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FORUM ORIGINAL RESEARCH COMMUNICATION

Advanced Glycation End Products
Accelerate Ischemia/Reperfusion Injury Through Receptor
of Advanced End Product/Nitrative Thioredoxin Inactivation

in Cardiac Microvascular Endothelial Cells

Yi Liu,1 Yanzhuo Ma,1 Rutao Wang,1 Chenhai Xia,1 Rongqing Zhang,1 Kun Lian,1 Ronghua Luan,1

Lu Sun,1 Lu Yang,1 Wayne B. Lau,2 Haichang Wang,1 and Ling Tao1

Abstract

The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. How-
ever, no causative link has been established between increased AGEs and enhanced endothelial injury after
ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial
injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and incubated
with AGE-modified bovine serum albumin (BSA) or BSA. After AGE-BSA or BSA preculture, CMECs were
subjected to simulated ischemia (SI)/reperfusion (R). AGE-BSA increased SI/R injury as evidenced by
enhanced lactate dehydrogenase release and caspase-3 activity. Moreover, AGE-BSA significantly increased
SI/R-induced oxidative/nitrative stress in CMECs (as measured by increased inducible nitric oxide synthase
expression, total nitric oxide production, superoxide generation, and peroxynitrite formation) and increased
SI/R-induced nitrative inactivation of thioredoxin-1 (Trx-1), an essential cytoprotective molecule. Supple-
mentation of EUK134 (peroxynitrite decomposition catalyst), human Trx-1, or soluble receptor of advanced end
product (sRAGE) (a RAGE decoy) in AGE-BSA precultured cells attenuated SI/R-induced oxidative/nitrative
stress, reduced SI/R-induced Trx-1 nitration, preserved Trx-1 activity, and reduced SI/R injury. Our results
demonstrated that AGEs may increase SI/R-induced endothelial injury by increasing oxidative/nitrative injury
and subsequent nitrative inactivation of Trx-1. Interventions blocking RAGE signaling or restoring Trx activity
may be novel therapies to mitigate endothelial ischemia/reperfusion injury in the diabetic population. Antioxid.
Redox Signal. 15, 1769–1778.

Introduction

Diabetes mellitus is a major risk factor for cardiovas-
cular disease, with vascular complications as the leading

etiology of morbidity and mortality in the diabetic population
(13). Despite interventional technique advances, the diabetic
condition portends an adverse outcome after revasculari-
zation (21). Further, diabetic rats subjected to ischemia/
reperfusion (I/R) injury manifest increased apoptosis of car-
diac microvascular endothelial cells (CMECs) (33). However,
the molecular mechanisms by which the diabetic state sensi-
tizes CMECs to I/R injury are unclear.

Many hyperglycemia-induced metabolic derangements
and abnormalities have been identified as being responsible

for endothelial cell dysfunction. Among them, the advanced
glycation end products (AGEs), and their receptor (RAGE),
have been strongly implicated in the pathogenesis of diabetic
vascular complications (24). It is well known that the inter-
action of AGEs with RAGE increases the intracellular reactive
oxygen species (ROS) generation, subsequently inducing ap-
optotic cell death and injury in endothelial cells (3, 7, 19).
Recent evidence demonstrates that nitric oxide (NO) reactive
nitrogen species such as peroxynitrite (ONOO - ), a critical
contributor of protein nitrative modification and cell injury,
play a crucial role in I/R-induced cardiomyocyte injury
(26). However, whether AGEs could cause cardiac cell in-
jury by nitrative stress and induce subsequent protein ni-
trative modification remains incompletely understood. More
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importantly, specific intracellular molecules nitratively mod-
ified and thereby contributive to increased endothelial dam-
age in the diabetic patient is completely unknown.

