2001

Guanylyl Cyclase C (GC-C) Inhibits Human Colon Carcinoma Cell Growth

Giovanni Mario Pitari
Thomas Jefferson University, gmpitari@gmail.com

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/petfp

Part of the [Medical Pharmacology Commons](https://jdc.jefferson.edu/petfp), and the [Pharmacy and Pharmaceutical Sciences Commons](https://jdc.jefferson.edu/petfp)

Recommended Citation

http://jdc.jefferson.edu/petfp/19

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pharmacology and Experimental Therapeutics Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
GUANYLYL CYCLASE C (GC-C) INHIBITS HUMAN COLON CARCINOMA CELL GROWTH

Giovanni Mario Pitari

Division of Clinical Pharmacology
Department of Medicine
Thomas Jefferson University
Philadelphia, PA 19107
Guanylyl Cyclase Family
The E. coli Heat-Stable Enterotoxin (ST) Binds GC-C
GC-C is Localized to Intestinal Epithelial Cells

GC-C Signaling Cascade
Does GC-C Mediate More Than Fluid Transport in Intestine?

- Does GC-C regulate intestinal epithelial cell proliferation?
- What are the molecular mechanisms by which GC-C regulates intestinal cell proliferation?
Protocol Design & Materials

Cell Lines: T84, Caco-2, SW480

Pro-Proliferative Agents: FBS, L-Glutamine

KT5823
RP8pCPT-cGMP
KT5720
Rp-cAMPs

ST Uroguanylin
8-Br-cGMP
Milrinone
ST Inhibits Intestinal Cell Proliferation

- Increase in Cell Number (%)
- Increase in Protein Content (%)
- T84 induced to proliferate by L-Gln

- % of Control FBS-Stimulated
- ³H-Thymidine Incorporation

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Increase in Cell Number (%)</th>
<th>Increase in Protein Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T84</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Caco-2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SW480</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>T84</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

- T84 induced to proliferate by L-Gln

- % of Control FBS-Stimulated
- ³H-Thymidine Incorporation

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>% of Control FBS-Stimulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>T84</td>
<td>125</td>
</tr>
<tr>
<td>Caco-2</td>
<td>100</td>
</tr>
<tr>
<td>SW480</td>
<td>75</td>
</tr>
</tbody>
</table>
ST Inhibition is Dose- and Time-Dependent

\[\text{ST (nM)} \]

\[\text{\(^{3}\text{H}-\text{Thymidine Incorporation} (\text{cpm} \times 10^3)} \]

\[\text{Control} \quad \text{ST} \]

\[\text{12 h} \quad \text{24 h} \quad \text{48 h} \]
ST Delays, But Does Not Arrest, the Cell Cycle

Control
- G1: 48%
- S: 33%
- G2/M: 16%
- sub-G1: 3%

ST
- G1: 47%
- S: 34%
- G2/M: 16%
- sub-G1: 3%

3H-Thymidine Incorporation (cpm x 10^3)

- Control
- ST

![Graph showing thymidine incorporation over time](image-url)
GC-C Agonists Do Not Induce Apoptosis or Necrosis

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ST (1 μM)</th>
<th>Uro (1 μM)</th>
<th>TACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Apoptosis</td>
<td>7.4 ± 0.5</td>
<td>9.1 ± 1.2</td>
<td>6.9 ± 0.9</td>
<td>75.3 ± 2.1**</td>
</tr>
</tbody>
</table>

** p<0.01
ST Cell Signaling Pathway for the Inhibition of Proliferation

GLN-stimulated Thymidine Incorporation (%)

-25 0 25 50 75 100
CTR TJU ST URO 8-Br-cGMP ZAP

Fold Over CTR
0 10 20 30 40
[cGMP]i [cAMP]i

Control ST

*** ** **

Milrinone
KT5823, RP8pCPT-cGMP
KT5720, Rp-cAMPs
Summary

• GC-C activation inhibits colon carcinoma cell proliferation in vitro
• Inhibition of proliferation results from a prolongation of the cell cycle, not cell death
• The cytostatic effect of ST is mediated by an increase in [cGMP]i
ST-Dependent Cytostasis Does Not Reflect Arrest, but Retardation, of the Cell Cycle

Control

- G_2/M: 16%
- sub-G_1: 3%
- S: 33%
- G_1: 48%
- Time: 27 h

ST

- G_2/M: 16%
- sub-G_1: 3%
- S: 34%
- G_1: 47%
- Time: 37 h
Implications of GC-C Regulation of Proliferation

• Endogenous GC-C ligands (guanylin and uroguanylin) may represent cell cycle regulators
• Along the crypt-to-villus axis, GC-C may regulate the transition of intestinal epithelial cells from proliferative to differentiated states
• GC-C agonists may be utilized as novel cytostatic agents for the prevention and treatment of colorectal cancer
Acknowledgements

Scott A. Waldman
Matthew Di Guglielmo
Stephanie Schulz
Jason Park

Henry Wolfe
Shiva Kazerounian
Inez Ruiz-Stewart

NIH RO1 HL65921, RO1 CA7512, R21 CA7966
Targeted Diagnostics and Therapeutics, Inc.