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Abstract 

Mutations in collagen II are associated with spondyloepiphyseal dysplasia, a group of heritable diseases 

whose common features include aberrations of skeletal growth. The mechanisms through which 

mutations in collagen II affect the cartilaginous tissues are complex and include both intracellular and 

extracellular processes. One of those mechanisms involves cellular stress caused by excessive 

accumulation of misfolded collagen II mutants. We investigated whether stabilizing the structure of 

thermolabile R789C and R992C collagen II mutants would improve their secretion from cells, thereby 

reducing cellular stress and apoptosis. Employing glycerol and trimethylamine N-oxide (TMAO), 

chemicals that increase the thermostability of collagen triple helices, we demonstrated that those 

compounds function as chaperones and stabilize the R789C and R992C mutants, accelerate their 

secretion, and improve cell survival. Our study provides a scientific basis for considering misfolded triple 

helices of collagen mutants a target for reducing the deleterious effects caused by their excessive 

intracellular accumulation. 
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Introduction 

Collagen II is a component of heterotypic fibrils which form scaffolds of mature cartilaginous tissues 

and provide a template that guides the development of skeletal tissues [1]. Processes leading from the 

biosynthesis of pro-α1(II) chains in cells to the formation of collagen fibrils in the extracellular space are 

complex and include: (i) posttranslational modifications of nascent pro-α1(II) chains, (ii) their folding 

into triple-helical procollagen molecules and secretion from cells, and (iii) self-assembly of collagen 

molecules into fibrils [2].  

 Fundamental for the mechanical and biological functions of collagen II is its stable triple-helical 

conformation. Such a conformation is achieved by the folding of individual pro-α1(II) chains whose main 

collagenous domain consists of uninterrupted repetitions of the G-X-Y motif in which the “X” and the 

“Y” positions are frequently occupied by proline and hydroxyproline residues, respectively [2]. The 

accurate amino acid sequence of collagen II is critical for the correct functions of this protein at the tissue 

level and mutations in COL2A1 (OMIM#120140) are associated with a broad spectrum of 

chondrodysplasia phenotypes, generally described as spondyloepiphyseal dysplasia (SED), the main 

feature of which is abnormal skeletal development [3] 

One of the pathological consequences of mutations in collagenous proteins is a loss-of-function 

effect due to the reduced incorporation of mutants into the extracellular matrix (ECM). It has been 

suggested that the fundamental cause for the reduced amount of collagen molecules containing mutant α 

chains is excessive intracellular accumulation and subsequent degradation in a process described as 

"procollagen suicide" [4].  

Due to the possibility of excessive intracellular retention, some diseases that involve collagen 

mutants are categorized as storage diseases, a group that also includes diseases caused by the excessive 

accumulation of non-collagenous proteins, lipids, glycoproteins, and other macromolecules [5]. In our 

studies published elsewhere we demonstrated that the R789C and R992C substitutions in collagen II 

cause misfolding of mutant molecules, decrease their thermostabilities, promote excessive intracellular 

retention and aggregation, and increase apoptosis [6; 7; 8]. Thus, in addition to the loss-of-function effect, 

certain mutations in collagen II may also cause a gain-of-toxicity effect.  
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 Here, we studied the feasibility of reducing cellular stress associated with the R789C and R992C 

substitutions by stabilizing the mutant molecules and decreasing their intracellular accumulation. 

Employing glycerol and trimethylamine N-oxide (TMAO), chemicals that stabilize the collagen triple 

helix, we demonstrated that these compounds increase the thermostability of the R789C and R992C 

mutants, decrease their intracellular retention, and improve cell survival [9; 10; 11],. Our study provides 

bases for considering triple helices of thermolabile collagen mutants a new target to reduce the deleterious 

effects caused by their atypical retention. 

 

Materials and Methods 

 Mutation nomenclature -- The amino acid substitutions are named according to the literature, with 

amino acid residues numbered from the first glycine of the collagen II triple helix.  

 

 Procollagen II mutants -- Procollagen II mutants employed in this study are associated with SED 

[12; 13]. To facilitate various biochemical and microscopic assays, wild type (WT) and mutant 

procollagen II variants were engineered as chimeras fused with green fluorescent protein (Pro-GFP), as 

described [6; 8].  

 

 Cells expressing collagen II mutants -- For the production of Pro-GFP variants in quantities 

sufficient for assays of their thermostability, these proteins were expressed in HT-1080 cells (ATCC; 

CCL-121), as described [6; 8; 14]. For analyses of cellular responses to the presence of procollagen II 

mutants, the chondrocytic cell line SW-1353 (ATCC; HTB-94) was employed, as described [6; 7; 8]. 

