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Abstract  

Previously, we have demonstrated that chronic-alcohol exposure alters insulin-like growth factor 1 (IGF1) signaling in adult 
rat heart cells. This report examines the effects of alcohol in vitro on the expression of protein kinase C (PKC) alpha, delta, and 
epsilon using the embryonic heart cell line, H9c2, and how this may be linked to changes in IGF1 signal transduction. Western 
blot analyses of H9c2 protein preparations demonstrate that there are significant increases in the total protein levels of PKC 
delta and epsilon after 4 days exposure to alcohol, and similar increases were found after 2 and 6 days exposure. In addition, 
there was a significant increase in PKC delta and epsilon in the membranal fractions and a decrease in the cytosolic fractions. 
No change was found in the expression or activity levels for PKC alpha. Chronic-alcohol exposure (100 mM, 4 days) increased 
the basal tyrosine kinase activity of the IGF1 receptor (IGF1R), and altered its rate of activation. Chronic-alcohol exposure also 
reduced the rate of Erk1/Erk2 activation by IGF1. Chronic alcohol blocked the proliferative effects of IGF1 on cell growth and 
reduced cell viability both in the presence and absence of IGF1, and this alcohol-induced reduction in cell viability was blocked 
using siRNA to inhibit PKC delta. In addition, a reduction in the amount of myosin light chain 2 was found in the alcohol-
exposed cells. In conclusion, chronic alcohol alters PKC delta and epsilon expression and activity, and suppresses the IGF1 
signaling pathway in embryonic heart cell culture. Blockage of PKC delta expression using siRNA inhibits the suppressive 
effects of alcohol on cell viability.  

 
Keywords: Insulin-like growth factor 1 (IGF1); Protein kinase C (PKC); IGF1 receptor (IGF1R); Extracellular-regulated kinase 
(Erk 44 and 42 kD, also referred to as MAP kinase); Small interfering RNA (siRNA)  
 
 
1. Introduction  
 
     Recently, this laboratory has determined that in both adult rat heart cells and in H9c2 embryonic rat 
heart cells, selective inhibition by PKC alpha blocks the tyrosine kinase activity of the IGF1 receptor 
(Maniar et al., 2005). However, in cardiomyocytes from adult alcoholic rats, there is loss of IGF1-
stimulated PKC alpha activation as well as alterations in the IGF1 receptor activity (Pecherskaya et al., 
2002). Since chronic-alcohol exposure is known to alter several different PKC isoenzymes levels of 
expression and activity, it may be that these proteins interfere with the normal role that PKC alpha plays in 
the IGF1 signaling pathway. Using H9c2 tissue culture, the following study was designed to determine if 
PKC plays a role in altering the IGF1 signaling pathway after chronic-alcohol exposure. 
 
     Several key studies using transgenic mice have demonstrated the importance of IGF1 in the heart’s 
development and maintenance (DeLaughter et al., 1999; Liu and LeRoith, 1999; Montgomery and 
Schwartz, 1995). Homozygous IGF1-deficient mice are only half the weight of the wild types, and the vast 
majority of them die at birth. The hearts as well as other organs, including the liver, kidney, and brain 



were found to be enlarged in these mice compared to their wild-type littermates (Liu and LeRoith, 1999). 
In another study, it was found that expression of IGF1 in a transgenic model initially induced physiologic 
hypertrophy, however, later in life a pathological condition developed characterized by decreased systolic 
performance and increased interstitial fibrosis (DeLaughter et al., 1999). IGF1 may also serve to inhibit 
cardiomyocytes from undergoing apoptosis following infarction (Chen et al., 2000; Wang et al., 1998). In 
primary neonatal cardiomyocyte culture, it was shown that IGF1 protects these cells from alcohol-induced 
cell death (Chen et al., 2000). IGF1 partially suppressed Bax induction, Caspase 3 activation, DNA 
fragmentation, and increased cardiomyocyte survival. 
     Many types of PKC isoenzymes have been detected in the heart. In adult rat cardiac tissue, the 
detection of the classical protein kinase C isoenzyme alpha, a Ca2+-requiring isoenzyme, and the novel 
protein kinase C isoenzymes delta and epsilon, which do not require Ca2+, accounted for the majority of 
PKC activity (Erdbrugger et al., 1997). Alcohol is known to modulate the expression and activity of 
several of these kinases in the heart and other tissues. Their roles in alcohol-associated heart disease are 
currently being identified (Chen & Mochly-Rosen, 2001; Chen et al., 2001; Gray et al., 2004; Miyamae et 
al., 1998; Solem et al., 2000; Zhou et al., 2002). In this report, we examine how chronic-alcohol exposure 
results in changes in PKC delta and epsilon in embryonic heart cells, and how this may alter the IGF1 
signaling pathway. We find that chronic alcohol reduces IGF1R activation as well as downstream 
Erk1/Erk2 activity. There is also a reduction in cell proliferation and cell viability after serum withdrawal 
by chronic alcohol. Since we find that there are changes in PKC delta and epsilon, we hypothesize that one 
or both of these isoenzymes may be involved. By inhibiting PKC delta expression with siRNA, this blocks 
the alcohol-induced reduction in cell viability and also reduces alcohol’s inhibition of IGF1’s protective 
effects. Finally, we measure proteins that are expressed during cardiac cell growth and hypertrophy. We 
find that IGF1 modestly increases the level of myosin light chain 2, and alcohol reduces the levels of this 
protein and blocks IGF1’s effect. No changes are found in the expression levels of troponin C, beta-actin, 
or the IGF1 receptor. 
 