Ubiquitously expressed in living cells, thioredoxin-1 (Trx-1)
is a small protein with many protective biological functions.
Trx-1 not only exerts cytoprotective functions against oxida-
tive stress but also regulates cell survival signaling pathways
(15, 25, 38). In addition to its upregulated or downregulated
expression at the gene level, Trx activity is regulated by
posttranslational modification (25). Previously, we demon-
strated for the first time that Trx-1 can be modified at the
tyrosine residue by nitration, resulting in loss of its cardio-
protective action (28). In a recent study (37), we demonstrated
that nitrative inactivation of Trx-1 increases vulnerability of
diabetic hearts to I/R injury. However, the upstream mole-
cules and mechanisms causing increased nitrative Trx inacti-
vation in diabetic endothelial cells remain unidentified.

Therefore, the aims of the present study were (i) to deter-
mine whether AGEs could exacerbate CMECs I/R injury; (ii)
to examine whether AGEs increase nitrative stress and sub-
sequent nitrative Trx-1 inactivation; and (iii) to determine any
cause-effect relationship between AGE-RAGE-induced ni-
trative Trx inactivation and increased I/R injury in CMECs.

Materials and Methods

Preparation of AGE proteins

AGE-bovine serum albumin (BSA) was prepared as pre-
viously described (35). Briefly, BSA (50 mg/ml) was incu-
bated under sterile conditions with 0.5 M D-glucose in
100 mM sodium phosphate buffer (phosphate-buffered saline
[PBS], pH 7.4) at 37�C for 9 weeks. Unincorporated sugars
were removed by dialysis against PBS. Control BSA was in-
cubated under the same conditions, in the absence of reducing
sugars. AGE content was determined spectrofluorometrically
(360 nm excitation, and 450 nm emission) and expressed as the

percentage of relative fluorescence compared with control
BSA. Preparations were tested for endotoxin using Endospecy
ES-20S system (Seikagaku Co.); no endotoxin was detectable.

CMECs culture and identification

CMECs were isolated as previously described (17), with
minor modifications. Briefly, male Wistar rats (200–250 g)
were anesthetized with ether, and the heart was rapidly ex-
cised and rinsed with PBS supplemented with heparin. After
rinsing, the right ventricle, atria, and valvular tissues were
removed, and the remaining left ventricle was immersed in
75% ethanol for 20–30 s to devitalize epicardial mesothelial
cells and endocardial endothelial cells. About one-third of the
outer free ventricular wall was dissected to remove epicardial
arteries. The remaining tissue was then minced in PBS and
incubated in 0.2% collagenase (type II; Sigma Aldrich) for
10 min, followed by 0.2% trypsin (Sigma Aldrich) for another
6 min at 37�C in a water bath. Dissociated cells were filtered
through a 100 mm mesh filter. After centrifugation of the
dissociated cells at 1000 rpm for 10 min, cells were re-
suspended in Dulbecco’s minimum essential medium
(DMEM) (Invitrogen Gibco) supplemented with 20% (v/v)
fetal calf serum and heparin (20 U/ml) and plated on laminin
(10 lg/ml)-coated dishes. Primary cultures of CMECs were
positively identified by two endothelial cell markers: factor
VIII-related antigen and uptake of acetylated low-density li-
poprotein (Kalen Biomed). Differential uptake of acetylated
low-density lipoprotein, determined by fluorescence-
activated cell sorting, indicated that the cultures contained
>90% endothelial cells (Fig. 1).

Experimental protocol and simulated
ischemia/reperfusion

Passage 2 CMECs were used in the study. After 24 h syn-
chronization, cells were washed with PBS; and nonadherent

