5-1-2009

The physician's response to climate change.

Mona Sarfaty
Thomas Jefferson University, Mona.Sarfaty@jefferson.edu

Safiya Abouzaid
Thomas Jefferson University

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/fmfp
Part of the Family Medicine Commons, and the Translational Medical Research Commons

Recommended Citation
Department of Family & Community Medicine Faculty Papers. Paper 19.
http://jdc.jefferson.edu/fmfp/19

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Family & Community Medicine Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
The Physician’s Response to Climate Change

Mona Sarfaty, MD; Safiya Abouzaid, PharmD

Climate change will have an effect on the health and well-being of the populations cared for by practicing physicians. The anticipated medical effects include heat- and cold-related deaths, cardiovascular illnesses, injuries and mental harms from extreme weather events, respiratory illnesses caused by poor air quality, infectious diseases that emanate from contaminated food, water, or spread of disease vectors, the injuries caused by natural disasters, and the mental harm associated with social disruption. Within several years, such medical problems are likely to reach the doorsteps of many physicians. In the face of this reality, physicians should assume their traditional roles as medical professionals, health educators, and community leaders. Clinicians provide individual health services to patients, some of whom will be especially vulnerable to the emerging health consequences of global warming. Physicians also work in academic medical institutions and hospitals that educate and provide continuing medical education to students, residents, and practitioners. The institutions also produce a measurable carbon footprint. Societies of physicians at national, state, and local levels can choose to use their well-developed avenues of communication to raise awareness of the key issues that are raised by climate change as well as other environmental concerns that have profound implications for human health and well-being.

(Fam Med 2009;41(5):358-63.)

The long-term implications of climate change for the health of the American public are substantial enough to cause physicians to be concerned both as health professionals and as private citizens. Yet, active participation by medical practitioners in preparing for the challenge of climate change, which has implications for health and mental health, has been limited. While the public health community, represented by the American Public Health Association, focused its attention on climate and health during National Public Health Week (NPHW) in April 2008, there has been no analogous activity in organized medicine. During NPHW, activities focused the attention of public health professionals on the public health consequences of and appropriate response to global warming. It is time for physicians to consider their response as well.

With the release of the Fourth Assessment of the Intergovernmental Panel on Climate Change (IPCC) and the increasing certainty about the contribution of humans to the accumulation of carbon dioxide in the atmosphere, the medical literature devoted to the effects of climate change on health is beginning to increase. A few medical professional societies have expressed concern through the adoption of policy statements. But, an education process has barely surfaced at medical meetings. Formal sessions on climate and health are hard to find at continuing medical education events, yet education is needed so that physicians will be prepared to address the medical consequences of climate change as well as supporting or even facilitating efforts to address the root causes of climate change.

The Physician’s Role

There is more than one framework or context from which physicians may reflect about their role in addressing climate change. The health effects of climate change are one such context as reflected in clinical medicine. Climate change and related environmental phenomena are already causing patients in certain regions, certain ages, or with certain medical conditions to seek clinical care. Other contexts include the workplace to reduce carbon emissions, the realm of communications to educate pa-
tients and the public, and the sphere of surveillance to identify conditions associated with or caused by climate change. The public policy arena is also a context in which physicians can become involved.

The Health Effects of Climate Change

Heat Waves and Increased Death Rates

The existing and anticipated health effects of climate change on the health of Americans have been described.12–15 Heat waves, defined as stagnant warm air masses and consecutive nights with high minimum temperatures, are projected to increase both in magnitude and duration in areas of the United States and Canada where they already occur.2 Extensive literature reviews conclude that these increases in temperature will result in higher weather-related morbidity and mortality, largely through deaths from cardiac and respiratory events. Though the vulnerability of populations will vary depending on geographic location and socioeconomic status,5,16–18 for example, it is estimated that during the extreme heat of summer 2003, 70,000 excess deaths occurred in Europe.17 Predictive modeling studies have estimated that future summer heat-related mortality will increase several-fold in the United States by 2050. Assuming physiological and infrastructural adaptation, the excess deaths are estimated to be 500–1,000 for New York City and 100–250 for Detroit. These numbers could be much higher without infrastructure adaptation.18

