




different set of host SNAREs, which would increase the protection

of the infectious vacuoles against a larger range of membrane

fusion events.

It is intriguing to notice that the inhibitory mechanism displayed

by bacterial SNARE-like proteins is very similar to the one

employed by the eukaryotic inhibitory-SNAREs (i-SNAREs).

SNARE-mediated fusion is triggered by four fusogenic subunits

and is highly specific [42,43,44,45]. It was shown that the presence

of a fifth SNARE on the same compartment could result in an

inhibition of fusion (therefore, such a SNARE has been called

inhibitory-SNARE). An i-SNARE can substitute for one of the

subunits of the functional tetramer leading to the formation of a

non-functional tetramer (acting as a pseudo t-SNARE) [46]. In the

Golgi, it has been demonstrated that a gradient of i-SNAREs

across cisternae blocks SNARE-mediated membrane fusion and is

likely used to fine-tune the specificity of membrane fusion [46].

Here we showed that bacterial SNARE-like proteins appear to

function in a similar fashion. Similar to i-SNAREs, these bacterial

proteins are capable to bind fusogenic SNAREs and inhibit

membrane fusion. Altogether, this suggests that coiled-coil

SNARE-like motifs may constitute one of the most effective motifs

to manipulate membrane fusion and has been incorporated into

intracellular bacteria genome as an adaptation to the pressures of

survival [47]. Ultimately, one could take advantage of such a

recurrence to develop a common therapeutic strategy for targeting

a wide array of bacterial SNARE-like proteins and revert the

fusion blockage.

Materials and Methods

DNA manipulation and plasmid construction
Standard genetic manipulations were performed throughout.

All polymerase chain reaction (PCR) procedures were done with

pfu turbo polymerase (Stratagene). All other DNA modifying

enzymes were from New England Biolabs. The E. coli strain DH5a
(Invitrogen) was used for standard cloning. Plasmid encoding

CcaIncA1̃22̃ was generated as described [19]. We added a myc tag

and cloned CcaIncA1̃22̃ into the pIRES2-EGFP vector (Clontech)

using the oligonucleotides FO134 GGGAATTCCATATGA-

CAGTATCCACAGACAACAC and FO135 CGGGATCCTCA-

CAGATCCTCTTCTGAGATGAGTTTTTGTTCCAAAGAC-

TGAGCTAATTTCT.

Plasmids encoding Syntaxin 2 (untagged), Syntaxin 3 (untagged),

Syntaxin 4 (untagged) and His6-SNAP23 were kindly provided by

Jingshi Shen (Columbia University, New York). Plasmids encoding

Syntaxin 7-His6, Syntaxin 8-His6, Vti1-His6 and VAMP8-His6 were

generated as described [45]. Plasmids encoding His6-CtrIncA and

His6-CcaIncA were generated as described in [19]. Plasmid encoding

His6-IcmG/DotF was generated by PCR using the oligonucleotides

FO117 GCGAATTCTCAACTATCTTCTTGACTAAACT and

FO118 GGGCATATCCATATGATGGCAGAGCACGATCA.

PCR fragments were subsequently ligated into the EcoRI-NdeI sites

of pET28a. Plasmids encoding His6-CtrIncA1–141, His6-CtrIncA1–130

and His6-CtrIncA1–120 were generated by PCR, respectively using

the oligonucleotides FO160 GGGCATATCCATATGACAAC-

GCCTACTCTAATCGTG and FO162 GATGGATCCCTAG-

TCTTTAGATGTCGTTGCAAAT; FO160 and FO163 GATG-

GATCCCTATAAATGAAGAAATTCTTTCTG. PCR fragments

were subsequently ligated into the NdeI-BamH1 sites of pET28a.

Figure 4. SNARE-like proteins inhibit intracellular fusion in
cells. A- Resting transfected RBL-2H3 cells were co-labeled with anti-
Myc Abs and lysotracker, and viewed by confocal microscopy. Myc-
CcaIncA1–220/GFP is on the left, while GFP control is on the right. Co-
localized Myc-CcaIncA1–220 and lysotracker compartments are indicated
with a yellow box and arrows. B-RBL-2H3 cells were transiently
transfected with Myc-CcaIncA1–220/GFP or with GFP alone. Total lysates
were migrated on SDS-PAGE and probed with Abs directed against
Myc. Equivalent amounts of protein in each lane was verified after
reprobing the blots with the anti-SNAP23. After stimulation of the
transfectants at different time points with 1027M PMA/1026M
ionomycin, the kinetics of degranulation was analyzed using the
b-hexosaminidase release assay. The mean of triplicates from five
independent experiments was determined. Standard errors are shown.
For the purpose of comparison, maximal values of degranulation
obtained for GFP-transfected cells at 60 min were arbitrarily defined as
100%. Transfection of Myc-CcaIncA1–220 (Grey bars) reduces mast cells
degranulation by 23% at 30 min and 31.8% at 60 min compared with
GFP (Dark bars). The asterisks denote statistically significant difference