FIG. 1. Characterization of
cardiac microvascular endo-
thelial cells (CMECs). (A)
CMECs monolayer presents
cobble stone appearance by
phase-contrast microscopy;
expression of factor VIII by
immunohistochemistry (B1:
negative control, B2: factor
VIII positive); uptake of
acetylated low-density lipo-
protein by immunofluores-
cence: (C1: accumulation of
acetylated low-density lipo-
protein, C2: 4, 6-diamidino-
2-phenylindole staining
indicates nuclei, C3: merge of
C1 and C2). Original magni-
fication: · 400 (A, B), · 1000
(C).
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cells were removed from the culturing system and were ran-
domly assigned to one of the following treatments: BSA
(100 lg/ml as control), AGE-BSA (100 lg/ml), AGE-BSA +
EUK134 (7 lM, a peroxynitrite decomposition catalyst; Cay-
man Chemical), AGE-BSA + human Trx-1 (hTrx-1) (1 lg/ml;
Sigma), or AGE-BSA + sRAGE (4 lg/ml, a RAGE decoy;
Adipobioscience). After 48 h incubation, cells were subjected
to either sham simulated ischemia/reperfusion (SI/R, 10 h of
normoxia/normal-glucose environment) or SI/R (4 h hypoxia-
hypoglycemic environment plus 6 h normoxia/normal glu-
cose environment) as previously described (36). Briefly, the
oxygen-glucose deprivation injury occurred by placing cells
in a hypoxic environment (1% O2/5% CO2/94% N2) main-
tained by an incubator in the presence of glucose-free DMEM
for 4 h, at which time the medium was exchanged with
oxygenated and normal glucose DMEM in an incubator at
37�C to simulate the reperfusion condition for 6 h.

Assessment of SI/R-induced CMECs injury

To determine CMECs death, lactate dehydrogenase (LDH)
release was determined by an enzyme activity assay kit
(Nanjing Institute of Jiancheng Bioengineering). Caspase-3
activity was determined by caspase-3 activity assay kit
(Chemicon). Caspase-3 activity was expressed as nmol pNA/
h/mg protein.

Quantification of superoxide production,
cellular nitrotyrosine content

Superoxide production, an index of oxidative stress, in vi-
able CMECs was measured by lucigenin-enhanced chemilu-
minescence as previously described (17) and expressed as
relative light units per second per milligram protein. CMECs
nitrotyrosine content, an index of protein nitration and ni-
trative stress, was determined as described in our previous
study (27).

Total NO assay

The supernatant fluid of CMECs was harvested, and NO
concentrations were measured with Griess reagent using an
assay kit (Beyotime Company). The amount of total cellular
protein in the respective wells was determined by Lowry’s
method after lysis with a buffer containing 0.1% of sodium
dodecyl sulfate in 10 mM Tris, pH 7.4. Total nitrite accumu-
lated in each well was defined as lM/mg of protein in the
corresponding well.

Western blot analysis for Trx-1, inducible
nitric oxide synthase, RAGE, and gp91phox

CMECs were lysed in lysis buffer and centrifuged; the su-
pernatant was utilized to determine Trx expression. Equal
protein amounts were electrophoresed on a 14% sodium do-
decyl sulfate–polyacrylamide gel and then electrophoretically
transferred to a polyvinylidene difluoride membrane (Milli-
pore). After blocking with 5% skim milk in Tris-buffered sa-
line containing 0.05% Tween 20 at room temperature for 1 h,
the membrane was incubated with a monoclonal anti-murine
Trx antibody (Redox Bioscience), an anti-murine RAGE anti-
body (Santa Cruz), an anti-murine gp91phox (Santa Cruz)
antibody, or an anti-murine inducible nitric oxide synthase

(iNOS) antibody (Cell Signaling) and then with the HRP
linked lgG (Cell Signaling). The blot was developed with an
ECL-Plus chemiluminescence reagent kit (Amersham) and
visualized with UVP Bio-Imaging Systems. Blot densities
were analyzed with Vision Works LS Acquisition and Ana-
lysis Software.

Trx activity assay

Trx activity was determined via the insulin disulfide re-
duction assay (11). Briefly, 40 lg of cellular protein extracts
were preincubated at 37�C for 15 min with 2 ml activation
buffer (100 mM HEPES, 2 mM ethylenediaminetetraacetic
acid, 1 mg/ml BSA, and 2 mM DL-Dithiothreitol) to reduce
Trx. After addition of 20 lL reaction buffer (100 mM HEPES,
2.0 mM ethylenediaminetetraacetic acid, 0.2 mM NADPH,
and 140 mM insulin), the reaction was initiated by addition of
mammalian Trx reductase (1 ml, 15 mU; Sigma) or water to
controls. After incubation for 30 min at 37�C, the reaction was
terminated by 125 lL stopping solution (0.2M Tris–CL, 10 M
guanidine–HCl, and 1.7 mM 3-carboxy-4-nitrophenyl dis-
ulfide, DTNB), followed by absorption measurement
(412 nm). Trx-1 activity was expressed as oxidized NADPH
lmol/min/mg of protein.