2. Methods  
 
2.1. Materials  

Chemicals for buffers were purchased from Sigma Chemicals (St. Louis, MO); bovine serum albumin 
was purchased from Boehringer Mannheim Biochemicals (Indianapolis, IN); collagenase was purchased 
from Worthington Biochemicals (Lakewood, NJ). Phenylmethylsulfonyl fluoride (PMSF), leupeptin, 
aprotinin, and pepstatin were purchased from Sigma Chemicals (St. Louis, MO). IGF1 was purchased 
from R & D laboratories, (Minneapolis, MN). All cell culture reagents and antibiotics were purchased 
from Gibco BRL (Gaithersburg, MD). Antibodies to PKC alpha, delta, epsilon, IGF1 receptor (beta 
subunit), beta-actin, myosin light chain 2, and troponin C were purchased from Santa Cruz Biotechnology 
(Santa Cruz, CA). Cell-Titer 96 Aqueous nonradioactive cell proliferation assay was purchased from 
Promega Corporation (Madison, WI). The siRNA (cat # B-002000-UB-0115, sequence #3) to block PKC 
delta, the siRNA (cat. # M-04-0103-00) for rat PKC alpha, and the siRNA (cat. # D-087950-01) for PKC 
epsilon were purchased from Dharmacon RNA Technologies (Lafayette, CO). In addition, the nonspecific 
control sequence (cat # D-001210-01) was also purchased from Dharmacon. The transfection reagent 
TransIT-TKO transfection reagent (cat # MIR2154) was purchased from Mirus Corp. (Madison, WI). 
100% ethyl alcohol (alcohol) was a gift from the Thomas Jefferson University Pharmacy. 

2.2. H9c2 cell culture  
H9c2 rat embryonic cell culture (ATCC) was grown in DMEM with 10% FBS, streptomycin/penicillin 

(Gibco BRL, Gaithersburg, MD) at 37C, 5% CO2 as previously described (Maniar et al., 2005). Ethanol-
containing media (100 mM) was changed daily, and the flasks containing the cells exposed to ethanol as 
well as the paired control flask were capped in order to prevent evaporation of ethanol from the media. 



This concentration of ethanol is within the range (50–200 mM) that has previously been shown to alter 
PKC in tissue culture (Coe et al., 1996; Messing et al., 1991). For the experiments, only low passage cells 
(<15) were used.  

 
2.3. Western analysis of PKC alpha, delta, and epsilon  

Western blotting was performed as previously described (Pecherskaya et al., 2002). Briefly, whole cell 
lysates from H9c2 cells exposed to 100 mM ethanol (2–6 days) were homogenized in cell lysis buffer (50 
mM Tris, pH 7.5, 150 mm NaCl, 1% Triton X-100, 100 µM phenylmethylsulfonyl fluoride, 25 µg/ml 
leupeptin, pepstatin, aprotinin, 2 mM ethylenediaminetetraacetic acid, 1 mM ethyleneglycotetraacetic 
acid) (Solem et al., 2000). To isolate the cytosolic and membranal fractions, the detergent was not 
included in the cell lysis buffer. The cells were homogenized by vortexing for 30 s in an Eppendorf tube 
and triturated 35 times using a 23-gauge syringe needle. The cell pellet containing the membranal portion 
was removed by quick centrifugation (10,000 × g for 10 min) and the lysate containing the cytosolic 
portion was immediately stored at –20ºC. Next, the membranal fraction was dissolved in cell lysis buffer 
containing detergent (1% Triton X-100). Protein concentrations were determined by using the Biorad 
(Hercules, CA) detergent-compatible protein assay kit. Protein samples (50 µg) were heat denatured in 
sodium dodecyl sulfate (SDS)-Laemmli sample buffer and loaded onto 10% SDS polyacrylamide gel 
electrophoresis (PAGE) gels for size separation. Molecular weights were determined by using molecular 
weight protein markers (Biorad, Hercules CA). The separated proteins were transferred to nitrocellulose 
and stained with antibody (1:300 dilution for 4 h) to PKC alpha, delta, or epsilon (Santa Cruz 
Biotechnology, Santa Cruz, CA). The blots were washed (3 × at 30 min intervals using TBS containing 
tween-20 (0.1%)) and stained with anti-rabbit conjugated IgG-HRP secondary antibody (1:3000 dilution 
for 30 min) and then washed again (3×). These blots were exposed to X-ray film (Fuji Photo Film, Tokyo, 
Japan) after a brief exposure to chemilluminescence buffer (Pierce Biotechnology, Rockford, IL). A 
determination was made of the amounts of these proteins detected by the film by scanning the X-ray film 
and analyzing the density of the bands using Scion Image (version 4.0.2). These experiments were 
repeated at least three times in order to achieve statistically significant results using the Student’s t-test.  
 
