Targeting the cGMP Pathway to Treat Colorectal Cancer

Giovanni Mario Pitari

Thomas Jefferson University, gmpitari@gmail.com

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/petfp

Part of the Medical Pharmacology Commons, and the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation
Pitari, Giovanni Mario, "Targeting the cGMP Pathway to Treat Colorectal Cancer" (2009). Department of Pharmacology and Experimental Therapeutics Faculty Papers. Paper 21. http://jdc.jefferson.edu/petfp/21

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University’s Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pharmacology and Experimental Therapeutics Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Targeting the cGMP Pathway to Treat Colorectal Cancer

GianMario Pitari, M.D., Ph.D.

Department of Pharmacology and Experimental Therapeutics
Thomas Jefferson University
Philadelphia, PA 19107
Translational Research Project: from the cGMP Pathway to Colorectal Cancer

Targeting Strategies:

1. **Cyclic GMP-Dependent Pathway as a Tumor Suppressor System to Prevent Colorectal Tumorigenesis**

2. **Cyclic GMP-Dependent Pathway as an Antimetastatic Strategy to Disrupt Colorectal Cancer Metastatic Progression**
Cyclic GMP Signaling

General Model for cGMP Signaling

Agonist → CNG

CNG → cGMP

CNG → PKA

CNG → PKG

CNG → PDE

CNG → GTP

GTP → GC

GC → cGMP

GC → PKG

GC → PDE

PDE → cGMP

PDE → PKG

PDE → PKA

PDE → GTP

PDE → CNG

Ca^{2+} → CNG

Ca^{2+} → PKG

Ca^{2+} → cNOS

Ca^{2+} → Plasma membrane

Ca^{2+} → L-type Ca^{2+} Channels

NO → cNOS

Guanylyl Cyclases

Guanylyl Cyclase C (GCC) is selectively expressed at brush-border membranes of intestinal epithelial cells and regulates fluid homeostasis.
Antiproliferative cGMP Signaling Targets Cyclic Nucleotide-Gated Channel

Antiproliferative cGMP Signaling Undergoes Negative Feedback Regulation

The Antiproliferative cGMP Signaling Pathway in Intestinal Epithelial Cells

Cyclic GMP Signaling by GCC Controls The Crypt-Villus Homeostasis

Differentiation

Proliferation

Migration

Inactive fibroblast

Active fibroblast

Guanylin
Uroguanylin

Pitari, G.M. et al. (2007)
Clin. Pharmacol. Ther. 82:441-7
Colon Cancer: the 2nd Most Deadly Cancer in Developed Nations
The Pathological Sequence of Colorectal Cancer

- Early Genetic Mutations
- Aberrant Crypt Foci
- Adenomatous Polyps
- Dysplastic Adenomas
- Carcinomas

Cancer Risk

Incidence

Reversibility
Colon Cancer: Diagnosis and Therapy

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Therapy</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Invasion up to the muscularis propria</td>
<td>Surgery</td>
<td>~95%</td>
</tr>
<tr>
<td>II</td>
<td>Invasion of the serosa and adjacent organs</td>
<td>Surgery, Chemotherapy</td>
<td>~80%</td>
</tr>
<tr>
<td>III</td>
<td>Invasion of regional lymph nodes</td>
<td>Surgery, Chemotherapy</td>
<td>~65%</td>
</tr>
<tr>
<td>IV</td>
<td>Distant Metastasis</td>
<td>Surgery, Chemotherapy</td>
<td>~7%</td>
</tr>
</tbody>
</table>
ETEC Infections Confer Resistance to Colon Cancer

GCC is a Therapeutic Target in Colon Cancer

N T F Y C C E L C C N P A C A G C Y

ST

GLN-stimulated thymidine incorporation (%)

NDDCEL CVNVA CT GCL
uroguanylin

PGTCEI CAYAA CTGCL
guanylin

GCC is a Novel Intestinal Tumor Suppressor
GCC Signaling through cGMP Potentiates Cytostatic Calcium Effects

GCC Regulates the Function of Calcium-Sensing Receptor (CaR) in the Intestine

GCC-Targeted Therapy in Combination with Dietary Calcium

Inhibition of Proliferation, %

Control

Proliferation, %

ST + Ca²⁺

A Tumor Suppressor cGMP Signaling Pathway in Colon Cancer

Pitari, G.M. et al. (2008)
Carcinogenesis 29:1601-7
Colon Cancer Mortality Reflects Metastatic Disease Progression

Tumor Stage

Cyclic GMP Induces Functional Remodeling of Cancer Cell MMP-9

Primary Neoplasm
- Growth
- Vascularization
- Invasion
- Detachment
- Migration
- Extravasation
- Proliferation/angiogenesis

Metastasis

Graphs and Figures

A. Relative Levels of MMP-9 mRNA

B. MMP-9 Dependent Gelatinolytic Activity

C. MMP-9-Dependent Gelatinolytic Activity

D. Relative Levels of MMP Protein
MMP-9 Promotes Metastasis in Colon Cancer

Colon Cancer Cell MMP-9 Induces Metastatic Seeding

GCC and cGMP Signaling through MMP-9 Regulates Colon Cancer Cell Shape and Spreading

GCC and cGMP Signaling through MMP-9 Suppresses Metastatic Seeding by Colon Cancer Cells

The Antimetastatic cGMP Signaling Pathway in Colon Cancer Cells

Summary

• The cGMP pathway in intestinal epithelial cells regulates the crypt-villus axis and opposes colorectal tumorigenesis

• GCC, a guanylyl cyclase receptor selectively expressed by normal and malignant intestinal epithelial cells, coordinates a paracrine tumor suppressor system in the intestine

• The cGMP pathway potentiates the cytostatic effects of extracellular calcium by regulating the activity of CaR

• The cGMP pathway reduces the metastatic potential of colorectal cancer cells, in vitro and in vivo, in part by regulating the function of MMP-9

• Cancer cell MMP-9 regulates metastatic functions, including actin polymerization and cell spreading, and in vivo seeding of target organs
Translational Significance

- GCC ligands represent novel agents for the prevention of primary and metastatic colon cancer.
- GCC ligands represent novel agents for the treatment of primary and metastatic colon cancer.
- Combinatorial strategies with GCC ligands and dietary calcium may provide a novel paradigm for the treatment of colon cancer.
- Cancer cell MMP-9 is a highly selective and effective molecular target for preventing metastatic progression of colorectal cancer.