Detection of Trx-1 nitration

CMECs were homogenized with lysis buffer. Endogenous
Trx-1 was immunoprecipitated with a monoclonal anti-
murine Trx-1 antibody (Redox Bioscience). After sample
separation, Trx-1 nitration was detected with a monoclonal
antibody (Upstate) against nitrotyrosine. The blot was de-
veloped with an ECL-Plus chemiluminescence reagent kit
(Amersham) and visualized with UVP Bio-Imaging Systems.
Blot densities were analyzed with Vision Works LS Acquisi-
tion and Analysis Software.

Statistical analysis

All values in the text and figures are presented as
means – standard error. All data (except Western blot density)
were subjected to analysis of variance followed by Bonferroni
correction for post hoc t test. Western blot densities were an-
alyzed with the Kruskal–Wallis test followed by Dunn’s
post hoc test. Probabilities of 0.05 or less were considered to be
statistically significant.

Results

AGE-BSA increases the SI/R injury in CMECs

To investigate the role of AGE-BSA on SI/R-induced injury
in CMECs, we examined the effects of AGE-BSA on the SI/
R-induced caspase-3 activity and LDH release in CMECs. SI/
R induced a significant LDH release (Fig. 2A) and caspase-3
activation (Fig. 2B). Compared with cells precultured in BSA,
cells precultured in AGE-BSA had increased SI/R-induced
LDH release (Fig. 2A) and caspase-3 activity (Fig. 2B).

AGE-BSA promotes the SI/R-induced
oxidative/nitrative stress in CMECs

To determine whether AGE-BSA exacerbates SI/R-induced
oxidative/nitrative stress, we examined iNOS protein
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expression and total NO production. It has been documented
that iNOS activation can result in excessive reactive nitrogen
species production (31). Elevated production of peroxynitrite
increases protein modification at the tyrosine residue, in-
creasing nitrotyrosine formation (19). Not only did SI/R in-
crease oxidative stress in CMECs, evidenced by enhanced
superoxide generation (Fig. 3A), but also it increased nitrative
stress as well, evidenced by greater iNOS expression (Fig. 3B),
total NO production (Fig. 3C), and nitrotyrosine production
(Fig. 3D). Further, AGE-BSA additionally amplified SI/R-
induced superoxide generation (Fig. 3A), iNOS expression
(Fig. 3B), total NO production (Fig. 3C), and nitrotyrosine
production (Fig. 3D) in CMECs.

AGE-BSA promotes SI/R-induced Trx-1
inactivation and nitration

Recently, we demonstrated that nitrative Trx-1 inactivation
plays a causative role in myocardial I/R injury (12). Having
demonstrated that AGE-BSA promoted SI/R-induced ni-
trative stress in CMECs, we tested a hypothesis that AGE-BSA
promotes SI/R-injury via nitrative Trx-1 inactivation. As

shown in Figure 4A, SI/R decreased Trx-1 activity in both
control and AGE-BSA group, compared with sham. This ob-
served decrease in Trx-1 activity occurred despite increased
expression of Trx-1 protein in both groups (Fig. 4A, B). Fur-
ther, AGE-BSA additionally amplified SI/R-induced Trx-1
inactivation (but had no effect on Trx-1 expression in sham or
SI/R conditions). Moreover, AGE-BSA further enhanced SI/
R-induced Trx nitration (Fig. 4C). These studies demonstrated
the promotion of Trx-1 inactivation by AGE-BSA possibly via
posttranslational modification, without alteration of Trx-1
expression.

