2-2-2012

Effects of preoperative aspirin on cardiocerebral and renal complications in non-emergent cardiac surgery patients: a sub-group and cohort study.

Longhui Cao
Department of Anesthesiology, Jefferson Medical College, Thomas Jefferson University; Anesthesiology Department, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China

Scott Silvestry
Division of Cardiothoracic Surgery, Jefferson Medical College, Thomas Jefferson University, Scott.Silvestry@jefferson.edu

Ning Zhao
Department of Psychiatry, University of Pennsylvania Health System

James Diehl
Division of Cardiothoracic Surgery, Jefferson Medical College, Thomas Jefferson University, James.Diehl@jefferson.edu

Jianzhong Sun
Department of Anesthesiology, Jefferson Medical College, Thomas Jefferson University, jian-zhong.sun@jefferson.edu

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/anfp
Part of the Anesthesiology Commons, and the Cardiology Commons

Recommended Citation
Cao, Longhui; Silvestry, Scott; Zhao, Ning; Diehl, James; and Sun, Jianzhong, "Effects of preoperative aspirin on cardiocerebral and renal complications in non-emergent cardiac surgery patients: a sub-group and cohort study." (2012). Department of Anesthesiology Faculty Papers. Paper 16.
http://jdc.jefferson.edu/anfp/16
Effects of Preoperative Aspirin on Cardiocerebral and Renal Complications in Non-Emergent Cardiac Surgery Patients: A Sub-Group and Cohort Study

Longhui Cao¹,³, Scott Silvestry², Ning Zhao⁴, James Diehl², Jianzhong Sun¹*

¹ Department of Anesthesiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America, ² Division of Cardiothoracic Surgery, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America, ³ Anesthesiology Department, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China, ⁴ Department of Psychiatry, University of Pennsylvania Health System, Philadelphia, Pennsylvania, United States of America

Abstract

Background and Objective: Postoperative cardiocerebral and renal complications are a major threat for patients undergoing cardiac surgery. This study was aimed to examine the effect of preoperative aspirin use on patients undergoing cardiac surgery.

Methods: An observational cohort study was performed on consecutive patients (n = 1879) receiving cardiac surgery at this institution. The patients excluded from the study were those with preoperative anticoagulants, unknown aspirin use, or underwent emergent cardiac surgery. Outcome events included were 30-day mortality, renal failure, readmission and a composite outcome - major adverse cardiocerebral events (MACE) that include permanent or transient stroke, coma, perioperative myocardial infarction (MI), heart block and cardiac arrest.

Results: Of all patients, 1145 patients met the inclusion criteria and were divided into two groups: those taking (n = 858) or not taking (n = 287) aspirin within 5 days preceding surgery. Patients with aspirin presented significantly more with history of hypertension, diabetes, peripheral arterial disease, previous MI, angina and older age. With propensity scores adjusted and multivariate logistic regression, however, this study showed that preoperative aspirin therapy (vs. no aspirin) significantly reduced the risk of MACE (8.4% vs. 12.5%, odds ratio [OR] 0.585, 95% CI 0.355–0.964, P = 0.035), postoperative renal failure (2.6% vs. 5.2%, OR 0.438, CI 0.203–0.945, P = 0.035) and dialysis required (0.8% vs. 3.1%, CI 0.071–0.742, P = 0.014), but did not significantly reduce 30-day mortality (4.1% vs. 5.8%, OR 0.744, CI 0.376–1.472, P = 0.396) nor did it increase readmissions in the patients undergoing cardiac surgery.

Conclusions: Preoperative aspirin therapy is associated with a significant decrease in the risk of MACE and renal failure and did not increase readmissions in patients undergoing non-emergent cardiac surgery.

