total stability loss by the 

system. Therefore, a more detailed study of practically-feasible optimal periodic states 

necessitates, at least, (i) an adequate modification of the model to include dynamic cofactors, and 

(ii) the utilization of the global stability constrains based on Lyapunov functions, which could be 
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used to estimate the geometric size of the attraction basins of the corresponding stationary and 

periodic states. In this respect we note that the idea of including stability constraints into an 

optimization formulation is now standard in control theory and, in particularly, in the model 

predictive control, and it goes well beyond the eigenvalue-type constraint used in formulation 

(10), which can only guarantee local stability. To this end, modern control approaches includes 

stability constraints based on Lyapunov (energy)-type functions (Mhaskar et al., 2005, 2006). 

Therefore, these and similar well-established and new ideas from the modern control theory need 

to be further employed in optimization modeling studies to suggest a tighter control of the 

genetically altered cellular system operation and functioning near the loss of stability properties 

under more realistic conditions in the bioreactor including spatiotemporal uncertainties such 

temperature fluctuation.  

Another important aspect of optimization-based modeling studies employing large-scale 

kinetic models is in the typical stiffness of the corresponding differential equations during the 

solution process. An important rigorous approach to reduce the model stiffness and to improve 

the computational performance while maintaining the integrity of the final results has been 

recently suggested (Gerdtzen et al., 2004). Because in many practical situations, the model’s 

stiffness can significantly complicate the model integration without any noticeable effect on the 

final results, an alternative approach to reduce the stiffness in the original (i.e. non-reduced) 

model could be the introduction of a small bias into parameter fitting procedures that would 

penalize the selection of parameter values leading to stiffness in the model nonlinear behavior 

(Brown and Sethna, 2003). 

Finally, we hope that as soon as more information on enzyme regulation becomes 

available due to the emergence of powerful inference methods like the double regulation method 
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allowing for the practical estimation of enzyme elasticities from experimental measurements 

(Link and Weuster-Boltz 2007), the discussed optimization framework and modeling strategy, 

when coupled with emerging synthetic biology methods (Elowitz and Leibler, 2000; Fung et al., 

2005; Wong and Liao, 2006), will have a broader implication in directing practically feasible 

metabolic manipulations of small numbers of key cellular functions to achieve a targeted 

metabolic engineering objective. 
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Nomenclature 

Enzymes  

ALDO   aldolase 

DAHPS   DAHP synthases 

ENO   enolase 

G1PAT   glucose-1-phosphate adenyltransferase 

G3PDH  glycerol-3-phosphate dehydrogenase 

G6PDH  glucose-6-phosphate dehydrogenase 
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GAPDH   glyceraldehyde-3-phosphate dehydrogenase 

MetSynth  methionine synthesis 

MurSynth  mureine synthesis 

PFK     phosphofructokinase 

PGDH   6-phosphogluconate dehydrogenase 

PGI   glucose-6-phosphate isomerase 

PGK   phosphoglycerate kinase 

PGM   phosphoglycerate mutase 

PDH   pyruvate dehydrogenase 

PEPxylase  PEP carboxylase 

PGlucoM phosphoglucomutase 

PK   pyruvate kinase 

PTS  phosphotransferase system 

R5PI  ribose-phosphate isomerase 

RPPK  ribose-phosphate pyrophosphokinase 

Ru5P  ribulose-phosphate epimerase 

Synth1  synthesis1 

Synth2  synthesis2 

TA   transaldolase 

TIS  triosephosphate isomerase 

TKa  transketolase A 

TKb  transketolase B 

TrpSynth tryptophan synthesis  
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Metabolites 

2pg   2-phosphoglycerate 

3pg   3-phosphoglycerate 

6pg   6-phosphogluconate 

accoa   acetyl-coenzyme  A 

dhap   dihydroxyacetonephosphate 

e4p   erythrose-4-phosphate 

f6p   fructose-6-phosphate 

fdp   fructose-1,6-bisphosphate 

g1p   glucose-1-phosphate 

g6p   glucose-6-phosphate 

gap   glyceraldehyde-3-phosphate 

glc   glucose 

oaa   oxaloacetate 

pep   phosphoenolpyruvate 

pgp   1,3-diphosphoglycerate 

pyr   pyruvate 

rib5P   ribose-5-phosphate 

ribu5p   ribulose-5-phosphate 

sed7p   sedoheptulose-7-phosphate 

xyl5p   xylulose-5-phosphate 
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TABLES 

Table 1. Enzyme regulation. 