Preventing Trx-1 nitration or treatment with exogenous
Trx-1 attenuates SI/R injury and RAGE expression
in cells precultured with AGE-BSA

In the present study, we demonstrated that AGE-BSA ex-
acerbated SI/R injury, increasing SI/R-induced nitrative
stress and nitrative Trx-1 inactivation in CMECs. However,
whether AGE-BSA-induced increased Trx nitrative inactiva-
tion is causatively related to increased SI/R-injury in CMECs
remains unknown. We performed the following study to gain
more insight. During the 48 h AGE-BSA incubation period,
CMECs were treated with EUK134 (a peroxynitrite decom-
position catalyst) or recombinant hTrx-1 and then subjected to
SI/R. As summarized in Figure 5, treatment with EUK134 or
hTrx-1 significantly attenuated SI/R-induced injury, as evi-
denced by mitigated LDH release (Fig. 5A) and caspase-3
activity (Fig. 5B). EUK134 or hTrx-1 dramatically attenuated
both nitrotyrosine content (Fig. 5C) and Trx nitration (Fig. 5D)
and recovered Trx-1 activity (Fig. 5E). Interestingly, we un-
expectedly found that, compared with vehicle, EUK134 or
hTrx-1 significantly decreased RAGE expression (Fig. 5F),
suggesting that nitrative Trx-1 inactivation promotes RAGE
expression.

Blockade of RAGE attenuated SI/R injury
in cells cultured with AGE-BSA

We performed an additional experiment to provide more
evidence supporting the central hypothesis that AGE-RAGE
stimulated superoxide/NO/peroxynitrite overproduction is
the upstream mechanism inducing increased nitrative Trx-1
inactivation in the diabetic condition. During the 48 h AGE-
BSA incubation period, CMECs were treated with sRAGE (a
RAGE decoy) and then subjected to SI/R. Caspase-3 activity,
LDH release, Trx-1 nitration, Trx-1 activity, and gp91phox
(the major component of NADPH oxidase) were assessed.
sRAGE recovered Trx-1 activity (Fig. 6D), while attenuating
CMECs LDH release (Fig. 6A), caspase-3 activity (Fig. 6B),
Trx-1 nitration (Fig. 6C), and gp91phox expression (Fig. 6E).

Discussion

We have made several important observations in the
present investigation. First, we demonstrated for the first time
that AGE-BSA promotes SI/R-induced injury in CMECs.
Second, we further demonstrated nitrative Trx inactivation as
an exacerbating factor to SI/R-induced injury in AGE-BSA
pretreated CMECs, a novel mechanism by which AGEs cause
endothelial injury. Third, we provided the first evidence that
RAGE acts as a modulator of both nitrative stress and sub-

FIG. 2. Effects of AGE-BSA preculture on subsequent
simulated ischemia/reperfusion-induced LDH release and
caspase-3 activity in CMECs. Advanced glycation end
products–modified bovine serum albumin (AGE-BSA) in-
creases the simulated ischemia/reperfusion (SI/R)-induced
lactate dehydrogenase (LDH) release (A) and caspase-3 ac-
tivity (B) in CMECs. n = 8–12 wells/group. #p < 0.05, ##p < 0.01
versus Control + Sham group, **p < 0.05 versus AGE-BSA +
Sham group.
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sequent Trx-1 nitrative inactivation in the setting of AGE-
BSA-induced amplification of SI/R-induced CMECs injury.
Finally, we have identified effective interventions capable of
attenuating diabetic cardiac microvascular endothelial I/R
injury.

It has been previously demonstrated that cardiac micro-
vascular endothelial injury precedes cardiomyocyte injury in
I/R situations (22). Attenuating endothelial injury can reduce
cardiomyocyte cell death after ischemia and reperfusion ul-
timately. Patients with diabetes with acute myocardial in-
farction are more likely to suffer from ‘‘no reflow’’ after
interventional therapy (20), suggesting the enhanced vulner-
ability of diabetic endothelial cells to I/R damage. However,
the precise mechanism by which this susceptibility occurs
requires elucidation. AGEs are nonenzymatically modified
proteins or lipids that become glycated and oxidized after
contact with sugars (24). AGEs form in vivo during aging, or in
hyperglycemic environments, and are contributive to the
pathophysiology of vascular disease in diabetes (2). Previous
studies demonstrate that AGEs alter properties of the large