Introduction

Although tremendous progress has been made in the field of cardiac surgery over the past four decades, major cerebral, cardiac and renal complications associated with cardiac surgery remain common and significant [1]–[3]. According to the Society of Thoracic Surgeons (STS) data reports (2009), the 30-day operative death and major complication rates for valve plus coronary artery bypass graft (CABG) procedure were 6.8% and 30.1%, respectively, including stroke (2.9%), renal failure (9.0%), reoperation (11.9%), prolonged ventilation (21.2%), and sepsis (0.7%) [3].

Importantly, there is still lacking of an effective clinical therapy to prevent these major cardiocerebral and renal complications. Nonetheless, aspirin as an antiplatelet and antiinflammatory agent has been one of major medicines in prevention and treatment of cardiovascular disease (CVD). Accumulating evidence has demonstrated that aspirin significantly reduces all-cause mortality, MI and stroke in patients with risk of CVD [4]–[7]. Meanwhile, early postoperative aspirin therapy has been applied to improve postoperative outcomes in patients undergoing CABG, including improved graft patency, a reduced risk of death and ischemic complications [8]–[13]. However, it remains to be determined about whether preoperative aspirin therapy can reduce major adverse cardiocerebral (MACE) and renal events in patients undergoing cardiac surgery [14]–[16].

Based on the finding of aspirin’s overall beneficial effects in patients with CVD from previous large clinical trials and meta-analysis [4–7], we hypothesized that preoperative use of aspirin, mainly through its antiinflammatory and antithrombotic effects, would provide cardiovascular protection against major cardiocerebral and renal complications in patients undergoing cardiac surgery.
surgery. Thus, the present study aimed to test the overall effects of preoperative aspirin use on cardiocerebral and renal outcomes in patients undergoing non-emergent cardiac surgery.

Methods

Study Design

This study was an observational cohort study involving consecutive patients (n = 1879) receiving cardiac surgery (84% patients were for CABG or and/or valve surgery) at this university hospital from August 2003 to December 2009. The study was in compliance with Declaration of Helsinki and reviewed and approved by Thomas Jefferson University Institutional Review Board, and individual consent was waived in compliance with the HIPAA regulations and the waiver criteria. The patients excluded from the study were those with preoperative anticoagulants, unknown aspirin use, or underwent emergent cardiac surgery, i.e., the patient’s clinical status includes any of the following: ischemic dysfunction, mechanical dysfunction (such as acute evolving MI or shock with circulatory support) or emergent salvage (see details at: http://www.sts.org/documents/pdf/trainingmanuals/adult2.61/V-c-AdultCVDataSpecifications2.61.pdf [accessed at July 9, 2010]). Of all patients, 1145 patients met the inclusion criteria and were divided into two groups: using (n = 858) or not using (n = 287) preoperative (within 5 days preceding surgery) aspirin (Fig. 1).

Data Collection

The patient data were collected and organized to follow the template of the STS national database, including demographics, patient history, medical record information, preoperative risk factors, preoperative medications, intraoperative data, postoperative complications, MACE, renal failure and 30-day all cause mortality. Independent investigators prospectively collected the data on each patient during the course of hospitalization for cardiac surgery. Missing data values for dichotomous variables were assigned the most frequent value, while continuous variables were assigned the median value, except for body surface area, which was assigned the sex-specific median value [17]. Preoperative use of aspirin indicates use of aspirin in the patient within 5 days preceding surgery. MACE included permanent or transient stroke, coma, perioperative MI, heart block and cardiac arrest. Based on the STS national criteria, permanent stroke is defined as a new-onset cerebrovascular accident persisting >24 h; transient stroke as a transient episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction; coma, the patient had a new postoperative coma that persists for at least 24 hrs secondary to anoxic/ischemic and/or metabolic encephalopathy, thromboembolic event or cerebral bleed; perioperative MI as patient as documented by the following criteria (<24 hours post-op): The CK-MB (or CK if MB not available) must be greater than or equal to 5 times the upper limit of normal, with or without new Q waves present in two or more contiguous ECG leads, no symptoms required; or as documented by at least one of the following criteria (>24 hours post-op): 1) Evolutionary ST- segment elevations, 2) Development of new Q waves in two or more contiguous ECG leads, 3) New or presumably new LBBB pattern on the ECG, 4) The CK-MB (or CK if MB not available) must be greater than or equal to 3 times the upper limit of normal; heart block as a new heart block requiring the implantation of a permanent pacemaker of any type prior to discharge; postoperative renal failure as acute or worsening renal failure resulting in one or more of the following: increase in serum creatinine >2.0 mg/dL and 2× most recent preoperative creatinine level over baseline or new requirement for dialysis postoperatively; and readmission as the patient was readmitted as an in-patient within 30-days from the date of initial surgery for any reason. This includes readmissions to acute care, primary care institutions only, not to rehabilitation hospital or nursing home. The remaining definitions are available at http://www.sts.org/documents/pdf/trainingmanuals/adult2.61/V-c-AdultCVDataSpecifications2.61.pdf [accessed at July 27, 2010].