Higher Temperatures and Respiratory Disease

High temperatures raise the levels of ground-level ozone and other air pollutants, especially in areas where the air quality is already poor.19 Ozone is generated by the action of light on chemicals, mainly nitrogen oxides and volatile organic compounds. While ozone levels do not always increase with rising temperature, an increase in temperature generally accelerates the rate of photochemical reactions, and scientists have found a strong correlation between warmer days and ozone levels.19,20

Ground-level air that contains high levels of ozone contributes to morbidity and mortality in individuals who suffer from asthma and chronic pulmonary disease.21,22 Indeed, a number of studies have evaluated the effects of air quality on the number of asthma-related emergency visits in the United States, concluding that there is a strong correlation between acute care visits and ozone levels.23–25 This association was found to be strongest in 5–12 year olds.23,24 Increases in average temperatures can also result in prolonged blooming and growing seasons that begin earlier in the year and remain longer, increasing exposure to plant allergens and intensifying allergy problems in some areas.2–26

Extreme Weather Events

While one cannot say that a specific drought, flood, or hurricane is “caused” by climate change, the number and effects of extreme weather events are expected to rise.18 Compared to the 1960s, reports of natural catastrophes have more than tripled in the last 10 years.17 While better reporting systems contribute to this increase, it is thought that climate change is also a factor.

According to a World Health Organization (WHO) report, the number of extreme events in developed nations was 563 versus 577 and affected 2.8 million versus 40.8 million individuals in the 1980s and 1990s, respectively.18 Extreme weather events can result in physical injuries.27 Recent studies have also confirmed an increase in mental harm as manifested by a rise in post-traumatic stress disorder (PTSD) diagnoses following severe floods or hurricanes.16,27

Water- and Food-borne Illness

Both temperature and water levels have an effect on water- and food-borne illnesses. Water levels that are too high or too low can influence the transport of infectious agents, while temperature can affect their growth.17 A rise in extreme precipitation events in the United States is expected to result in more run-off and increased loading of contaminants in waterways, resulting in a higher risk of water-borne illnesses.27–29 One study found that extreme precipitation events preceded 51% of waterborne disease outbreaks in the United States.27

Climate change is also expected to increase rates of salmonella and other food-borne infections in developed nations.3 One epidemiologic study found a correlation between increased daily temperatures and reports of salmonellosis infections in five Australian cities.30

Infectious Diseases

Infectious diseases transmitted by mosquitoes are strongly affected by rainfalls, temperatures, and humidity. For example, epidemics of Saint Louis encephalitis virus (SLEV), the most common cause of Saint Louis encephalitis in the United States, have been associated with warmer climates. While SLEV epidemics generally only occur in warmer southern regions, northern shifts of epidemics have been documented in warmer years.31

Similarly, proliferation of the West Nile Virus (WNV) is thought to occur best during warm winters followed by hot dry summers.18 WNV first appeared in New York in 1999 and has since spread via a mosquito vector (with birds as an intermediate host) to almost every state in the Union. Some believe that weather conditions associated with climate change are contributing to the spread of WNV in the United States,32 though there is scientific disagreement on the fac-
Dengue fever is appearing in the United States in new more northern locations and larger numbers. Warmer climate, along with increased transport and mixing of virus serotype, may be increasing the risk.5,31 Finally, although it is unlikely that climate change will cause the malaria mosquito to be re-established in the United States and Europe,33 there is ample evidence that global risks of malaria epidemics are associated with rainfalls and higher temperatures.31

Evidence also exists for associations between climate change and infectious diseases transmitted by vectors other than mosquitoes. For example, ticks are highly sensitive to climate change, and the northern migration of ticks carrying Lyme disease has resulted in outbreaks of Lyme disease encephalitis in Sweden following warm winters.31 Studies in the United States concluded that climate change could also result in conditions that increase tick populations and the incidence of Lyme disease.16,34

Hantavirus may be another example. Hantavirus, a disease spread by rodent vectors, appeared for the first time in the Southwest United States in conjunction with unusual climatic conditions. However, further understanding of the vector population dynamics needs to be reached before making final conclusions regarding the effect of climate change on the incidence of this illness.16