matrix proteins collagen, vitronectin, and laminin via forma-
tion of intermolecular AGE-AGE covalent or crosslinking
bonds that destroy the extracellular structure (10, 12).
AGEs can also interact with its receptor RAGE to alter intra-
cellular endothelial function, increasing intercellular adhesion
molecule-1, interleukin-6, and vascular cellular adhesion
molecule-1 expression, thereby amplifying the inflammatory
process (1, 16). As I/R injury is closely related to inflammation
pathways; these studies indicate the possible association of
AGEs to cardiac microvascular endothelial I/R injury. Pre-
sently, we demonstrated that incubation of CMECs with a
pathologically relevant concentration of AGEs (34) increased
cellular susceptibility to I/R injury evidenced by increased
LDH release and caspase-3 activity. These results suggest that
interventions which decrease AGE concentration or block
AGE signaling can mitigate cardiac microvascular endothelial
I/R injury in patients with diabetes.

Considerable evidence demonstrates increased oxidative
stress in both patients with diabetes and animal diabetic
models (8). It has been documented that AGEs, via binding

FIG. 3. Effects of AGE-BSA preculture or subsequent simulated ischemia/reperfusion-induced oxidative/nitrative stress
in CMECs. AGE-BSA promotes the SI/R-induced superoxide generation (A), inducible nitric oxide synthase (iNOS) ex-
pression (B: upper panel, representative iNOS expression by western blot; lower panel, statistic analysis of western results
standardized by b-actin), total nitric oxide (NO) content (C), and nitrotyrosine content (D) in CMECs. n = 8–12 wells/group.
#p < 0.05, ##p < 0.01 versus Control + Sham group, respectively. **p < 0.05 versus AGE-BSA + Sham group.

AGES IN NITRATIVE TRX INACTIVATION 1773

http://www.liebertonline.com/action/showImage?doi=10.1089/ars.2010.3764&iName=master.img-002.jpg&w=491&h=367


with RAGE, activate NADPH oxidase and increase produc-
tion of ROS in endothelial cells (32). The increase of ROS in-
duced by AGEs result in the activation of NF-kB, followed by
increased intercellular adhesion molecule-1 and vascular cel-
lular adhesion molecule-1 expression, causing endothelial
cell damage (16). Recent studies report that nitrative stress
might be instrumental in the pathogenesis of diabetes (14). In
patients with diabetes and animals, iNOS expression and
activity is elevated (4). The increased nitric oxide produced by
iNOS reacts with increased superoxide generated by NADPH
oxidase, resulting in peroxynitrite overproduction, leading to

subsequent protein modification and cellular injury in dia-
betes (18, 29). In the present study, we demonstrated that
AGE-BSA not only increased oxidative stress in CMECs
(evidenced by increased superoxide anion formation) but also
increased total iNOS expression, NO content, and nitrotyr-
osine production. These data indicate that AGEs promote SI/
R injury not only by enhancing oxidative stress but also by
nitrative stress. Our results revealing the beneficial effects of a
peroxynitrite decomposition catalyst provided direct evi-
dence that AGEs increase SI/R injury in CMECs via nitrative
stress augmentation.

FIG. 4. Effects of AGE-BSA preculture on subsequent simulated ischemia/reperfusion-induced Trx-1 inactivation and
nitration in CMECs. AGE-BSA further decreased already SI/R-attenuated thioredoxin (Trx) activity (A) and had no effect of
the SI/R-induced Trx-1 expression (B: upper panel, representative Trx-1 expression by western blot; lower panel, statistic
analysis of western results standardized by b-actin) and increased the SI/R induced the Trx-1 nitration (C: upper panel,
representative nitrated and total Trx by immunoprecipitation; lower panel, statistic analysis of Trx nitration standardized by
total Trx) in CMECs. n = 8–12 wells/group. #p < 0.05, ##p < 0.01 versus Control + Sham group, *p < 0.05, **p < 0.01 versus AGE-
BSA + Sham group, respectively.
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Trx is a 12-kDa protein ubiquitously expressed in all living
cells, performing a variety of biological functions related to
cell proliferation and apoptosis (15, 38). Studies have dem-
onstrated that in addition to upregulation or downregulation
of Trx expression at the gene level, Trx activity is regulated by
posttranslational modification, such as oxidation, glutathio-
nylation, and S-nitrosylation (6, 9). Recently, it has been
demonstrated that Trx can be modified at its tyrosine residue,
in a process known as protein nitration, resulting in irre-
versible inactivation via a peroxynitrite-dependent fashion
(37). Moreover, this nitrative Trx inactivation plays a key
pathologic role in situations such as I/R injury in diabetes
(37). In the present study, we found that AGE-BSA exacer-
bated Trx inactivation after SI/R without altering Trx ex-
pression. These results indicate that AGE-BSA decreases Trx
activity via post-translational modification. Indeed, we found
that AGE-BSA amplified SI/R-induced Trx nitration and that
recombinant hTrx-1 supplementation effectively attenuated
SI/R-induced injury.