2.4. Western analysis for the IGF1 receptor (beta subunit), beta-actin, troponin C, and myosin light 
 chain 2  

Whole cell lysates from H9c2 cells exposed to 100 mM ethanol for 4 days were prepared as stated 
above. Western blots were performed on these samples using 50 µg sample/ well, and the blots were 
probed with antibodies (1:500 dilution). A determination was made of the amount of protein in the 
samples by scanning the X-ray film and analyzing the density of the bands using Scion Image (version 
4.0.2). For each protein examined, the experiments were repeated four times in four separate western 
experiments.  

2.5. Autophosphorylation of the IGF1 receptor  
H9c2 rat embryonic cells were used to examine the time course of IGF1 activation of its receptor in the 

presence and absence of alcohol exposure (100 mM, 2 days). The alcohol-containing media (DMEM + 
10% FBS, 100 mM ethanol) as well as the control media (DMEM + 10% FBS) were changed daily. Once 
the cells were confluent, the culture was serum-starved for 30 min at 37ºC using serum-free DMEM 
media, after which the culture was exposed to IGF1 (20 ng/ml) for 5 min, 15 min, 30 min, and 60 min at 
37º C. Cells were washed 3× using PBS, and then harvested in incubation buffer (20 mM Hepes pH 7.4, 
150 mM sodium chloride, 0.1% Triton X-100, 100% glycerol, 200 mM Na(o)-vanadate, 10 mM NaF, 
protease inhibitors (each at 5 µg/ml) aprotinin, leupeptin, pepstatin). Rabbit polyclonal immunoglobulin 
((p)tyr(p)tyr1135/1136) from Biosource International (Carlsbad, CA) was used for these studies (Pecherskaya 
& Solem, 2000). This antibody recognizes the activated state of the IGF1 receptor beta subunit. The blots 
were standardized by measuring total protein levels of the IGF1 receptor (beta subunit) using a rabbit 



polyclonal antibody from Santa Cruz Biotechnology. A determination was made of the levels of tyrosine 
phosphorylation of the IGF1R of the normalized blots by scanning the X-ray film and analyzing the 
density of the bands using Scion Image (version 4.0.2). These experiments were repeated three times.  

 
2.6. Erk1/Erk2 phosphorylation  

The activities of Erk1/Erk2 before and after chronic-alcohol exposure (100 mM, 2 days) were measured 
using anti-phospho MAP kinase ((1:1000), Upstate Biotechnology, Lake Placid, NY) as previously 
described (Pecherskaya & Solem, 2000). Briefly, cell lysates from H9c2 cells exposed to 100 mM ethanol 
(2 days) and control cells were exposed to IGF1 (20 ng/ml) for 0 min, 5 min, 15 min, 30 min, and 60 min 
at 37ºC. Samples (50 µg) were run by SDS-PAGE (12% acrylamide gel). Proteins were standardized using 
anti-MAP kinase ((1:500), Upstate Biotechnology). These experiments were repeated three times.  

2.7. Protein assay  
This assay was performed according to the manufacturer’s instructions using the BioRad protein assay 

(detergent-compatible).  

2.8. Number of viable cells and cell growth rates  
Cell growth and viability were determined by measuring the growth rates using a hemocytometer and 

counting for viable cells. In brief, H9c2 cells were plated in 12-well dishes at a density of 10,000 
cells/well in DMEM + 10% FBS for 3 h. After the cells attached, the serum was reduced to 1%. Cells were 
exposed to ethanol (100 mM) in the presence/absence of IGF1 (20 ng/ml) as well as the control DMEM 
media, and the media was changed daily. Cell monolayers were isolated by trypsinization after 0, 2, and 4 
days, rinsed once with PBS and counted using a hemocytometer (Sigma Corp., St. Louis, MO). The 
percentage of viable cells was determined by recording the number of cells that excluded trypan blue 
(0.4% solution) dye. The cells were photographed using an Olympus SC35 camera attached to an 
Olympus CK40 microscope.  