\textbf{Regional Variation}

Because local climate conditions vary, vulnerability to the effects of climate change will be different in different locales.35-37 Drought conditions in the Southwest and Southeast create different challenges than in areas where annual rainfall is increasing. The effects of the “urban heat island” create different challenges than those faced in rural areas, where dependence on well water may cause residents to be vulnerable to ground water contamination in conditions of flood or ubiquitous rain.10

\textbf{Climate Change and Clinical Medicine}

The elderly people who work outdoors, and those without air conditioning require advice about protection from heat exposure and may need referrals to community resources.38,39 Children and adults with asthma or chronic lung disease will need advice about how to protect their health when air quality deteriorates and ozone levels increase because of heat and traffic congestion.40,41

Many clinicians already counsel their patients on use of protective clothing in areas where Lyme Disease and Rocky Mountain Spotted Fever are threats stemming from tick infestation or counsel their patients regarding use of DEET repellants in areas where mosquitoes carry West Nile Virus, Dengue Fever, and other diseases. A certain amount of travel medicine is already practiced by many physicians who turn to the Centers for Disease Control and Prevention (CDC) resources to inform their patients prior to departure. Information about local climate-related medical problems is available on the Web site of the Environmental Protection Agency and can be used to help patients prevent illness in themselves and their families.

\textbf{Climate Change and the Workplace}

The “carbon footprint” of all workplaces in America can be reduced. Three quarters of all energy use, which produces that carbon footprint, is accounted for by buildings. As business owners and inhabitants of office complexes and hospitals, physicians could take interest in their energy use that represents a part of that carbon footprint.42 Indeed, a 25\%-40\% reduction in energy use nationwide could be achieved merely by using readily available means of energy efficiency.43 Decreased energy use means decreased carbon emissions.

\textbf{Energy-efficient Offices}

Each physician and medical practice can achieve a 5\%-10\% reduction in work-related energy use by taking simple steps.44 Switching to fluorescent lighting, use of energy star appliances, using motion detector light switches that switch off in the absence of motion, turning off lights and non-essential electronic devices when not in use, buying newer more energy-efficient appliances, and use of timed thermostats are all simple steps that when taken together achieve noticeable reductions in energy use and reduce carbon emissions.45-47

This can all be done both in small medical practices and in larger institutions as well; the larger the institution, the greater the potential for energy savings. One Philadelphia academic medical center with a large family medicine training program held its energy use constant during a period of substantial building expansion.48 This resulted in substantial monetary savings.

\textbf{Recycling}

Recycling has been one of the key objectives of environmental policy for decades. “Reduce, reuse, recycle” is an oft-repeated slogan of the environmental movement. What does it mean in the context of a typical medical practice? Recycling can be approached from two sides—from the point of view of purchasing and from the point of view of disposal.

Practitioners can support recycling by purchasing recycled paper products and recycling their own materials. Available for purchase are recycled paper towels, toilet paper, file folders, notebooks, and exam table covers in addition to recycled copy machine paper. These purchases promote recycling.
by expanding the market for these products.

Some regions have well-developed systems for recycling paper, including magazines, file folders, and cardboard. Where proper handling of confidential records is a concern, private recycling vendors are available to address this issue. Some vendors recycle computers, which reduces dumping of dangerous chemicals on third-world countries that are the recipients of computer detritus.49

Of course, it is possible to go even further out of concern about environmental hazards. In his recently opened office, one conscientious physician assured that the cabinets contained no formaldehyde, and the paint on the walls was free of volatile organic compounds. Ceiling tiles, lighting fixtures, carpeting, and waiting room furniture were selected to minimize their environmental effects. Instead of environmentally harsh disinfectants, he asked cleaning staff to use environmentally friendly, less toxic cleaners on glass, floors, and bathrooms. He also advocates use of mercury-free thermometers and blood pressure cuffs since this mercury is spread easily through incineration processes and ultimately may pollute waterways leading to diminished fish supplies and/or damage to human health.44

Some institutions have a head start at the institutional level. More than 150 hospitals have joined the Environmental Leadership Council, which means that they have integrated sustainable environmental programs into their core missions. These are recycling more than 25% of their waste, using safer materials, and making choices that have less negative impact on the environment. When the objective is to make beneficial change at the institutional level, organizations such as Health Care Without Harm are contributing by holding “Clean Med” conferences across the country to demonstrate the potential for attaining meaningful improvements in efficiency and waste reduction.

