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Figure 3

Hyperglycemia and HIV-1 Nef significantly enhanced lipid oxidation in the CNS in vitro and in vivo. (A). Primary
human astrocytes were cultured with 10,15, 20 and 25 mM glucose containing medium for 12 hours. The cells were then trans-
duced HIV-1 nef expressing viral particles. 48 hours later, the Nef transduced astrocytes and cellular supernatants were col-
lected and the lipid oxidation was determined by measuring the production of 8-isoprostaglandin-F2- o using ELISA kit
(Stressgen, Victoria, BC, Canada). Astrocytes without any additional glucose (5 mM) treatment were used as control. Our
results indicate that hyperglycemia increased the production of 8-isoprostaglandin-F2- o in dose dependent manner and Nef
alone also showed a 3-fold increase in 8-isoprostaglandin-F2- a. (B) Hyperglycemia and HIV-1 Nef significantly enhanced the
production of 8-isoprostaglandin-F2- o in the brain of mice: | x 107 viral particles generated through HIV-I vectors or SNV
vectors were injected into the brain of diabetes-induced mice via the cortex as described before. Age-matched non-diabetic
mice injected with an equal volume of citrate buffer served as control. After 8 weeks the mice were sacrificed and lysates from
the brain tissues were subjected to ELISA to determine the release of 8-isoprostaglandin-F2- a.. The results depicted in this fig-
ure indicate that hyperglycemia enhanced the production of 8iso-F2- o in a dose-dependent manner and HIV-I Nef either
alone or in combination with hyperglycemia also enhanced the release of 8-isoprostaglandin-F2- o in CNS causing oxidative
stress. The results are the mean value of triplicate samples.
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the addition of 3 nM or 25 nM/ml of recombinant Nef
protein. The addition of 3 nM/ml Nef protein caused the
depletion of astrocytes, whereas addition of 25 ng Nef
completely damaged the astrocytes layer (Figure 4 panel
B3) suggesting that intracellular accumulation of Nef (due
to an increase in HIV-1 replication) in astrocytes could
trigger apoptosis and a non-reversible damage of the
mitochondria [37].

Effect of Hyperglycemia and Nef on caspases

To determine whether HIV-1 Nef and hyperglycemic con-
ditions induced apoptosis, intracellular activity of caspase
-3 was analyzed in primary astrocytes exposed to HIV-1
Nef particles, via Western blot and the results are depicted
in Figure 5 panel A and B. The figure illustrates the impact
of hyperglycemia and Nef on mice brain (in vivo) and in
vitro on U87-MG astrocytes respectively. Panel A, lane 1
represents the pro-caspase 3 in normal mice brain while
lane 2 represents the activated caspase-3 as a result of HIV-
1 Nef expressing viral particles. Lane 3 also depicts the
activation of caspase -3 by hyperglycemia. To ensure that
the apoptosis observed is the exclusive effect of HIV-1 Nef
protein, we subjected the brain lysates from diabetic mice
injected with SNV- based Nef particles to western blot
analyses and compared the results with brain lysates of
mice injected with HIV-1 Nef expressing particles (Figure
5 panel A lane 4 and lane 5). These results suggest that
hyperglycemia and Nef have an additive effect on caspase-
3 activity, which could induce apoptosis. In panel B, the
in vitro results of hyperglycemic treated astyrocytes trans-
duced with Nef exhibited dose-dependent activation of
caspase-3 as depicted in Figure 5 panel B (lanes 2, 3 and
6), suggesting the apoptotic potential of hyperglycemic
conditions which were dramatically augmented and syn-
ergized by Nef (Figure 5 panel B lanes 2, 3 and 6). We also
observed that the expression of Nef alone triggers the acti-
vation of caspase -3 as illustrated in figure 5 panel B and
lane 1. Similar observations were made in our in vivo stud-
ies as well. The apoptotic effect of hyperglycemia and HIV-
1 Nef on astrocytes and on CNS was also determined by
quantifying the glial fibril acidic protein (GFAP) using
GFAP specific antibody. The western blot analyses of
astrocytes and mice brain exposed to hyperglycemia and/
or Nef are shown in figure 5 panels C and D respectively.
These results indicate that astrocytes exposed to hypergly-
cemia have reduced GFAP expression as shown in panel C
lane 2 compared to normal astrocytes in Figure 5 panel C
and lane 1. The results also indicate that Nef alone is capa-
ble of down-modulating the expression of GFAP to a great
extent in astrocytes than the hyperglycemia alone (Figure
5, panel C lane 3). Astrocytes exposed to various glucose
solutions and transduced with HIV-1 Nef showed a dose-
dependent decrease in GFAP protein expression (Figure 5
panel C lanes 4, 5 and 6) suggesting that hyperglycemic
variations and Nef combination may synergistically and
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adversely affect the expression of GFAP in astrocytes. The
GFAP expression in STZ treated mice brain with and with-
out Nef expression was also evaluated and the results are
presented in Figure 5 panel D. These in vivo results are in
agreement with our in vitro results as evident in lane 1, 2,
and 3 illustrating the expression of GFAP in normal mice
brain, diabetic mice and mice brain injected with Nef
expressing particles (Figure 5 Panel D, lanes 4 and 5). It is
evident from our results that HIV-1 Nef is more efficient
in down-modulating the expression of GFAP than hyper-
glycemic conditions. The data presented here also suggest
that even low expression of HIV-1 Nef could affect astro-
cytes by reducing the GFAP expression [38]. The expres-
sion of Nef was also detected in astrocytes and in mice
brain delivered via SNV based vectors, as shown in Figure
5 Panel E and F. All these results shown here are represent-
ative of at least three independent experiments and
repeated several times.