 
№ 

 

 

Enzyme 
 

Regulation 

 
Notation 

 
1 

 
PTS 
 

 
inhibition by g6p 

 
PTS↓g6p 

 
2 

 
PGI 
 

 
inhibition by 6pg 

 
PGI↓6pg 

 
3 

 
PFK 
 

 
inhibition by pep 

 
PFK↓pep 

 
4 

 
PFK 
 

 
activation by adp 

 
PFK↑adp 

 
5 

 
PFK 
 

 
activation by amp 

 
PFK↑amp 

 
6 

 
PK 
 

 
activation by amp 

 
PK↑amp 

 
7 

 
PK 
 

 
activation by fdp 

 
PK↑fdp 

 
8 
 

 
PK 

 
inhibition by atp 

 
PK↓atp 

 
9 
 

 
G1PAT 

 
activation by nadph 

 
G1PAT↑nadph 

 
10 
 

 
G6PDH 

 
inhibition by nadph 

 
G6PDH↓nadph 

 
11 
 

 
PGDH 

 
inhibition by atp 
 

 
PGDH↓atp 

 
12 
 

 
PGDH 

 
inhibition by nadph 

 
PGDH↓nadph 

 
13 
 

 
PEPxylase 

 
activation by fdp 

 
PEPxylase↑fdp 
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Table 2. Best flux ratios of steady state fluxes in the optimized and original models. 

   
 
 
 
 
 
 
 
 
 
Here flux ratio is the ratio of the objective function with the respect to the reference value.  
H corresponds to the Hopf bifurcation.  

Flux Regulation Enzyme Level Enzyme Level & Regulation

PTS 1.43 3.16 7.31 (8.26 H)

Serine 1.06 20.59 22.01
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Table 3. Control coefficients for regulated enzymes at the original steady state. 

№ Enzyme Modifier Regulation EEC FCC (PTS) FRC (PTS) FCC (Serine) FRC (Serine)

1 PTS g6p negative -0.978 0.416 -0.407 0.192 -0.187

2 PGI 6pg negative -0.551 0.000692 -0.000381 0.000374 -0.000206

3 PFK pep negative -2.047 0.242 -0.496 0.14 -0.287

4 PFK adp positive 0.025 0.242 0.00605 0.14 0.0035

5 PFK amp positive 0.268 0.242 0.065 0.14 0.0376

6 PK amp positive 0.000226 0.0109 0.00000246 -0.122 -0.0000275

7 PK fdp positive 0.0000682 0.0109 0.00000074 -0.122 -0.00000831

8 PK atp negative -0.0000544 0.0109 -0.0000006 -0.122 0.00000664

9 G1PAT fdp positive 0.731 0.00721 0.00527 -0.00934 -0.00683

10 G6PDH nadph negative -0.419 0.115 -0.0483 -0.0721 0.0302

11 PGDH atp negative -0.012 0.000389 -0.00000464 0.000211 -0.0000025

12 PGDH nadph negative -0.485 0.000389 -0.000189 0.000211 -0.000102

13 PEPxylase fdp positive 0.019 0.0387 0.00073 -0.126 -0.00238

 

Here EEC is Enzyme Elasticity Coefficient, FCC is Flux Control Coefficient, and FRC is Flux 

Response Coefficient, FRC = EEC·FCC (see (10) in the text). 
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Table 4. Alternative 10 best optimal enzyme/regulation subsets for the increased PTS rate. 

 

Size 

 

 

Enzyme Subset 

 

Flux Ratio 

 

Enzyme/Regulation Subset 

 

Flux Ratio 

 
1 
 

 
PTS(+) 

 
1.073 

 
PTS↓g6p(-) 

 
1.080 

2 
 

PTS(+), RPPK/ PEPxylase (+) 1.233 PTS↓g6p(-), G1PAT↑nadph(+) 
 

1.462 

3 
 

PTS(+)  

GAPDH(+) 
PEPxylase(+)  

 

1.628 PTS↓g6p(-), G1PAT↑nadph(+) 
GAPDH(+) 
 

2.173 

4 
 

PTS(+), PFK(+) 

GAPDH(+)  

PEPxylase(+) 

 

2.246 PTS↓g6p(-),PFK↑adp(+) 
GAPDH(+) 
PEPxylase↑fdp(+) 

3.880 

5 
 

PTS(+), PFK(+) 