Hospitals and health care practices can be part of the “2% Solution” to climate change, which was touted in January 2008 in a nationwide Webcast to 1,700 college campuses across the country. This approach is to establish the target of reducing the national carbon footprint by 2% per year to achieve an 80% reduction in the national carbon footprint in 40 years.50 Every business, building, and institution can play an active role in achieving that goal. To the extent that physicians are business owners, this is within their purview. To the extent that physicians are influential actors in medical institutions, their inquiries and their interest can initiate or speed the process of seeking compliance with such goals.51

Communication About Climate Change

Physicians are often seen as trusted communicators in our communities. Their opinions have credence and will help build public consensus that is needed at a time when politics have blurred truth from reality on this subject of pressing concern. Environmental magazines in the waiting room will convey a general message and specific information to patients as they wait for their appointments. Educational pamphlets from public health groups or environmental organizations that instruct patients about energy efficiency, recycling, and waste reduction, as well as means to protect themselves and their families from known environmental hazards, indicate the physician’s endorsement of these efforts.

Physicians are connected to each other through professional societies at the local, statewide, and national levels. These connections provide avenues for consensus building. Physicians will benefit from a chance to talk to their colleagues in formal and informal settings about their contribution to addressing this environmental challenge. Time should be allocated for such education and discussion sessions during planning meetings.

Polls are showing that Americans still think mostly about ice caps and polar bears when the topic of climate change comes up.52 While it is true that ice caps and polar bears are threatened, climate change is ultimately about all of us. It is about our lives and our communities and our future. Physicians should take a role in the national conversation.

Climate Change and Disease Surveillance

Surveillance for indicator conditions is a familiar role for physicians. Reports of infectious diseases such as rabies or tuberculosis are combined on a widespread basis with data from clinical laboratories to contribute to ongoing national surveillance and tracking, and the Food and Drug Administration asks physicians to report adverse medication reactions.

Similar in concept to the aforementioned surveillance activities, the CDC has an environmental health tracking system. The set of reportable conditions linked to climate change is not explicitly defined, but vector-borne, waterborne, and food-borne illnesses related to environmental conditions and precipitated by climate change warrant monitoring. In the near future, the CDC or state-level environmental health departments will have specific recommendations regarding surveillance for climate change-related illnesses, and physicians should be on the alert for these recommendations and participate in reporting.

Influencing Public Policy

Physicians have influence in halls of government at the local, state, and national levels. Through medical societies at the state, lo-
They also play a role in public health and disease prevention. Physicians are often the first line of defense in recognizing the signs and symptoms of the disease. They can also educate their patients on the importance of disease prevention and encourage healthy lifestyle choices.

In recent years, there has been growing concern about the impact of climate change on public health. Extreme temperatures, changes in precipitation patterns, and increases in extreme weather events can all have a significant impact on public health. Physicians are in a unique position to help address these issues, as they are often the first to see the effects of climate change on their patients.

However, many physicians do not receive the training they need to address climate change effectively. This is a serious problem, as the health impacts of climate change are likely to increase over time. It is therefore crucial that we work to increase the capacity of the medical community to address climate change and its impacts.

One way to do this is to increase the training and education of physicians in this area. There are already some excellent programs in place, such as the Physician’s Guide to Climate Change, which provides comprehensive resources and information on climate change and its impacts on public health.

Another way to increase the capacity of the medical community is to increase the number of physicians who are actively involved in addressing climate change. This can be done through the development of new clinical programs and through the creation of new training opportunities for physicians.

Conclusion

It is clear that physicians have a critical role to play in addressing climate change and its impacts on public health. By increasing the training and education of physicians in this area, and by increasing the number of physicians who are actively involved in addressing climate change, we can help to ensure that the medical community is well-equipped to address this critical issue.

References