Discussion

The use of highly active antiretroviral therapy (HAART)
has reduced the mortality and morbidity rates in HIV-1
infected individuals [39]. However, many disorders
related to glucose metabolism and fat redistribution are
becoming prevalent in HAART receiving patients [1-
4,40,41]. Diabetes is an increasingly common disorder
and causes a variety of central nervous system (CNS) com-
plications including cognitive dysfunctions
[6,7,10,32,42]. Glucose is one of the major nutrients uti-
lized by the brain. Hyperglycemia/diabetes may allow the
entry of immune cells into the CNS through impaired
BBB, causing a series of devastating clinical conditions in
the central nervous system (CNS) [6,8,11,32].

We therefore investigated the pathological state of CNS in
association with hyperglycemia and HIV-1 Nef protein
that has been implicated in AIDS neuropathogenesis by
acting as a mediator to recruit leukocytes that may serve as
vehicles of the virus and perpetrators for disease through
the production of neurotoxins [43,44]. The in vitro studies
were performed in primary human astrocytes and astro-
cytes cell line(U87-MG human glioma cell line). Astro-
cytes are highly abundant in the brain and play a vital role
by providing the metabolic and protective support to neu-
rons and to the blood brain barrier (BBB)[45]. Our results
indicate that HIV-1 Nef and hyperglycemia, alone or
together, induce elevated expression of C3 in astrocytes as
well as in diabetes induced mice brain. The normal syn-
thesis of C3, an antimicrobial defense mechanism in the
brain, is usually low and the observed increase in its pro-
duction after exposure to Nef or hyperglycemia alone or in
combination suggests a very high immune response by
astrocytes and by brain tissues[20,46].
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Figure 4

Effect of Hyperglycemia and HIV-1 Nef on Cytoskeleton and Mitochondria of astrocytes. Primary human astro-
cytes were cultured and exposed to various hyperglycemic conditions for 12 hours as mentioned before followed by washing
with |x PBS. The cells were then fixed with 4% paraformaldehyde for |0 minutes, and washed again with |x PBS to remove
the fixative. The effect of hyperglycemia on the cytoskeleton network (F-actin protein) was observed by staining the cells with
phallacidin using protocol provided by the manufacturer, and examined under the fluorescent microscope. Panel Al-A3: Al.
Astrocytes grown in normal medium, which served as control was stained with BODIPY phallacidin illustrate the normal
cytoskeleton network. A2: Astrocytes treated with |5 mM glucose illustrates loose F-actin network and increased intracellular
space indicating the loss of astrocytes. A3. Astrocytes treated with 25 mM glucose indicate significant changes in the cytoskel-
eton. The F-actin network was expanded and the intracellular space in between the astrocytes was further increased indicating
cell death under higher glycemic conditions. Bl. Normal astrocytes stained with MitoTracker Red to observe the effect of
extracellular HIV-1 Nef recombinant protein on mitochondria. A2. 3 nM Nef protein solution was added into the medium with
astrocytes and stained with MitoTracker. A3. Highly polarized mitochondria of primary astrocytes upon exposure to 25 nM of
recombinant Nef protein, suggesting that free Nef protein could cause mitochondrial depolarization and ultimately cell death.
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In addition to the increased production of C3, we also
have identified nitric oxide (NO) as a source of cellular
oxidative stress induced in both astrocytes and brain tis-
sues isolated from diabetes-induced mice. Under
increased hyperglycemia, we observed increased expres-
sion of total nitrate in astrocytes in a dose-dependent
manner compared to the control non-glucose treated
astrocytes. Similarly, our in vivo diabetes-induced mice
model also showed increase in nitrate as compared to that
of normal mice. Furthermore, astrocytes exposed to
hyperglycemic conditions particularly exposure to 20 and
25 mM glucose with HIV-1 Nef virus showed a synergistic
increase in nitrate production in comparison to the con-
trol astrocytes. Similar results were obtained when HIV-1
Nef expressing virus was injected into the brains of dia-
betic mice and compared to non-diabetic mice injected
with HIV-1 Nef virus (Figure 2B). Non-glucose treated
astrocytes transduced with Nef virus also showed an
increase in total nitrate, however, the level of production
was relatively lower than that observed in astrocytes with
hyperglycemia. These results are fully consistent with the
results of other studies, which have shown that hypergly-
cemic conditions may contribute to CNS malformation
via oxidative stress[33,47].