Statistical Analysis

Continuous and categorical variables were reported as mean ± SD or percentages, and compared with a 2-sample t tests or a chi-square test (two tailed), respectively. Univariate and multivariate logistic regression were performed to assess associations of demographic, therapeutic and clinical outcome variables.

As described previously [18], because this was an observational study, a propensity score-adjusted analysis was performed to control for selection bias as result of nonrandom assignment to the two groups. A propensity score was derived, reflecting the probability that a patient would receive preoperative aspirin. This was accomplished by performing a multivariable logistic regression analysis using preoperative aspirin as the dependent variable and entering all baseline (preoperative) variables as in table 1 that clinically would likely affect the probability of using preoperative aspirin.

In this study, the propensity score was used in regression (covariance) adjustment [19], i.e., using large set of preoperative variables as above to estimate the propensity score, and then the propensity score was subsequently regressed as an independent covariate in the multivariable logistic regression analysis, which was performed by using all relevant variables to identify independent predictors or risk factors for postoperative MACE, renal failure, and mortality.

Potential preoperative confounding factors considered in this analysis were selected on the basis of a literature review, clinical plausibility and variables collected in the database. These variables included (1) demographic characteristics such as age, gender, and body mass index (BMI); (2) patient history such as diabetes, hypertension, peripheral vascular disease, cerebrovascular disease, chronic lung disease, family History of coronary artery disease (CAD); (3) preoperative risk factors such as angina, congestive heart failure, previous MI, multiple CAD, left main CAD, and preoperative medications such as β-blockers, diuretics and rennin-angiotensin system inhibitors (RAS inhibitors includ-
Table 1. Demographic and clinical characteristics.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Aspirin</th>
<th></th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 858</td>
<td>n = 287</td>
<td></td>
</tr>
<tr>
<td>Age, yrs</td>
<td>65.3±12.0</td>
<td>59.1±15.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>602(70.2)</td>
<td>167(58.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>29.6±9.3</td>
<td>29.8±15.0</td>
<td>0.774</td>
</tr>
<tr>
<td>Past medical history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>300(35.0)</td>
<td>68(23.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>724(84.4)</td>
<td>198(69.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoker</td>
<td>163(19.0)</td>
<td>63(22.0)</td>
<td>0.276</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>116(13.5)</td>
<td>30(10.5)</td>
<td>0.178</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>94(11.0)</td>
<td>12(4.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>256(29.8)</td>
<td>78(27.2)</td>
<td>0.391</td>
</tr>
<tr>
<td>Family History CAD</td>
<td>500(58.3)</td>
<td>123(42.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>248(28.9)</td>
<td>50(17.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>104(12.1)</td>
<td>43(15.0)</td>
<td>0.210</td>
</tr>
<tr>
<td>Previous MI</td>
<td>222(25.9)</td>
<td>42(14.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Multiple CAD</td>
<td>661(77.0)</td>
<td>108(37.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Left main CAD</td>
<td>167(19.5)</td>
<td>186(6.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Medical therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>662(77.2)</td>
<td>140(48.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diuretics</td>
<td>253(29.5)</td>
<td>80(27.9)</td>
<td>0.603</td>
</tr>
<tr>
<td>Digitalis</td>
<td>35(4.1)</td>
<td>11(3.8)</td>
<td>0.854</td>
</tr>
<tr>
<td>ACE or ARB Inhibitors</td>
<td>357(41.6)</td>
<td>83(28.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Perfusion time (min)</td>
<td>104.3±46.9</td>
<td>120.2±56.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Cross-clamp time (min)</td>
<td>82.6±41.3</td>
<td>95.3±49.5</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Values are n (%) for categorical variables and mean±SD for continuous variables.