Both cell lines were cultured in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine 

serum and 40 µg/ml of L-ascorbic acid phosphate magnesium salt (Wako Chemicals, Inc.), as described 

[8; 14]. 

 

 Cell culture in the presence of glycerol and TMAO -- Glycerol and TMAO, compounds with 

chemical chaperone characteristics, were employed to determine the effects of their collagen-stabilizing 

activities on the structure of the R789C and R992C mutants, and the faith of cells harboring them. For 
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analyses of cell survival, we followed the experimental design described by Hintze et al [7]. In brief, SW-

1353 cells were cultured for 12 days post-confluence, and then cell culture media were supplemented with 

glycerol added to a final concentration of 0.1 M or 0.5 M, or TMAO added at 30 mM or 0.1 M. 

Subsequently, cell culture was continued for five additional days. After the five-day treatment, cell 

culture media and cell lysates were collected for further assays. For thermostability analyses, collagen II 

variants were isolated from HT-1080 cells cultured in the presence of 0.5 M glycerol or 0.1 M TMAO, as 

described [14].  

 Working concentrations of selected compounds used in this study were determined in pilot 

experiments. In these experiments cells were cultured in increasing concentrations of glycerol or TMAO. 

During culture, cells were monitored for proliferation, changes in morphology, and production of 

procollagen II, as described [6; 8]. The highest concentrations that did not have any apparent negative 

effects on cultured cells were applied in the presented studies. 

 

 Cleaved poly-(ADP-ribose) polymerase (cPARP) and TdT-mediated dUTP Nick-End Labeling 

(TUNEL) assays -- Glycerol and TMAO-treated cells were analyzed for apoptotic markers, as described 

[7]. In these assays cPARP was detected in cell lysates by Western blot with primary rabbit anti-cPARP 

antibodies (Cell Signaling Technology, Inc.) and secondary anti-rabbit IgG conjugated to horseradish 

peroxidase (HRP; Sigma-Aldrich). The same nitrocellulose membranes were also probed for 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The relative amount of cPARP in the analyzed 

samples was determined by measuring the ratios of the pixel intensities of the cPARP-positive bands and 

GAPDH-positive bands. In any given group of cells, i.e. expressing GFP-tagged WT, R789C or R992C 

collagen II, the cPARP/GAPDH ratio derived from non-treated cells was considered 100%. Statistical 

significances of differences between the means calculated for the relative contents of cPARP in cells 

cultured in the presence vs. the absence of tested compounds were evaluated by the Student’s t test 

(GraphPad Software, Inc.). 

 In another set of experiments the presence of fragmented DNA was analyzed by TUNEL assays that 

utilize tetramethylrodamine (TMR) as a red fluorophore (Roche). Subsequently the apoptotic index, 
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defined as the percentage of TUNEL-positive nuclei out of the total number of DAPI-positive nuclei, was 

calculated for each analyzed group, as described [6; 7]. 

 

 Thermostability assays of collagen II variants -- Two experimental approaches were designed; (i) in 

the first approach we analyzed the thermostabilities of purified collagen II mutants produced by HT-1080 

cells cultured in the presence of 0.5 M glycerol or 0.1 M TMAO, and (ii) in the second approach these 

compounds were added to purified collagen II variants produced by cells cultured in the absence of these 

compounds. The thermostabilities were measured by brief protease digestion, as described [6; 15]. Based 

on collagen II-melting curves, we determined the temperatures at which the triple helical structure of 

analyzed collagens was preserved in 75% (Tm75), 50% (Tm50), and 25% (Tm25) of maximum.  

 

 Intracellular Pro-GFP variants produced in the presence of glycerol and TMAO -- We analyzed 

whether glycerol and TMAO-mediated stabilization of collagen molecules could also influence their 

intracellular accumulation. In brief, glycerol or TMAO-treated cells were lysed, and then Pro-GFP 

variants were detected by Western blot assays with an anti-GFP antibody, as described [6; 8]. The relative 

content of GFP-positive bands was assayed by densitometry. The results of measurements were 

normalized to GAPDH and plotted as a percent of the non-treated control (expressed as 100%). 

 We also studied the effects of glycerol and TMAO on the accumulation of collagen 

molecules misfolded due to inhibition of critical hydroxylation of proline residues by 2,2' 

dipyridyl (Sigma-Aldrich) [16]. The intracellular content of Pro-GFP variants produced in the 

presence of 2,2' dipyridyl was assayed as described above. 