GAPDH(+),  
PDH(+) 
PEPxylase(+) 

 

2.541 PFK↑adp(+), ALDO(+) 
GAPDH(+),  
Ru5p(-), 
PEPxylase↑fdp(+)  

5.863 

6 PTS(+), PFK(+) 
GAPDH(+), TIS(+) 
PDH(+)  
PEPxylase(+) 

 

2.843 PTS↓g6p(-), PFK↑amp(+) 
GAPDH(+), TIS(+) 
PDH(+)  
PEPxylase↑fdp(+) 

5.550 
(new branch) 

7 
 

PTS(+), PFK(+) 
GAPDH(+), TIS(+), PGK(-) 
PDH(+)  

PEPxylase(+) 
 

2.892 PTS↓g6p(-),PFK↑amp(+), ALDO(+) 
GAPDH(+), TIS(+) 
PDH(+) 

PEPxylase↑fdp(+) 

7.314 

8 
 

PTS(+), PFK(+), ALDO(-) 
GAPDH(+), TIS(+), PGK(-) 
PDH(+)  
PEPxylase(+) 
 

2.964 PTS↓g6p(-),PFK↑amp(+), ALDO(+) 
GAPDH(+), TIS(+), PGK(+) 
PDH(+) 

PEPxylase↑fdp(+) 

7.852 (H) 
 

9 
 

PTS(+), PFK(+), ALDO(-) 
GAPDH(+), TIS(+), PGK(-) 
PDH(+), PGM(-) 
PEPxylase(+) 
 

3.048 PTS↓g6p(-), PFK↑amp(+), ALDO(+) 
GAPDH(+), TIS(+), PGK(+) 
PDH(+), PGM(-) 
PEPxylase↑fdp(+) 

 8.059 (H) 

10 
 
 

PTS(+), PFK(+), ALDO(-) 
GAPDH(+), TIS(+), PGK(-)  
PDH(+), PGM(-), ENO(-) 
PEPxylase(+) 
 

3.155 PTS↓g6p(-), PFK↑amp(+), ALDO(+) 
GAPDH(+), TIS(+), PGK(+) 
PDH(+), PGM(-), ENO(-) 
PEPxylase↑fdp(+) 

8.263 (H) 

Enzymes highlighted in bold exert high control on the PTS rate. Signature (+)/(-) corresponds to the 

increase/decrease in the corresponding enzyme property (i.e. the enzyme level or regulation), 

respectively. Flux ratio is the ratio of the objective function with the respect to the reference value. 

H corresponds to the Hopf bifurcation. 
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Table 5. Alternative 10 best optimal enzyme/regulation subsets for the serine flux.  

 

Size 

 

 

Enzyme Subset 

 

Flux 

Ratio 

 

Enzyme/Regulation Subset 

 

Flux Ratio 

 
1 
 

 
SerSynth(+) 

 
1.880 

 
G6PDH↓nadph (+) 

 
1.034 

2 
 

PTS(+) 
SerSynth (+) 

 

4.652 PTS↓g6p(-) 
SerSynth (+) 

 

4.754 

3 
 

PTS(+)  

GAPDH(+) 

SerSynth (+) 
 

9.086 PTS↓g6p(-) 
GAPDH(+) 
SerSynth (+) 

 

9.963 

4 
 

PTS(+), PFK(+) 

GAPDH(+)  

SerSynth (+) 
 

14.451 PTS↓g6p(-), PFK↑adp/amp(+) 
GAPDH(+) 
SerSynth (+) 
 

16.650 

5 
 

PTS(+), PFK(+) 

GAPDH(+)  

PDH(+) 
SerSynth (+) 
 

15.933 PTS↓g6p(-), PFK↑adp(+) 
GAPDH(+), TIS(+) 
 

SerSynth (+)  

18.518 

6 PTS(+), PFK(+) 
GAPDH(+), TIS(-)  
PDH(+) 
SerSynth (+)  
 

17.418 PTS↓g6p(-), PFK↑amp(+) 
GAPDH(+), TIS(+) 
PDH(+)  
SerSynth (+) 

20.039 

7 
 

PTS(+), PFK(+) 
GAPDH(+),TIS(-), ALDO(-) 
PDH(+) 
SerSynth (+)  

 

19.085 PTS↓g6p(-), PFK↑amp(+) 
GAPDH(+), TIS(+), ALDO(-) 
PDH(+) 

SerSynth (+) 