doi:10.1371/journal.pone.0030094.t001

using angiotensin-converting enzyme [ACE] Inhibitors or angioten-
sin-II receptor blockers [ARB] in addition to aspirin and (4) in-
traoperative factors including perfusion time and cross-clamp
time.

Models fit analysis was evaluated with the Hosmer-Lemeshow
 goodness-of-fit statistic. The C statistic was reported as a measure
of predictive power. Results are reported as percentages and odds
ratios (OR) and with 95% confidence intervals (CI). All reported p
values were 2-sided, and p values<0.05 were considered to be
statistically significant. Statistical analysis was performed with
SPSS 17.0 software for Windows (SPSS Inc., Chicago, IL).

Results

Baseline and intraoperative parameters

Of 1879 patients in the database, 1145 patients met the
inclusion criteria and were divided into two groups: using (n = 858)
or not using (n = 287) preoperative (within 5 days preceding
surgery) aspirin (Fig. 1). Demographic and clinical data of the
patients who did and did not receive preoperative aspirin therapy
are presented in Table 1. No significant differences were evident
between two groups in body mass index (BMI), medical history
(smoking, cerebrovascular disease, chronic lung disease), clinical
pattern (congestive heart failure, cardiogenic shock), and preop-
erative medical therapy (digitalis, diuretics use). However, the
patients with aspirin presented more with history of hypertension
(84.4% vs. 69.0%, P<0.001), diabetes (35.0% vs. 23.7%, P<0.001),
peripheral vascular disease (11.0% vs. 4.2%, P<0.001), previous MI (25.9% vs. 14.6%, P<0.001), angina (28.9% vs. 17.4%, P<0.001), and family history of coronary artery
disease (CAD) (58.3% vs. 43.9%, P<0.001). And the patients with
aspirin also presented more with preoperative using beta-blockers
and rennin-angiotensin system (RAS) inhibitors. Meanwhile, the
procedural characteristics, including perfusion time (120.2±56.2
vs. 104.3±46.9, P<0.001) and aortic cross-clamp time (95.3±49.5
vs. 82.6±41.3, P<0.001), were significantly longer in the patients
without aspirin.

**Postoperative cardiocerebral and renal complications
and mortality**

Among 1145 patients undergoing cardiac surgery, a total of
9.5% of all patients experienced at least one of cardiocerebral
complications, including permanent or transient stroke, coma,
periprosthetic MI, heart block and cardiac arrest. The incidence of
MACE in patients who received preoperative aspirin was 8.4%
compared with 12.5% for patients who did not receive aspirin
(P = 0.003), indicating preoperative use of aspirin significantly
decreased the risk of a composite outcome - cardiocerebral
complications (by 33.3%) in patients undergoing cardiac surgery
(Fig. 2).

Among other complications, compared with no aspirin
preoperatively, preoperative use of aspirin also significantly
reduced the risk of postoperative renal failure (2.6% vs. 5.2%, P = 0.035) and dialysis required (0.8% vs. 3.1%, P = 0.014).
Importantly there was no difference in incidence of readmission
(Fig. 2), which was most due to such as pericardial effusion and/or
tamponade, deep stern infection, pneumonia or respiratory
complication, arrhythmia and etc, indicating that an obvious
increase in postoperative bleeding that needs to be admitted did
not occur in patients taking preoperative aspirin.