 

Results 

 Apoptotic markers in cells harboring the R789C and R992C mutants cultured in the presence 

of glycerol and TMAO -- Cells cultured in the presence of 0.5 M glycerol or 0.1 M TMAO had a 

statistically significant decrease in the relative amount of cPARP, indicating an increase of cell survival 

(Fig. 1 and Supplementary Fig. S1). In the same experimental conditions, the overall amounts of Pro-GFP 
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produced by cells did not change (Fig. 1). The lower concentrations of these compounds used in the pilot 

studies did not have significant effects on relative amounts of cPARP (data not shown).  

 TUNEL analyses (Supplementary Fig. S2) of cells cultured in the presence of 0.5 M glycerol or 0.1 

M TMAO support the results of cPARP assays. Specifically, we determined that in comparison to the 

non-treated cells harboring the WT, R789C or the R992C mutants, the apoptotic indexes for cells cultured 

in the presence of 0.5 M glycerol decreased from 0.89% (±0.15 SEM), 3.45% (±0.73 SEM), and 0.96% 

(±0.12 SEM), to 0.82% (±0.14 SEM), 2.34% (±0.3 SEM), and 0.5% (±0.11 SEM), respectively. A similar 

trend was observed in an analogous experiment where cells were treated with 0.1 M TMAO. Specifically, 

we determined that in comparison to the non-treated cells harboring the WT, R789C or the R992C 

mutants (see above) the apoptotic indexes for cells cultured in the presence of 0.1 M TMAO decreased to 

0.56% (±0.14 SEM), 2.24% (±0.22 SEM), and 0.67% (±0.08 SEM), respectively. 

 

 

Thermostabilities of the R789C and R992C mutants produced by cells cultured in the presence of 

glycerol or TMAO -- In comparison to the non-treated controls, the thermostabilities of the WT collagen 

II and the analyzed mutants produced by cells cultured in the presence of 0.5 M glycerol or 0.1 M TMAO 

have increased (Fig. 2A, Supplementary Fig. 3S, and Tab. 1). Based on this observation, however, it has 

not been clear whether the thermostabilizing effect depended on intracellular interactions of glycerol and 

TMAO with newly synthesized pro-α1(II) chains or whether these compounds were able exert a 

stabilizing effect extracellularly. Thus, in another set of experiments, we first prepared collagen II 

variants isolated from cells cultured in the absence of chaperones. Next, purified collagens were exposed 

to these compounds for 24-h at 4°C, and then thermostability measurements were performed. Because the 

thermostabilities of analyzed mutants have increased, these assays suggest that intracellular interaction 

between the chemical chaperones and procollagen is not a defining factor in stabilizing the collagen II 

variants (Fig. 2B, Supplementary Fig. 3S, and Tab. 1). When comparing the thermostabilities of the 

collagen variants purified from cultures of cells grown in the presence of chaperones to those isolated 

from cells grown in chaperone-free media and treated with chaperones right before the stability assays, it 

is apparent that the increase in thermostability was greater in the latter group. (Fig. 2 and Tab. 1).  
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Note: As glycerol and TMAO do not change the enzymatic activities of trypsin and chymotrypsin, it 

is important to emphasize that the observed increase of thermostabilities of collagen II variants was not a 

result of the decrease of the enzymatic activities of employed proteases [17].  

 Intracellular accumulation of the R789C and R992C mutants -- We analyzed the intracellular 

content of Pro-GFP variants in the presence of glycerol and TMAO. In comparison to the non-treated 

controls, in cells treated with these compounds the relative amounts of the R789C and R992C variants 

were reduced (Fig. 3 and Fig. 4). Of note was the observation that in cells expressing the R789C mutant, 

partial degradation of this protein was observed.  

As shown in Fig. 3 and Fig. 4 adding 2,2' dipyridyl into the cell culture increased accumulation of 

Pro-GFP in all analyzed groups. Moreover, as evident by the presence of GFP-positive fragments, 

increased intracellular accumulation was associated with degradation of all Pro-GFP variants. In addition, 

in cells cultured in the presence of this compound, neither glycerol nor TMAO reduced the intracellular 

accumulation of the Pro-GFP variants (Fig. 3 and Fig. 4). 

 

Discussion 

Employing a simple experimental system, we tested whether adverse consequences of intracellular 

accumulation of the thermolabile R789C and R992C collagen II mutants could be partially reduced by 

improving their thermostabilities. The strategy proposed here was to employ glycerol and TMAO, 

compounds that at 1 M concentration increase the thermostability of collagen triple helices by 1°C and 

5°C, respectively [9; 10].  