2.9. MTS metabolism in the presence of siRNA to PKC alpha, delta, and epsilon  
In addition to measuring cell viability using trypan blue exclusion, we measured the formation of 

formazan at 490 nm using the CellTiter 96 Aqueous One assay (Promega, Madison, WI). Approximately 
10,000 cells/well were plated using 12-well polystyrene tissue culture plates. Next, the cells were 
transfected with siRNA to PKC alpha, delta, or epsilon (100 nM each) or with the nontargeting siRNA 
control (100 nM) or mock transfected (no siRNA but with the TransIT transfection reagent) as previously 
described (Maniar et al., 2005). Next, the cells were incubated for 48 h in serum-free DMEM + antibiotics, 
DMEM + IGF1 (20 ng/ ml) + antibiotics, DMEM + 100 mM ethanol + antibiotics, or DMEM + 100 mM 
ethanol + IGF1 (20 ng/ml) + antibiotics. After this transfection period, the cells were incubated in 
incubation buffer (121 mM NaCl, 10 mM HEPES, 5 mM NaHCO3, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 
mM MgSO4, 0.125 mM CaCl2, 10 mM glucose at pH 7.4) for 1 h. The cells were exposed to the MTS 
reagent (Promega Corp., 1:10 dilution) as described in the CellTiter 96 Aqueous One solution cell 
proliferation assay protocol. This is a colorimetric method that measures MTS (3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfonphenyl)2H-tetrazolium) bioreduced by cells into a formazan 
product that is soluble in tissue culture medium and can be measured at 490 nm. Increase in absorbance at 
490 nm is an indicator of the number of living cells present in culture. Theses experiments were repeated 
five times and statistical significance was determined by ANOVA variance analyses.  
 
2.10. Statistics  

Results are expressed as the mean ± S.E.M for each experimental condition. Analyses with P < 0.05 
were considered statistically significant using ANOVA variance analysis (Scheffe’s multiple comparisons 



test). Statistical analyses of the PKC isoenzymes expression levels in whole cell lysates were done using 
the Student’s t-test.   

 
 
3.  Results  

Fig. 1a is an illustration of a western experiment measuring PKC alpha, delta, and epsilon total protein 
levels after 4 days of alcohol exposure (100 mM) using whole cell lysates of H9c2 cells. Although PKC 
alpha was not affected by alcohol, there was a statistically significant increase in PKC delta (58% ± 7% 
above the control) and a statistically significant increase in PKC epsilon (59% ± 7% above the control) in 
the alcohol-exposed cells. Graph 1a summarizes the results of three separate experiments. In addition, we 
measured PKC alpha, delta, and epsilon in whole cell lysates after 2 and 6 days. In 2 separate experiments, 
it is concluded that after 2 days exposure there was an increase in PKC delta (44% ± 9% above the 
control) and epsilon expression (70% ± 4% above the control). After 6 days alcohol exposure, there was a 
continued increase for both PKC delta (50% ± 6% above the control) and PKC epsilon (71% ± 4% above 
the control). No change was found for PKC alpha. Next, we examined the distribution of PKC alpha, delta, 
and epsilon by fractionating the cell lysates into cytosolic (cyto) and membranal (mem) fractions (Fig. 1b) 
before and after exposure to alcohol (100 mM). Although alcohol did not alter the distribution of PKC 
alpha (Fig. 1c), there was statistically significant increase in the membranal levels of PKC delta 
(mem/cyto ratio = 2.06 ± .0.04 in the alcohol, 0.67 ± 0.08 in the control, results of three separate 
experiments), as well as significant increase in the membranal levels of PKC epsilon 0.9 (mem/cyto ratio = 
1.06 ± 0.02 in the alcohol, 0.78 ± 0.09 in the control, results of three separate experiments).  These results 
may indicate that alcohol increases the basal activity of these kinases, which is in agreement with other 
reports using adult heart cells (Miyamae et al., 1998; Solem et al., 2000; Zhou et al., 2002). 

 
Previously, we have shown that in adult rats chronically exposed to high levels of alcohol, there is a 