Overall, the 30-day all cause mortality rate was 50 of 1145
(4.4%). The 30-day mortality was 4.1% for patients with
preoperative aspirin and 5.8% for patients without one
(P = 0.396). The 30-day mortality was 9.3% (10/107) for
patients with postoperative cardiocerebral events compared with
4.0% (40/988) for patients without postoperative cardiocerebral
events (P = 0.013), indicating postoperative cardiocerebral com-
lications significantly contributing to the death associated with
cardiac surgery.

Independent risk factors for MACE

The unadjusted univariate analysis showed that risk factors
related with MACE were age, male sex, diabetes, hypertension,
angina, congestive heart failure, multiple CAD, preoperative
aspirin, diuretics and digitalis therapy, perfusion time and cross-
clamp time (Table 2).

Figure 2 (3 columns on the right) presents the multivariate
analysis to assess independent risk factors for postoperative
complications, including cardiocerebral (MACE) and renal
complications and 30-day all-cause mortality. After adjusting for
propensity score and covariates, preoperative aspirin did not show
a significant effect on readmission (12.6% vs. 14.3%) and 30-days
all cause mortality (4.1% vs. 5.8%), also individual adverse
 cardiocerebral events including perioperative MI (1.5% vs. 1.7%),
coma (1.6% vs. 1.4%), heart block (3.4% vs. 5.6%) and cardiac
arrest (1.2% vs. 2.4%).

Using multivariable logistic regression adjusted with propensity
scores, however, patients who took preoperative aspirin compared
with one of the were associated with a significant decrease in the risk of postoperative MACE, permanent stroke, renal failure and dialysis required (Fig. 2).

The multivariate model significantly predicted the occurrence of postoperative cardiocerebral complications (model \(\chi^2, 90.48; P = 0.001 \)). The discriminatory ability of the logistic model was acceptable (C statistic, 0.749; 95% CI, 0.697 to 0.801; \(P = 0.001 \)). The model was well calibrated among deciles of observed and expected risk (Hosmer-Lemeshow \(\chi^2, 8.60; P = 0.38 \)).

Discussion

The major findings from this observational cohort study are that preoperative use of aspirin is associated with a significant decrease in the risk of postoperative MACE, permanent stroke, renal failure and dialysis required (Fig. 2).

The multivariate model significantly predicted the occurrence of postoperative cardiocerebral complications (model \(\chi^2, 90.48; P < 0.001 \)). The discriminatory ability of the logistic model was acceptable (C statistic, 0.749; 95% CI, 0.697 to 0.801; \(P < 0.001 \)). The model was well calibrated among deciles of observed and expected risk (Hosmer-Lemeshow \(\chi^2, 0.60; P = 0.30 \)).

Cardiocerebral events are still common postoperative complications for patients undergoing cardiac surgery, including stroke (1.4%–4.6%), cardiac arrest (5.0%), MI (3.1%–9.1%) [1]–[3], [20–22]. Although there has been a lack of effective therapy to prevent these complications, several lines of evidence have demonstrated the effectiveness of aspirin, as an antiplatelet and antiinflammatory medicine, in the prevention and treatment of CVD. First, the Antithrombotic Trialists’ Collaboration, a meta-analysis, has shown that among the high-risk patients for CVD, aspirin significantly reduced rates of MI, stroke and death [5]. Second, in the setting acute MI and stroke, aspirin therapy reduced cardiovascular morbidity and mortality, including recurrent ischemic stroke [23] and myocardial infarction [24]. Third, the antiplatelet therapy with aspirin and clopidogrel (plavix) has been recommended to start before and continuously in percutaneous coronary intervention [25].