Several different receptors for AGEs have been discovered.
These include RAGE, AGE-R1 (oligosaccharyl transferase-
48), AGE-R2 (80K-H phosphoprotein), AGE-R3 (galectin-3),
and the class A macrophage scavenger receptor types I and II
(30). Among the receptors for AGEs, RAGE is recognized to
initiate the intracellular signaling disruptive of cellular func-
tion via recognition and binding of AGEs (5). In the present
study, we found that AGE-BSA promoted nitrative stress and
subsequent Trx-1 nitration in CMECs. More importantly, we
demonstrated that treatment with sRAGE (a decoy of RAGE)
attenuated AGE-BSA exacerbated nitrative stress and Trx
nitration and decreased SI/R-induced injury. These results
suggest that RAGE signaling is responsible for AGE-BSA-
induced nitrative stress and Trx nitration post-SI/R. It has
been shown that RAGE is upregulated when AGE ligands
accumulate, resulting in positive-feedback activation (23). We
also currently demonstrate that RAGE expression is de-
creased in the setting of nitrative stress and Trx nitration in-
hibition in CMECs, suggestive of a vicious cycle involving

FIG. 5. Effects of preventing
Trx-1 nitration or treatment
with exogenous Trx-1 on sub-
sequent simulated ischemia/
reperfusion-induced injury
and RAGE expression in
AGE-BSA precultured CM
ECs. EUK134 or hTrx-1 atten-
uates SI/R-induced LDH re-
lease (A) and caspase-3
activity (B) and nitrotyrosine
content (C) and decreased the
Trx nitration (D: upper panel
representative nitrated and
total Trx by immunopre-
cipitation, lower panel statistic
analysis of Trx nitration stan-
dardized by total Trx.) and
receptor of AGE (RAGE) ex-
pression (F: upper panel, re-
presentative RAGE expression
by western blot; lower panel,
statistic analysis of western
results standardized by b-
actin) and recovered Trx
activity (E) in the cells pre-
cultured with AGE-BSA. Nty,
nitrotyrosine. n = 8–12 wells/
group. *p < 0.05, **p < 0.01
versus SI/R + vehicle group,
respectively.
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AGE-RAGE signaling and Trx nitration. Experiments di-
rected toward identification of the detailed signaling net-
work regulating AGE-RAGE/Trx inactivation are currently
ongoing.

In summary, our results demonstrated that AGEs promote
I/R injury in CMECs through the RAGE/Trx nitration path-
way. Blocking peroxynitrite formation and RAGE signaling
by sRAGE or exogenous Trx-1 supplementation significantly
protected AGE-BSA-induced CMECs from SI/R-induced in-
jury. These results suggest that therapeutic interventions
preserving Trx-1 activity in the patient with diabetes may
further help in improving patient outcomes after myocardial
I/R injury.
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AGEs¼ advanced glycation end products
BSA¼ bovine serum albumin

CMECs¼ cardiac microvascular endothelial cells
DMEM¼Dulbecco’s minimum essential medium

I/R¼ ischemia/reperfusion
LDH¼ lactate dehydrogenase

NO¼nitric oxide
PBS¼phosphate-buffered saline

RAGE¼ receptor of advanced end product
ROS¼ reactive oxygen species
SI/R¼ simulated ischemia/reperfusion

sRAGE¼ soluble receptor of advanced end product
Trx¼ thioredoxin
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