60% increase in basal IGF1 receptor tyrosine phosphorylation and a 27% reduction in IGF1-stimulated 
IGF1 receptor activity in the isolated cardiomyocytes (Pecherskaya et al., 2002). Fig. 2 illustrates the rate 
of activation of the IGF1 receptor after chronic-alcohol exposure (100 mM, 2 days) in H9c2 cells. 
Exposure to IGF1 (20 ng/ml for 0, 5, 15, 30, and 60 min) activated the IGF1 receptor in both the control 
and alcohol-exposed cells, but the rate of activation was reduced in the alcohol samples (Graph 2). In 
addition, there was a detectable increase in basal receptor tyrosine kinase activity in the alcohol-exposed 
cells in all of the samples examined (three repeat experiments, normalized intensity of control = 0.16, 
alcohol = 0.30). The rate of phosphorylation for the control was 2.5% per minute and for the alcohol-
exposed cells it was 1.8% per minute, which represents a 28% decrease in IGF1R activation rate in the 
alcohol-exposed culture. In two separate experiments, acute exposure to alcohol (100 mM, 10 min) 
completely blocked IGF1 R activation by IGF1 (20 ng/ml, 10 min), but did not increase the basal IGF1R 
activity (data not shown). This result is similar to what has been reported in other laboratories using 
various cell lines (Resnicoff et al., 1993, 1994). 
 

 Fig. 3 is a western experiment illustrating Erk1/Erk2 phosphorylation after IGF1 stimulation in control 
and alcohol-exposed H9c2 cells (100 mM, 2 days). Similar to the IGF1 receptor activation time course, the 
peak time point for Erk1/Erk2 activation was between 15 min and 30 min exposure to IGF1, and this 
began to decline after 60 min. However, in the alcohol-exposed cells, there was a significant inhibition of 
the peak (only 68% ± 9% on the control for Erk1 (44 kD); only 71% ± 4% for Erk2 (42 kD)), and the peak 
was increased to the 15 min time point in the alcohol-exposed cells.  
 
Fig. 4 illustrates the effects of IGF1 and ethanol exposure on cell growth and viability of H9c2 cells. Cells 
were grown in DMEM + 1.0% serum in the presence of ethanol (100 mM) and IGF1 (20 ng/ml) and 
photographed after 4 days (Fig. 4a). IGF1 increased cell proliferation over time. After 4 days in culture, 



IGF1 increased the cell number from 37,064 (±7,613) to 53,444 (±14,418). Alcohol exposure blocked this 
increase in cell growth to 38,138 (±9,923). These effects are graphically summarized in the corresponding 
graph (Fig. 4b). Fig. 4c illustrates the viability of these cells after 2 and 4 days of ethanol and IGF1 
exposure using trypan blue exclusion assay. The reduced cell viability that was observed in the alcohol-
exposed samples was determined to be statistically significant compared to the IGF1-treated samples as 
determined by Scheffe’s multiple comparisons test (P < 0.05).  
 
Next, we measured the number of viable H9c2 cells after serum withdrawal using the CellTiter 96 
Aqueous Non-Radioactive Cell Proliferation Assay. This assay was used to measure the effects of ethanol 
on IGF1’s cell survival activity, and how PKC delta or epsilon may be involved. First, we determined 
using western experiments that after 2 days exposure to siRNA against PKC alpha (100 nM), PKC delta 
(100 nM), or PKC epsilon (100 nM) expression there was a 90% reduction in the expression of the 
corresponding protein in two separate experiments. No change in the level of beta-actin was found after 2 
days exposure to siRNA delta (100 nM), siRNA epsilon (100 nM), or the scrambled siR-NA sequence 
(100 nM). No change in the level of IGF1R was found after 2 days exposure to 100 nM siRNA alpha 
(Maniar et al., 2005). In addition, no changes in the levels of expression of PKC alpha, delta, or epsilon 
were found after 2 days exposure to the nontargeting siRNA sequence (100 nM). After determining the 
effectiveness of these siRNA sequences, we proceeded to evaluate the alcohol response in cell viability 
assays. Formazan formation was measured at 490 nm after 2 h incubation. These experiments were 
repeated 5 times. Fig. 4d is a graph illustrating the effects of siRNA to block PKC alpha, delta, and epsilon 
expression on formazan formation in serum-depleted cells exposed to IGF1 (20 ng/ml for 2 days), alcohol 
(100 mM, 2 days), or both IGF1 and alcohol. The absorbance was first normalized to the mock-transfected 
control (no IGF, alcohol exposure) response. In the mock-transfected cells, there was a 13% increase in 
MTS metabolism after 48 h of IGF1 exposure compared to control media (DMEM alone). This increase 
was completely blocked in cells treated with siR-NA to PKC alpha (89% of the mock-transfected control). 
There was no significant change in the IGF1 response in cells treated with siRNA to PKC delta or epsilon. 
This indicates that PKC alpha is required for IGF1’s protective effects against cell death due to serum 
depletion. In mock-transfected cells, there was an 18% decrease in MTS metabolism after alcohol 
exposure compared to the control. This decrease was completely blocked in cells treated with siRNA to 
PKC delta (108% of the mock-transfected control). There was no significant recovery of the alcohol 
response in cells treated with siRNA to PKC alpha or epsilon. This indicates that PKC delta is involved in 
the suppressive effects of alcohol on cell viability. Similarly, PKC delta was also required for the 
inhibitory effects of alcohol in cells exposed both to IGF1 and alcohol. In mock-transfected cells, there 
was a 5% decrease in MTS metabolism after IGF1 + alcohol exposure compared to the control. This 
suppressive effect was completely recovered after treatment with siRNA to PKC delta (111% of the mock-
transfected control). No significant change was found in cells treated with siRNA to PKC alpha or epsilon. 
Based on these results, it can be concluded that alcohol blocks IGF1’s protective effects on cell viability, 
and that PKC delta is required for the inhibitory effects of alcohol. 
 