In the setting of cardiac surgery, in 2002, Mangano et al [8] in a prospective multicenter study (n = 5065) showed that among patients who received aspirin within 48 hours after revascularization (CABG), subsequent mortality was 1.3%, as compared with 4.0% among those who did not receive aspirin during this period (OR 0.41, 95% CI 0.27–0.62, \(P < 0.001 \)). In addition, aspirin therapy was associated with a 48% reduction in the incidence of MI (2.8% vs. 5.4%, \(P < 0.001 \)), a 50% reduction in the incidence of stroke (1.3% vs. 2.6%, \(P = 0.01 \)), a 74% reduction in the incidence of renal failure (0.9% vs. 3.4%, \(P < 0.001 \)), and a 62% reduction in the incidence of bowel infarction (0.3% vs. 0.8%, \(P = 0.01 \)). The risk of hemorrhage, gastritis, infection, or impaired wound healing was not increased with aspirin use (OR for these adverse events, 0.63; 95% CI 0.54 to 0.74).

Although the strong evidence supporting aspirin treatment in the non-surgical setting and even in the surgical setting, such as immediate postoperative use of aspirin in patients undergoing CABG as described above [8], preoperative use of aspirin is still controversial. A major concern of preoperative use of aspirin is its increasing risk of bleeding and transfusion [10], [15]. As a matter of fact, AHA/ACC [26] the Society of Thoracic Surgeons (STS) [27] and the European Association for Cardio-Thoracic Surgery [28] recommended that patients should stop aspirin several days (ranged from 2–10 days) before elective cardiac surgery, mainly due to concerns of perioperative bleeding.

With these controversies, in 2005, Bybee et al [29] performed a retrospective study on preoperative aspirin therapy and postoperative outcomes in patients (n = 1636) undergoing first-time isolated CABG at a single institution. Major findings of this study are 1) preoperative aspirin significantly lowered postoperative in-hospital mortality compared with those not receiving preoperative aspirin (1.7% vs. 4.4%, adjusted OR 0.34, 95% CI 0.15–0.75, \(P = 0.007 \)). 2) Rates of postoperative cerebrovascular events including cerebral vascular accident or transient ischemic attack were similar between groups (2.7% vs. 3.8%, adjusted OR 0.67, 95% CI

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. (%) of incidence</th>
<th>Pre-operative aspirin</th>
<th>P value</th>
<th>Adjusted OR</th>
<th>95% CI</th>
<th>P value</th>
<th>Adjusted Odd Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiocerebral complication</td>
<td>72(4.1)</td>
<td>36(2.1)</td>
<td>0.698</td>
<td>0.037</td>
<td>0.985</td>
<td>0.355–0.964</td>
<td>0.015</td>
</tr>
<tr>
<td>Preoperative MI</td>
<td>13(1.5)</td>
<td>5(1.7)</td>
<td>0.698</td>
<td>0.789</td>
<td>0.364</td>
<td>0.114–1.163</td>
<td>0.088</td>
</tr>
<tr>
<td>Preoperative stroke</td>
<td>10(2.2)</td>
<td>11(3.8)</td>
<td>0.968</td>
<td>0.187</td>
<td>0.406</td>
<td>0.179–0.966</td>
<td>0.012</td>
</tr>
<tr>
<td>TIA</td>
<td>3(9.3)</td>
<td>0</td>
<td>0.316</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coma</td>
<td>1(0.6)</td>
<td>4(1.4)</td>
<td>1.174</td>
<td>0.779</td>
<td>1.568</td>
<td>0.399–0.693</td>
<td>0.918</td>
</tr>
<tr>
<td>Heart block</td>
<td>29(3.4)</td>
<td>16(5.6)</td>
<td>0.593</td>
<td>0.098</td>
<td>0.751</td>
<td>0.358–1.532</td>
<td>0.431</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>10(1.2)</td>
<td>7(2.4)</td>
<td>0.472</td>
<td>0.123</td>
<td>0.502</td>
<td>0.194–1.867</td>
<td>0.379</td>
</tr>
<tr>
<td>Renal failure</td>
<td>22(2.6)</td>
<td>15(5.2)</td>
<td>0.477</td>
<td>0.027</td>
<td>0.488</td>
<td>0.203–0.945</td>
<td>0.035</td>
</tr>
<tr>
<td>Diabyl required</td>
<td>7(0.8)</td>
<td>5(1.1)</td>
<td>0.254</td>
<td>0.004</td>
<td>0.250</td>
<td>0.007–0.742</td>
<td>0.014</td>
</tr>
<tr>
<td>30-day mortality</td>
<td>34(4.1)</td>
<td>16(5.8)</td>
<td>0.866</td>
<td>0.224</td>
<td>0.764</td>
<td>0.376–1.472</td>
<td>0.306</td>
</tr>
<tr>
<td>Rehospitalisation</td>
<td>10(1.2)</td>
<td>6(1.4)</td>
<td>0.864</td>
<td>0.459</td>
<td>0.898</td>
<td>0.572–2.044</td>
<td>0.683</td>
</tr>
</tbody>
</table>