22.013 

8 
 

PTS(+), PFK(+) 

GAPDH(+),TIS(-), ALDO(-) 
PDH(+), PGK(-) 
SerSynth (+)  
 

19.838   

9 
 

PTS(+),PFK(+), PGI(-) 
GAPDH(+),TIS(-), ALDO(-) 
PDH(+), PGK(-) 
SerSynth (+)  
 

20.538   

10 
 
 

PTS(+), PGI(-), PFK(+) 
GAPDH(+),TIS(-), ALDO(-) 
PDH(+), PGK(-), ENO(-) 
SerSynth (+)  
 

20.591   

Enzymes highlighted in bold exert high control on the PTS rate. Signature (+)/(-) corresponds to the 

increase/decrease in the corresponding enzyme property (i.e. the enzyme level or regulation), 

respectively. Flux ratio is the ratio of the objective function with the respect to the reference value. 
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FIGURE CAPTIONS 

Figure 1. Escherichia coli central carbon metabolism. 

 

Figure 2. (a) Shown are the best optimal reaction rate ratios for the Serine biosynthesis rate 

plotted as a function of size D of modulated enzyme/regulation subsystems (i.e. D = 1, 2, …, 10). 

(b) Shown are the values of the leading real eigenvalues of the model’s linearization computed at 

optimal steady-state solutions. White circles correspond to the case where enzyme levels are 

modulated while enzyme regulation is kept unchanged. Solid circle correspond to the case where 

both enzyme levels and enzyme regulations are manipulated.  

 

Figure 3. (a) Shown are the best optimal reaction rate ratios for the PTS rate plotted as a 

function of size D of modulated enzyme/regulation subsystems (i.e. D = 1, 2, …, 10). (b) Shown 

are the values of the real parts of the leading eigenvalues of the model’s linearization computed 

at optimal steady-state solutions. White circles correspond to the case where enzyme levels are 

modulated while enzyme regulation is kept unchanged. Solid circle and triangles correspond to 

the case where both enzyme levels and enzyme regulations are manipulated. 

 

Figure 4. Flux Control Coefficients (FCCs) for the PTS reaction (white bars) and serine 

production (solid bars), respectively. 

 

Figure 5. (a) Flux Control Coefficients (FCCs) for the PTS reaction. (b) Optimal enzyme levels 

relative to the reference enzyme levels. The white bars in (a) correspond to the original non-

perturbed case as shown in Figure 4. The gray bars in (a) and (b) correspond to the case where 
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the enzyme levels are optimally chosen in the absence of any regulation alteration. The black 

bars in (a) and (b) correspond to the case where the regulatory structures for the enzymes PTS, 

PFK, and PEPxylase are altered and the levels of the enzymes TIS, GAPDH, and PDH are 

modulated. 

 

Figure 6. The distributions of stable steady state fluxes relative to the PTS flux at the reference 

non-perturbed steady state. The italic numbers correspond to the values of fluxes at the reference 

steady state. The upright numbers correspond to the values of fluxes in the case where the levels 

of all the six enzymes are modulated in the absence of any regulatory changes. The values of 

fluxes highlighted in bold correspond to the case where the regulatory structures for the enzymes 

PTS and PFK, and the levels of the enzymes TIS, GAPDH, PDH, and PEPxylase are 

simultaneously manipulated. 

 

Figure 7. (a) Flux Control Coefficients (FCCs) for the SerSynth reaction. (b) Relative enzyme 

levels at the optimal stable steady states. The white bars in (a) correspond to the original non-

perturbed case as shown in Figure 4. The gray bars correspond to the case where the enzyme 

levels are optimally chosen in the absence of any regulation alteration. The black bars 

correspond to the case where the regulatory structures for the enzymes PTS and PFK are altered 

and the levels of enzymes TIS, GAPDH, PDH, and SerSynth are simultaneously modified. 

 

Figure 8. The distributions of stable steady state fluxes relative to the PTS flux at the reference 

state. The italic numbers correspond to the values of fluxes at the reference steady state. The 

upright numbers correspond to the values of fluxes in the case where the levels of all the six 
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enzymes are modulated in the absence of any regulatory changes. The values of fluxes 

highlighted in bold correspond to the case where the regulatory structures for the enzymes PTS 

and PFK, and the levels of the enzymes TIS, GAPDH, PDH, and SerSynth are simultaneously 

modified.  
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Figure 8 
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