    Next, we examined the effects of IGF1 and alcohol on structural proteins involved in cardiomyocytes 
development (see Fig. 5). IGF1 has been shown to be a key growth factor in cardiomyocytes hypertrophy 
and protein synthesis (Foncea et al., 1997). The levels of expression of the IGF1 receptor (beta subunit), 
beta-actin, troponin C, and myosin light chain 2 were examined in H9c2 cells after chronic-alcohol 
exposure (100 mM, 4 days), chronic IGF1 exposure (20 ng/ml, 4 days), or simultaneous exposure to both 
IGF1 and alcohol. Although chronic-alcohol exposure did not significantly affect the expression of the 
IGF1 receptor (beta subunit), beta-actin, or troponin C, it significantly decreased the expression of the 
myosin light chain protein as determined by Scheffe’s multiple comparisons test. IGF1 slightly increased 
the expression of these proteins (29% above the control), however, alcohol reduced its expression to 62% 
± 6% of the control, and this effect was determined to be statistically significant by Scheffe’s multiple 
comparisons test. Therefore, chronic-alcohol exposure influences the expression of a key structural protein 
that is regulated during IGF1-induced hypertrophic growth. Also, in the alcohol + IGF1 samples, there was 



a statistically significant reduction (65% ± 9% of the control). From these results, it can be gleaned that 
IGF1 modestly increases the myosin light chain 2-protein expression, and that alcohol reduces its 
expression in the presence or absence of IGF1.  
 

 
 

 

 

  
Fig. 1. PKC alpha, delta, and epsilon expression in H9c2 before and after exposure to 100 
mM EtOH for 4 days (a). Cells were cultured in DMEM + 10% FBS, antibiotics and the 
media was changed daily. In the EtOH treated cells, there was a 50% increase in PKC 
delta as well as a 60% increase in PKC epsilon. No change was observed for PKC alpha 
in these experiments. These experiments were repeated three times. Graph (a) illustrates 
the summarized results of these experiments. * indicates statistically significant 
differences from the control (no alcohol treatment, P < 0.05) in two-sided paired t-tests. 
In addition, experiments were performed to examine the cytosolic and membranal levels 
of these isoenzymes in order to determine if EtOH exposure promotes the translocation of 
these proteins to the membrane. (b) illustrates the results of fractionating PKC alpha, 
PKC delta and PKC epsilon. (c) In three separate experiments, it was determined that 100 
mM EtOH causes a change in the membranal/cytosolic ratio for PKC delta from 0.67 
(±0.008) to 2.06 (±0.004) and for PKC epsilon from 0.78 (±0.009) to 1.06 (±0.002). This 
suggests that EtOH promotes the translocation of PKC delta and epsilon, and that these 
isoenzymes may have altered activity due to EtOH treatment in H9c2 cells. Statistical 



analysis was performed using ANOVA variance analysis (* indicates statistically 
significant difference from the control (P <! 0.05)).  

 
 
 

 

 
 

  
Fig. 2. Using the rat embryonic cardiac cell line, H9c2, it was demonstrated that exposure 
to 100 mM EtOH for 2 days resulted in a decrease in the rate of IGF1R activation. 
Cardiomyocytes were treated with IGF1 (20 ng/ml) for 0 min, 5 min, 15 min, 30 min, and 
60 min after exposure to EtOH. (1) 0 min, (2) 5 min, (3) 15 min, (4) 30 min, (5) 60 min 
(6) EtOH-exposure, 0 min (7) EtOH-exposure, 5 min (8) EtOH-exposure, 15 min (9) 
EtOH-exposure, 30 min (10) EtOH-exposure, 60 min. This figure represents a Western 
blotting experiment. This blot was stripped and reprobed with IGF1R beta antibody 
(Santa Cruz) to standardize the experiment. The corresponding graph summarizes the 
results of three separate experiments. The phosphorylation levels were normalized to the 
total protein levels in each experiment in order to generate this graph. The solid line (—) 
represents the control (con); the dotted line (- - -) represents alcohol exposure (alc).  