HIV-1 proteins have been shown to be involved in exacer-
bating oxidative and nitrosative stress [48-51], and our
results also demonstrate that HIV-1 Nef increases oxida-
tive stress both in vivo and in vitro models. Indeed, the
development of HIV-1 associated dementia has been
directly attributed to HIV-1-induced oxidative stress and
the accompanying overproduction of several toxic factors,
including prostaglandins, CD95 ligand, and free radicals
[52-58].

We are reporting for the first time that in vitro hyperglyc-
emia and/or HIV-1 Nef enhance the lipid oxidation by
releasing 8-iso-PGF2-alpha in astrocytes in addition to
increased production of total nitrate. In this study, we
observed that the production and release of 8-isoPF2-
alpha was increased in glucose treated astrocytes in a dose-
dependent manner as depicted in Figure 3A. The expres-
sion of Nef also increased more 8-isoPGF2-alpha in non-
glucose treated control astrocytes. Various hyperglycemic
conditions ranging from 10 to 20 mM glucose in combi-
nation with Nef significantly increased the production of
8 iso-PGF2-alpha in astrocytes released into medium. The
in vivo results suggest a similar pattern, however the differ-
ence in iso-PGF-2-alpha production was higher between
normal and diabetic mice brain. We also found that Nef
expressed through HIV-1 based vectors or by SNV vectors
showed a similar increase in the production of iso-PGF-2-
alpha, indicating the exclusive effect of Nef protein on
generating lipid oxidation reaction in CNS cells. Taken
together, the results of the present study suggest the likely
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interactions between HIV-1 proteins and diabetes in
inducing deleterious oxidative stress effects[6,9].

It has been reported that increased levels of ROS cause the
loss of mitochondrial membrane permeability, which
could induce alterations in F-actin dynamics [59]. Our
results indicate that astrocytes under normal glycemic
condition showed a dense cytoskeletal networking of F-
actin in primary astrocytes, and variation in glycemic con-
ditions caused a polarization of F-actin (figure 4A2) lead-
ing to disassembly (figure 4A2 and 4A3) in a dose-
dependent manner. Similarly, exposure of astrocytes to
various amounts of recombinant Nef protein resulted in
depolarization of mitochondria in a dose-dependent
manner, suggesting that the presence of extra Nef in astro-
cytes cause oxidation reaction in mitochondria, which
may trigger caspase activity leading to apoptosis and cell
death [34,38,60]. It has been reported that apoptotic-
mediated stress-activation may occur by two distinct
routes: one from the cell surface and the other from mito-
chondria as observed in this study (figure 4B2 and 4B3).

We also observed an upregulation in caspase-3 activity in
a dose dependent fashion (figure 5B lanes 2 and 4) in
astrocytes exposed to various glucose concentrations. The
activation of caspase-3 was further enhanced by the addi-
tion of HIV-1 Nef [34]. The combination of hyperglyc-
emia and Nef further activated the caspases in astrocytes
(Figure 5B lane 6) as well as in diabetic mice, suggesting
that Nef independently or in combination with hypergly-
cemia induces the apoptosis via caspases, which has been
reported by our laboratory and other groups previ-
ously[14,38,60]. Interestingly, the expression of HIV-1
Nef alone was capable of activating caspase-3 in astro-
cytes. Similar observations have been reported by Lee et al
(2005) in a study, demonstrating that Nef induced cas-
pase-dependent apoptosis modulate the immune
responses [60].