We demonstrated that the presence of glycerol and TMAO was associated with reduction of the 

relative amounts of cPARP in cells harboring the R789C and R992C mutants. At the same time, the 

presence of these compounds did not affect the overall production of collagen II. In cells expressing WT 

collagen II, the relative amount of background-level cPARP also decreased, but this change was relatively 

small compared to that observed for cells harboring collagen II mutants. The decrease in the apoptotic 

indexes for cells expressing the R789C and R992C variants in the presence of glycerol and TMAO further 

corroborates the results of quantitative assays of cPARP. Changes in the relative amounts of apoptotic 

markers in cells cultured in the presence of glycerol or TMAO correlated with the decrease of the 
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intracellular pool of procollagen molecules, suggesting the increase of their secretion. Because the 

efficient secretion of procollagens depends on the formation of thermostable triple-helical structures, the 

decrease of intracellular accumulation of inherently thermolabile R789C and R992C procollagen II 

mutants in the presence of glycerol and TMAO further indicate the chaperone-like collagen-stabilizing 

effect of these compounds [6; 7; 16; 18; 19]. The collagen-stabilizing activity of selected chemical 

chaperones, however, is probably limited to mutant molecules with localized structural aberrations. This 

notion is based on the observation that collagen molecules whose structures are extensively misfolded due 

to the inhibition of hydroxylation of proline residues by 2,2' dipyridyl are not stabilized by selected 

chemical chaperones..  

The decrease in the intracellular accumulation of studied mutants indicates that the stabilizing effects 

of glycerol and TMAO were primarily a result of the intracellular influence of these compounds on the 

structure of a collagen triple helix. In comparison to the stabilities of collagen II variants purified from 

cell culture media of cells grown in the presence of glycerol or TMAO, the increase in the thermostability 

was even greater in another experimental group in which these compounds were added to the purified-

collagen samples before thermostability assays and remained in the analyzed samples during these assays. 

This apparent difference was most likely due to the partial reversal of the stabilizing effects in the first 

experimental group due to the decrease in the concentration of glycerol and TMAO occurring during the 

purification of collagen II.  

The concept of improving the structure of misfolded mutant proteins by employing chemical 

chaperones to reduce the harmful effects that such mutants have on cells and tissues has been proposed 

and tested with a number of proteins associated with various diseases [20; 21; 22; 23; 24]. Specific 

examples of such an approach include employing TMAO to reduce the effects of mutant keratins that 

cause various skin disorders and to restore the activity of mutant branched-chain α-ketoacid 

dehydrogenase associated with maple syrup urine disease [25; 26]. Moreover, chemical chaperones were 

shown to be effective in stabilizing the structure and accelerating the secretion of mutant proteins 

involved in cystic fibrosis and Huntington’s disease, as well as liver injury and emphysema caused by an 

α1-antytrypsin deficiency [27; 28; 29]. Although most studies on chemical chaperones as therapeutic 

agents were done in cell culture conditions, reduction of ER stress and restoration of glucose homeostasis 
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by administration of 4-phenylbutyric acid, yet another compound with chaperone-like activities, in a 

mouse model of type 2 diabetes was also demonstrated, thereby indicating a potential utility of chemical 

chaperones in vivo [30]. 

The studies presented here provide experimental evidence that the aberrant structure of collagen 

mutants could be considered a target for approaches aimed at reducing the harmful effects imposed by 

these mutants. Preliminary tests presented here focused on the thermolabile R789C and R992C collagen 

II mutants that are associated with apoptosis and whose structural alterations are readily detectable [6; 7; 

8; 31]. The structural and biological effects of these mutations, however, do not represent the full 

spectrum of potential effects that different mutations may impose. For instance, in cells expressing the 

thermostable R75C, R519C, and G853E collagen II mutants which are also associated with skeletal 

diseases, an increase in apoptosis was not readily apparent [7]. Thus, the question remains whether 

targeting the structure of collagens should be considered only for the thermolabile mutants or also for the 

thermostable mutants whose ER stress-related effects may be long-term and accumulative.  
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Table 1 

 

Thermostabilities of the R789C and R992C mutant in the presence of glycerol and TMAO. 