 
 

 
  



  

Fig. 3. Using the rat embryonic cardiac cell line, H9c2, it was demonstrated that exposure 
to 100 mM EtOH for 2 days resulted in a decrease in the rate of Erk1/Erk2 activation. 
Cardiomyocytes were treated with IGF1 (20 ng/ml) for 0 min, 5 min, 15 min, 30 min, and 
60 min after exposure to EtOH. (1) 0 min, (2) 5 min, (3) 15 min, (4) 30 min, (5) 60 min 
(6) EtOH-exposure, 0 min (7) EtOH-exposure, 5 min (8) EtOH-exposure, 15 min (9) 
EtOH-exposure, 30 min (10) EtOH-exposure, 60 min. This figure represents a Western 
blotting experiment. This blot was stripped and reprobed with Erk1/Erk2 antibody 
(Upstate Biotechnology, NY) to standardize the experiment. The corresponding graphs 
summarize the results of three separate experiments. The phosphorylation levels were 
normalized to the total protein levels in each experiment in order to generate these 
graphs. The solid line (—) represents the control (con); the dotted line (- - -) represents 
alcohol exposure (alc).  

 



  

 
 

Fig. 4. The effects of EtOH and IGF1 on cell growth of H9c2 cells are illustrated. Cells 
were grown in DMEM + 1.0% serum in the presence of EtOH (100 mM) and IGF1 (20 
ng/ml) and photographed under phase contrast with an Olympus camera attached to an 
Olympus microscope. (b) graphically illustrates the growth rates of H9c2 cells grown 
under the same conditions (▲ = control), (□ = 100 mM EtOH), (◊ = IGF1), (o = IGF1 + 
100 mM EtOH). (c) illustrates the viability of these cells grown in 1% serum after 48 and 
96 h EtOH and IGF1 exposure using the trypan blue exclusion method. (d) measures 
actively metabolizing cells grown in DMEM (0% serum) by measuring MTS metabolism 
before and after IGF1 (20 ng/ml) and alcohol (100 mM) exposure for 48 h in cells mock 



transfected, transfected with the non-targeting siRNA sequence (100 nM), transfected 
with siRNA alpha (100 nM), siRNA delta (100 nM), or siRNA epsilon. The MTS 
absorbance levels were normalized to the control (no IGF, alcohol). An increase in 
absorbance indicates that there are more actively metabolizing cells. * indicates that there 
is a statistically significant difference in the siRNA delta-treated cells compared to the 
mock and nontargeting siRNA treatment. ** indicates that there is a statistically 
significant difference in the siRNA alpha-treated cells compared to the mock and 
nontargeting siRNA treatment. Statistical significance at the 0.05 significance level was 
determined by ANOVA variance analysis (Scheffe’s multiple comparisons test).  

 
 

 

 
 

Fig. 5. Western analyses demonstrates that in EtOH exposed H9c2 cells (100 mM, 4 
days), there is a reduction in myosin light chain protein by 40%. In addition, EtOH 
exposure reduced myosin light chain protein expression in cells that were also exposed to 
IGF1 (20 ng/ml. 4 days). By itself, IGF1 (20 ng/ml, 4 days), modestly increased myosin 
light chain 2. These results were statistically significant compared to the control as 
indicated by * (P < 0.05 as determined by Scheffe’s multiple comparisons test). No 
change was observed for the IGF1 receptor (beta subunit), beta-actin, or troponin C in 
EtOH-and IGF1-exposed cells compared to the control.  

 
 
 
 



4. Discussion  
Several laboratories, including this laboratory, have reported that alcohol exposure alters PKC 

expression and activity in different cell lines and tissues (Coe et al., 1996; Messing et al., 1991; Miyamae 
et al., 1998; Solem et al., 2000). Therefore, we examined if chronic-alcohol exposure of H9c2 embryonic 
heart cells alters PKC alpha, delta, and epsilon expression and activity. These particular protein kinases are 
highly expressed in the heart (Erdbrugger et al., 1997). A key finding is that regular ethanol consumption 
causes sustained translocation of PKC epsilon in myocytes from rabbits, and this may contribute to the 
cardioprotective effect of ethanol against ischemia-reperfusion injury (Miyamae et al., 1998). Also in 
mice, moderate alcohol consumption induces sustained cardiac protection by activating PKC epsilon and 
Akt (Zhou et al., 2002). In cardiomyocytes from adult rats chronically exposed to alcohol, PKC epsilon 
was also found to be present at higher levels in the membranal fraction, and changes were also found in 
the regulation of the cardiac Ca2+ channel by PKC modulators in these animals (Solem et al., 2000). From 
these findings, it was inferred that alcohol-induced changes in PKC epsilon may be responsible for 
alterations in the cardiac Ca2+ channel. However, we did not test if PKC delta distribution was altered in 
these animals. Other reports demonstrate that the alcohol-induced changes in PKC are also found in 
neuronal cells (Coe et al., 1996; Messing et al., 1991). In PC12 cells, adaptation to alcohol involves 
increased expression of both PKC delta and epsilon (Messing et al., 1991). Ethanol also increases the 
abundance of L-type channels in these cells by at least two mechanisms; one involving increases in mRNA 
encoding the α1C subunit, and the other involving a posttranscriptional mechanism that requires PKC delta 
(Walter et al., 2000). In NG108 cells, ethanol increases the amounts of PKC alpha, delta, and epsilon in 
these cells, and it is believed that the sensitivity of adenosine transport is due to a balance of PKA and 
protein phosphatase activities, which is regulated by PKC (Coe et al., 1996). Therefore, several different 
types of PKC are modulated by alcohol in the heart and in other tissues, and this effect may lead to cellular 
changes that are associated with PKC activity.  
 