Values are n (%) for categorical variables and mean ± SD for continuous variables. OR, odd ratio; CI, confidence interval; MACE, major adverse cardiocerebral events; MI, myocardial infarction; TIA, transient ischemic attack.

doi:10.1371/journal.pone.0030094.g002

Figure 2. Effects of aspirin on postoperative complications and mortality in patients undergoing cardiac surgery. Values are n (%) for categorical variables and mean ± SD for continuous variables. OR, odd ratio; CI, confidence interval; MACE, major adverse cardiocerebral events; MI, myocardial infarction; TIA, transient ischemic attack.

Preoperative aspirin data were collected from patients undergoing cardiac surgery at a single institution (n = 1636). Preoperative aspirin was associated with a significant decrease in the risk of postoperative MACE (8.4% vs. 12.5%), renal failure (2.6% vs. 5.2%) and dialysis required (0.8% vs. 3.1%), meanwhile it is not associated with increased risk of readmissions in patients undergoing non-emergent cardiac surgery. However, preoperative use of aspirin did not show a significant effect on postoperative mortality in this sub-group study.
Preoperative Aspirin in Cardiac Surgery

Table 2. Univariate Logistic Regression Analysis for Risk Factor Associated with Postoperative Cardiocerebral Events.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Cardiocerebral Events</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes n = 108</td>
<td>No n = 1037</td>
</tr>
<tr>
<td>Age, yrs</td>
<td>61.4±14.1</td>
<td>64.0±13.0</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>84(72.5)</td>
<td>685(66.1)</td>
</tr>
<tr>
<td>Body mass index, kg/m2</td>
<td>29.0±7.6</td>
<td>29.7±11.3</td>
</tr>
<tr>
<td>Past medical history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>46(42.6)</td>
<td>322(31.1)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>96(88.9)</td>
<td>826(79.7)</td>
</tr>
<tr>
<td>Smoker</td>
<td>27(25.0)</td>
<td>199(19.2)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>12(11.1)</td>
<td>134(12.9)</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>11(10.2)</td>
<td>959(9.2)</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>27(25.0)</td>
<td>307(29.6)</td>
</tr>
<tr>
<td>Family History CAD</td>
<td>50(46.3)</td>
<td>573(55.3)</td>
</tr>
<tr>
<td>Clinical pattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>38(35.2)</td>
<td>260(25.1)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>43(39.8)</td>
<td>104(10.0)</td>
</tr>
<tr>
<td>Previous MI</td>
<td>31(28.7)</td>
<td>233(22.5)</td>
</tr>
<tr>
<td>Multiple CAD</td>
<td>61(56.5)</td>
<td>708(68.3)</td>
</tr>
<tr>
<td>Left main CAD</td>
<td>22(20.4)</td>
<td>163(15.7)</td>
</tr>
<tr>
<td>Medical therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>82(75.9)</td>
<td>720(69.4)</td>
</tr>
<tr>
<td>Diuretics</td>
<td>49(45.4)</td>
<td>284(27.4)</td>
</tr>
<tr>
<td>Digitalis</td>
<td>98(3.3)</td>
<td>37(3.6)</td>
</tr>
<tr>
<td>ACE or ARB Inhibitors</td>
<td>47(43.5)</td>
<td>393(37.9)</td>
</tr>
<tr>
<td>Aspirin</td>
<td>72(66.7)</td>
<td>786(75.8)</td>
</tr>
<tr>
<td>Perfusion time (min)</td>
<td>131±7.13</td>
<td>105.8±46.3</td>
</tr>
<tr>
<td>Cross-clamp time (min)</td>
<td>103±6.11</td>
<td>84.0±41.2</td>
</tr>
</tbody>
</table>