 

  aTm75 
[°C] 

aTm50 
[°C] 

aTm25 
[°C] 

 Collage
n II 

variant 
 

C 0.5M 
Glycerol 

0.1M 
TMAO 

C 0.5 M 
Glycerol 

0.1M 
TMAO 

C 0.5M 
Glycerol 

0.1M 
TMAO 

C
ha

pe
ro

ne
s 

ad
de

d 
du

ri
ng

 c
el

l c
ul

tu
re 

WT 40.4 40.6 40.5 41.3 41.5 41.3 42.2 42.3 42.2 

R789C 37.7 37.8 37.9 38.6 38.6 38.7 39.6 39.5 39.6 

R992C 38.7 39.4 39.1 39.3 39.8 39.6 40.1 40.1 40.3 

           

C
ha

pe
ro

ne
s 

ad
de

d 
to

 p
ur

ifi
ed

 c
ol

la
ge

n 
is

ol
at

ed
 

fr
om

 n
on

-t
re

at
ed

 c
el

ls 

WT 40.4 41.0 41.5 41.5 43.0 43.4 42.7 44.9 45.2 

R789C 38.6 39.0 39.4 39.1 39.7 40.1 39.6 40.6 40.9 

R992C 38.5 39.2 38.7 39.3 40.0 39.7 40.2 40.7 40.6 

 

aTm75, Tm50, and Tm25 indicate the temperatures at which the triple helical structure of analyzed collagens 

was preserved in 75%, 50%, and 25% of maximum, respectively; C indicates control samples not treated 

with chemical chaperones. 
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Figure Legends 

 

Figure 1 - Relative amounts of Pro-GFP variants (A) and cPARP (B) in cells cultured in the presence of 

0.5 M glycerol or 0.1 M TMAO. The relative amounts of Pro-GFP and cPARP in specific groups of cells 

treated with glycerol or TMAO are compared corresponding control groups cultured in the absence of 

these compounds (controls expressed as 100%). Each point represents the mean value from multiple 

independent assays ± standard error of the mean (SEM). Symbols: WT, samples that include wild type 

Pro-GFP; R789C and R992C, Pro-GFP mutants; ns, not statistically significant; P values for statistically 

significant differences between means calculated for analyzed group and non-treated controls are also 

presented (expressed as 100%). 

 

Figure 2 – A, Assays of the thermostabilities of the WT, R789C, and R992C collagen II variants isolated 

from HT-1080 cells cultured in the presence of 0.5 M glycerol or 0.1 M TMAO. B, Similar assays of the 

thermostability of the WT, R789C, and R992C collagen II variants isolated from HT-1080 cells cultured 

in chaperone-free media. Proteins were isolated from the media then incubated with 0.5 M glycerol or 0.1 

M TMAO. 

 Following preincubation at increasing temperatures, collagen II samples were subjected to brief 

protease digestion. The digested samples were electrophoresed in 7.5% polyacrylamide gels in reducing 

conditions and then α1(II) chains were visualized by Western blot (Supplementary Figure S3). 

Subsequently, the relative pixel intensities of bands corresponding to α1(II) chains were measured by 

densitometry. Graphic representations of changes in the relative amount of triple-helical collagen II in 

response to increasing temperature are demonstrated (see Table 1). Symbols: WT, wild type collagen II; 

R789C and R992C, collagen II mutant harboring specific substitution; solid circles (●)and solid line, non-

treated control; open circles (○) and dashed line, group treated with 0.5 M glycerol; triangles (▲) and 

dotted lines, a group treated with 0.1 M TMAO.  
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Figure 3 - Intracellular pool of Pro-GFP variants in cells cultured in the presence of glycerol or TMAO 

with or without addition of 2,2' dipyridyl. A, Site-by-site comparison of Pro-GFP variants from cells 

grown in the presence (+) or the absence (-) of 2,2' dipyridyl but in the absence of glycerol and TMAO. B, 

Intracellular pool of the Pro-GFP variants in cells grown in the presence of glycerol or TMAO but 

without 2,2' dipyridyl. C, Intracellular pool of the Pro-GFP variants in cells grown in the presence of 2,2' 

dipyridyl and glycerol or TMAO. Symbols: WT, samples that include wild type Pro-GFP; R789C and 

R992C, Pro-GFP mutants. Symbols: C, controls grown in the absence of glycerol (G) or TMAO (T). 

 

Figure 4. Graphic representation of intracellular accumulation of Pro-GFP variants in cells cultured in the 

presence of glycerol or TMAO with or without addition of 2,2' dipyridyl. The relative amounts of Pro-

GFP in specific groups of cells treated with glycerol or TMAO are compared to control groups cultured in 

the absence of these compounds (controls expressed as 100%). Each point represents the mean value from 

multiple independent assays ± standard error of the mean (SEM). 
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