In this report, we demonstrate that in H9c2 cells, both PKC delta and PKC epsilon are increased in their 
expression and activity levels after exposure to 100 mM ethanol for 4 days. We suggest that the altered 
expression by one or both of these kinases may play an antagonizing role in the IGF1 signal transduction 
pathway. The increased presence of both PKC delta and epsilon in the membrane may lead to a chronic 
increase in the basal IGF1 receptor activity and a reduction in IGF1-stimulated responses that are normally 
coordinated by PKC alpha. This may also result in changes in the regulation of other IGF1 signaling 
proteins in the cascade, including Erk1/Erk2. Previous studies in other laboratories have demonstrated 
acute ethanol-induced inhibition of the IGF1 receptor signaling, including an inhibitory effect on the IGF1 
receptor tyrosine kinase activity (Resnicoff et al., 1993, 1994; Seiler et al., 2000). This inhibition was 
highly significant in the NIH 3T3 cells, which had a complete blockage of IGF1 receptor activation and 
had no change in IGF1 binding to the receptor with 100 mM ethanol-exposure (Resnicoff et al., 1993). 
However, none of these studies have been performed on heart cells.  
 

Additionally, we show that PKC delta is responsible for the inhibitory effects of alcohol on cell survival 
after serum withdrawal by measuring MTS metabolism. Treatment with siRNA for PKC delta blocked the 
suppressive effects of alcohol and completely restored IGF1’s protective effects even in the presence of 
alcohol. This result supports the recent finding that demonstrates an involvement of PKC delta in apoptosis 
induced by cardiac ischemia and reperfusion injury (Murriel et al., 2004). Also, it was reported that PKC 
delta plays a role in mitochondrial-dependent apoptosis, and its presence in the nucleus may be required 
for its demonstrated role in apoptosis (DeVries et al., 2002). Apoptosis of cardiac myocytes has been 
observed during fetal development of the heart, during injury, and heart failure. Since hearts do not 
replicate in the adult animal, this loss may lead to permanent loss of cardiac function.  
 

Previously, we have shown that in both the adult rat ventricular cardiomyocytes and H9c2 cells, acute 
exposure to IGF1 resulted in activation of the IGF1 receptor’s internal tyrosine kinase, and this was 
completely blocked by the PKC alpha inhibitor, Gö6976 (Maniar et al., 2005). Additionally, RNA 



interference using siRNA-mediated gene silencing of PKC alpha inhibited IGF1 receptor activity and 
almost completely blocked PKC alpha expression. The conclusion of this study was that PKC alpha plays 
an essential role in the IGF1 signaling cascade, including the regulation of its receptor as well as key 
signaling proteins and IGF1-dependent gene transcription. This may be due to PKC alpha having a direct 
effect on the IGF1R activation by IGF1. Recently, it has been determined that over-expression of wild-
type PKC alpha, but not betaII, delta, epsilon, or zeta induced hypertrophic growth of neonatal 
cardiomyocytes. In addition, wild-type PKC alpha was shown to induce extracellular signal-regulated 
kinase1/2 (ERK1/ 2), and dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation (Braz 
et al., 2002). Here, we demonstrate that alcohol exposure reduces IGF1-stimulated Erk1/Erk2 activity. In 
addition, we measured proteins that are expressed during cardiac cell growth and hypertrophy. The results 
from these experiments indicate that IGF1 slightly increased the level of myosin light chain 2, however, 
alcohol reduced the expression of this protein and also blocked IGF1’s effect. Future experiments are in 
progress to uncover the PKC delta-dependent mechanisms that may be associated chronic alcohol’s effects 
in the IGF1-dependent hypertrophic growth response. Alcohol’s effects on cardiac development may be 
linked in some way to changes in myosin light chain expression. Myosin light chain 2 has been found to 
play a function in the maintenance of cardiac contractility and ventricular chamber morphogenesis during 
mammalian cardiogenesis (Chen et al., 1998).  
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