Values are n (%) for categorical variables and mean±SD for continuous variables. doi:10.1371/journal.pone.0030094.t002

0.32–1.50, P = 0.31), and 3) Preoperative aspirin therapy was not associated with an increased risk of reoperation for bleeding (3.5% vs. 3.4%, P = 0.96) or requirement for postoperative blood product transfusion (adjusted OR, 1.17, 95% CI 0.376–1.472 P = 0.396). The authors recognized, however, that a sample size larger than the present one would be needed to determine the effect of aspirin on postoperative mortality (to detect a statistical difference), which has been demonstrated in our recent study [32]. Noticeably, the patients with preoperative aspirin were older and sicker, such as more with history of hypertension, diabetes, peripheral vascular disease, previous MI, angina, left main and multiple CAD (as seen in Table 1). Nevertheless, this study provided additional evidence (to a recent study [32]) that aspirin protects the heart, brain and kidneys against those major risk factors in a sub-group (non-emergent) of patients, indicating its efficacy and potential application to these high-risk patients.

Limitations of this study. This is an observational cohort study. Although multivariate regression in combination with the propensity score adjustment was used in this study to reduce overt biases, the potential flaws of a non-randomized study may remain. Second, this is a separate and sub-group study on preoperative aspirin and cardiac surgery, which excluded the patients undergoing emergent cardiac surgery; multicenter, larger (than the present one in the sample size) and cohort studies are needed to investigate this subject step-by-step, as showed in our recent study [32]. Third, cardiac surgery patients share the common risk of postoperative complications involving the brain, heart and kidneys, despite of undergoing different cardiac surgeries. While aspirin, mainly through its anti-inflammatory and antithrombotic effects, may break common final pathways responsible for these complications. Thus, although this study provided an overall analysis on effects of preoperative aspirin on outcomes in patients undergoing cardiac surgery (mainly CABG and/or valve surgery), further studies to dissect different types of cardiac surgery (CABG, valve, emergent or elective alone or/and combinations) are needed and probably would provide more detail information about aspirin and cardiac surgery. As indicated before, nonetheless, “the overall result of the clinical study (trial) is usually a better guide to the direction of effect in subgroups than the apparent effect observed from the individual subgroups” [33]. Finally, this study did not provide detailed information about perioperative bleeding, and further studies are still needed to examine this potential side effect carefully (on a case by case base).

In conclusion, the results of this study showed that preoperative use of aspirin is associated with a significant decrease in the risk of MACE and renal complications in patients undergoing non-emergent cardiac surgery; these beneficial effects were not associated with increased risk of readmissions. Further clinical studies including randomized or (large) observational studies are needed to elucidate the role of preoperative aspirin in cardiac surgery.

Acknowledgments

The authors thank Margaret Lusardi, RN, for her contribution to data entry and collection.
Author Contributions
Conceived and designed the experiments: LC SS JD JS. Performed the experiments: LC JS. Analyzed the data: LC NZ JS. Contributed reagents/materials/analysis tools: SS JD JS. Wrote the paper: LC SS JD JS.

References