(p,0.05) to GFP transfectants. Note that Myc-CcaIncA1–220/GFP and GFP
are not statistically different at 15 min (p = 0.26).
doi:10.1371/journal.pone.0007375.g004
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Protein expression and purification
VAMP8-His6, Syntaxin8-His6, Syntaxin7-His6 and Vti1b-His6

were expressed as described [45]. Plasma membrane t-SNARE

proteins Syntaxin3/His6-SNAP23, Syntaxin4/His6-SNAP23, Syn-

taxin 2/His6-SNAP23 were co-expressed in BL21 (DE3) star E. coli

(Invitrogen) and co-purified using the His6 tag present on

SNAP23.

All constructs derived from the bacterial proteins: CcaIncA-

His6, CtrIncA-His6, His6-CtrIncA1–141, His6-CtrIncA1–130, His6-

CtrIncA1–120 and IcmG/DotF-His6 were expressed in BL21 (DE3)

star E. coli for 12 hrs at 16uC to allow a proper folding of the

protein. All his-tagged proteins were purified using the procedure

previously described [44,45,48].

Reconstitution into liposomes
SNARE proteins were reconstituted into proteoliposomes by

detergent dilution and isolated on an Accudenz density gradient

flotation as previously described [6,49]. To insert bacterial

proteins into liposomes, v-SNARE protein and preformed t-

SNARE complexes were respectively preincubated with the

bacterial protein at different concentration for 4 hrs at 4uC,

before being mixed with the lipids, and dialysed for 16 hrs at 4uC.

Liposome fusion assay
Fusion reactions and data analysis were performed as previously

described [6,49]. For most fusion assays, the mean from at least 5

independent experiments was determined at 30 min, 60 min and

120 min. For the purpose of comparison, maximal values of fusion

obtained for the SNARE complex without IncA at 120 min were

arbitrarily defined as 100%. The Mann-Whitney U test was used

to compare the mean values of maximal fusion at 120 min

between SNARE-containing liposomes and SNARE/IncA-con-

taining liposomes. Significance was assumed at p values,0.05.

Cell transfection
The rat mast cell line RBL-2H3 was cultured as described [37].

We used the AMAXA nucleofector technology (AMAXA,

Germany) to transiently transfect the RBL-2H3 cells. Briefly,

26106 cells were nucleofected in 100 ml solution V (AMAXA)

using 1 mg of pIRES2-EGFP-CcaIncA1̃22̃ vector or pIRES2-EGFP

vector (control). The cells were nucleofected using the program

T-030. Cells were then plated in complete medium in 96 well

plates for subsequent secretory cell assays 12 hrs later. Using these

conditions, the efficiency of transfection was routinely in the range

of 30 to 40% as determined by immunofluorescence (GFP

positive).

Confocal immunofluorescence microscopy
Lysotracker labeling was performed following the manufacturer’s

instruction. Briefly, cells grown on coverslips were incubated with

lysotracker 1:20,000 for 20 min in complete medium and washed

three times. The Myc tag labeling was performed as described [37].

We used the anti-myc antibody (9E10) from Santa Cruz

Biotechnology. Cy5-conjugated anti-mouse antibody was from

Jackson Laboratories. All data were analyzed using a Leica TCS SP

confocal microscope, LEICA CONFOCAL 2.5 software, HCX PL

APO 63X oil immersion objective.

Secretory cell assay
Transfectants were plated in 96 well plates in triplicates at

,56105 cells in 100 ml of complete DMEM medium and

incubated overnight at 37uC. After 12 hrs, adherent RBL cells

were washed twice in prewarmed phenol red free DMEM and

stimulated by Phorbol Myristate Acetate (1027M)/ionomycin

(1026M). At different time points (0, 15 min, 30 min 1 hr), 25 ml

of supernatant was collected and the granule secretion marker

b-hexosaminidase was analyzed using test supernatants within

the linear range of the assay [50]. Total cellular content of

b-hexosaminidase was determined by lysis of the adherent cells in

0.5% Triton X-100. The absorbance was determined at 410 nm

in a micro-titer plate reader. Results were calculated as a

percentage of total b-hexosaminidase in cells after correction for

spontaneous release in unstimulated cultures. For the purpose of

comparison, all data were normalized to the maximal value of

b-hexosaminidase release obtained in pIRES2-EGFP transfectants

and arbitrarily taken as 100%. The Mann-Whitney U test was

used to compare the mean values of maximal release between GFP

and Myc-CcaIncA 1–220 transfectants. Significance was assumed at

p values,0.05.

SDS-PAGE and Western blot analysis
Western blots were performed as described [51]. The anti-myc

antibody (9E10) was from Santa Cruz Biotechnology, the anti-

SNAP23 antibody from Synaptic System and both were used at

1:500. The secondary antibodies were from Biorad and were used

at 1:20,000.
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