In conclusion, our study has demonstrated that diabetes
and/or HIV-1 infection induce oxidative stress by enhanc-
ing the production of specific markers in human astro-
cytes and isolated brain tissues from diabetes-induced
mice. Such up-regulation of pro-oxidative and pro-
inflammatory pathways is a proof of concept that HIV-1
and hyperglycemic environment are able to induce
extreme oxidative stress in HIV-1-infected individuals
who are also diabetic. The results further suggest that
hyperglycemic conditions and HIV-1 Nef, individually or
in combination enhance apoptosis through the activation
of procaspase-3, oxidation reaction species (ROS), lipid
oxidation and complement factor C3, F-actin protein,
mitochondrial depolarization as well as a decrease in the
astrocytic cell marker protein GFAP. It is likely that indi-
viduals with hyperglycemia/diabetes may exhibit an accel-

Page 11 of 14

(page number not for citation purposes)



Virology Journal 2009, 6:183

rocaspase 3

Activated caspase 3

Procaspase 3

Activated
Caspase 3

GFAP

HIV-1 Nef

HIV-1 Nef

Figure 5 (see legend on next page)

http://www.virologyj.com/content/6/1/183

Figure 5 (see previous page)

Effect of hyperglycemia and HIV-1 Nef on caspases
and GFAP protein. For in vivo studies, 10 day old and STZ
induced diabetic mouse pups were injected with | x 107 HIV-Nef
infectious particles generated from HIV-1 or SNV based vectors
systems. The pups were sacrificed 8 week after the injections. The
brain tissue sections from cortex were removed and cellular pro-
tein lysates were prepared and loaded (25 pg/lane) onto a sodium
dodecyl sulfate-(SDS) gel and electrophoresed, followed by a
transfer onto a nitrocellulose membrane. The blots were then
probed with antibody specific for whole and activated caspase-3.
Panel A. Lane |, Normal mice brain tissue protein serving as con-
trol, lane 2. Non-diabetic mice brain injected with HIV-1 Nef parti-
cles. Lane 3, diabetic mice brain tissues, lane 4, diabetic mice brain
with SNV based Nef expressing virus, lane 5, diabetic mice brain
with HIV-1 Nef expressing virus. Panel B. Astrocytes (U87-MG)
were cultured under various glycemic conditions and transduced
with HIV-1 Nef expressing viral particles. Forty-eight hours later,
cells were lysed and the lysates (25 pg/lane) were loaded onto a
SDS gel and electrophoresed, followed by a transfer onto a nitro-
cellulose membrane. The blots were then probed with antibody
specific for whole and activated caspase-3. Lanes-1, expression of
procaspase-3 in normal astrocytes transduced with HIV-1 Nef par-
ticles, 2-astrocytes treated with 10 mM glucose and HIV-1 Nef
virus, 3-astrocytes treated with 15 mM glucose and HIV-1 Nef
virus, 4-astrocytes treated with |8 mM glucose, 5-non treated nor-
mal astrocytes, 6-astroctes treated with |18 mM glucose and HIV-|
Nef virus. Panel C - Primary human astrocytes exposed to various
hyperglycemic conditions and transduced with HIV-1 Nef express-
ing virus. The cells lysates are probe with GFAP antibody. Lanes: |-
non-treated normal astrocytes, 2-astrocytes treated with 18 mM
glucose, 3- normal astrocytes transduced with HIV-1 Nef virus, 4-
10 mM glucose treated astrocytes, 5- astrocytes treated with 15
mM glucose and transduced with HIV-1 Nef virus, 6-astrocytes
treated with 18 mM glucose and HIV-1 Nef. Panel D - Brain tissue
lysates of diabetic or non-diabetic mice with HIV-1 Nef virus deliv-
ered into various regions of the brain. The tissues lysates were
probed with antibody against GFAP. Lanes: |-normal mice brain
tissue, 2- diabetic mice brain tissue, 3-non-diabetic mice brain
exposed to HIV-1 Nef virus, 4-diabetic mice with HIV-1 Nef virus,
5-diabetic mice with HIV-1Nef virus generated from SNV vectors.
Panel E: Hyperglycemic treated and HIV-I Nef-transduced astro-
cytic cell lysate probed with antibody specific against HIV-1 Nef
protein. Lanes: |-normal astrocytes, 2- astrocytes transduced with
HIV-1 Nef virus, 3- astrocytes treated with 10 mM glucose and
transduced with HIV-1 Nef virus, 4- astrocytes treated with |5
mM glucose and transduced with HIV-1 Nef virus, 5- astrocytes
treated with 18 mM glucose and transduced with HIV-1 Nef virus,
6- astrocytes treated with 18 mM glucose and transduced with
SNV Nef virus. Panel F: Brain tissue lysates of diabetic and non-dia-
betic mice injected with HIV-1 Nef virus and probed with Nef spe-
cific antibody. Lanes: |- normal mice brain tissues, 2- mice injected
with HIV-1 Nef virus, 3- diabetic mice injected with HIV-1 Nef
virus, 4- diabetic mice injected with SNV based Nef virus, 5-normal
mice injected with SNV-based HIV-1 Nef virus.
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erated progression of HIV-1 associated disorders
including HAD. Finally, we are of the opinion that this
study may provide new insights into the overall under-
standing of how hyperglycemia or diabetic conditions
and HIV-1 protein Nef could interact with various cellular
pathways in astrocytes.
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