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Implication Statement 

Sevoflurane enhances cardiac preconditioning induced by regular ethanol consumption, an 

effect, mediated in part by PKC and mitochondrial KATP channels. Modulation of NOS 

expression by regular ethanol consumption may also play a role in this enhanced 

cardioprotection. 



Abstract 

Background: Volatile anesthetics and regular ethanol consumption induce cardioprotection 

mimicking ischemic preconditioning. We investigated whether sevoflurane enhances ethanol 

preconditioning and whether inhibition of protein kinase C (PKC) and mitochondrial KATP 

channels attenuated this enhanced cardioprotection. The effects of regular ethanol consumption 

on expression of inducible (iNOS) and endothelial (eNOS) nitric oxide synthase were determined.  

Methods:    Isolated perfused guinea pig hearts underwent 30 min global ischemia and 120 min 

reperfusion (Control:CTL). The ethanol group (EtOH) received 2.5% ethanol in their drinking 

water for 6 weeks. Anesthetic preconditioning was elicited by 10 min exposure to sevoflurane (1 

MAC; 2%) in ethanol (EtOH+SEVO) or non-ethanol (SEVO) hearts. PKC and mitochondrial 

KATP channels were inhibited with chelerythrine (CHE) and 5-hydroxydecanoate (5-HD) 

pretreatment, respectively. Contractile recovery was assessed by monitoring of left ventricular 

developed (LVDP) and end-diastolic (LVEDP) pressures. Infarct size was determined by 

triphenyltetrazolium chloride staining. Expression of iNOS and eNOS were determined by 

Western blot analysis.  

Results: After ischemia-reperfusion, hearts from the EtOH, sevoflurane (SEVO), and 

EtOH+SEVO groups had higher LVDP and lower LVEDP compared with CTL. Infarct size was 

reduced in EtOH and SEVO hearts compared with CTL (27% and 23% vs. 45%, respectively, 

p<0.001). Sevoflurane further reduced infarct size in EtOH hearts (27% vs. 15%, p<0.001). CHE 

and 5-HD abolished cardioprotection in both SEVO and EtOH cardioprotected hearts. iNOS 

expression was reduced and eNOS expression was increased in EtOH hearts.  

Conclusions: Sevoflurane enhances cardiac preconditioning induced by regular EtOH 

consumption. This effect is mediated in part by modulation of PKC and mitochondrial KATP 

channels, and possibly by altered modulation of NOS expression.  
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Introduction  

Volatile anesthetics induce cardiac preconditioning in a manner similar to ischemic 

preconditioning.
1
 Since Kersten et al.

2
, first documented anesthetic preconditioning with 

isoflurane, investigators have sought to elucidate the involved mechanisms mediating this 

cardioprotection. Recently, sevoflurane was shown to confer additional cardioprotection to 

late ischemic preconditioning, mediated via mitochondrial K
ATP

 channels.
3
 These data 

suggests that sevoflurane may enhance cardioprotection in myocardium, which is already 

preconditioned.  

Epidemiological studies have shown that mortality rates for people who regularly 

drink alcohol in moderation are lower than in abstainers, primarily due to decreased fatal 

ischemic heart disease.
4-7

 Further, moderate alcohol consumers have lower mortality from 

myocardial infarction compared with abstainers.
8
 These beneficial cardiac effects may be 

due to the pleiotropic effects of ethanol on lipids
9
, platelets, and fibrinolytic activity.

10,11
 We 

have demonstrated that regular ethanol consumption renders hearts more tolerant to 

ischemia-reperfusion injury, to a degree similar to acute ischemic preconditioning.
12-14

 We 

found this ethanol-induced preconditioning is mediated through myocyte adenosine A1 

receptor
12,13

 and protein kinase C (PKC) activation.
14

 Ethanol and volatile anesthetics-

induced cardiac preconditioning, thus, appear to share common signaling pathways. Guiraud 

et al.
15

, confirmed that the combination of ethanol and ischemic preconditioning were 

synergistic in reducing infarct size.  

We hypothesized that anesthetic preconditioning with sevoflurane would enhance 

ethanol-induced myocardial preconditioning, and that this effect is potentially mediated by 

PKC activation and modulation of mitochondrial K
ATP

 channels.
16

 Both sevoflurane and 
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acute ethanol exposure increase nitric oxide release.
17,18

 Thus, we examined the effect of 

chronic ethanol exposure on the expression of inducible and endothelial nitric oxide 

synthases (iNOS and eNOS).  
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Methods 

This study was conducted in accordance with the Guidelines for Animals Research 

at Osaka Dental University (ODU), and with the approval of the Animal Experiment 

Committee of ODU, Osaka, Japan. Male Hartley guinea pigs were fed Lab Diet (RC4
TM

, 

Oriental Yeast, Tokyo, Japan) and given water ad libitum.   

 

Isolated Heart Perfusion and Measurement of Function 

Animals weighing 650-700g were given heparin (1000 units i.p.), then anesthetized 

with pentobarbital (60 mg/kg i.p). The hearts were excised and immediately arrested in cold 

isosmotic saline containing 20 mmol/L KCl. The aorta was cannulated and the isolated 

hearts perfused at 70 mmHg on a nonrecirculating isovolumic perfused heart apparatus, 

using a Krebs-Henseleit (KH) perfusate (mmol/L): 118 NaCl, 4.0 KCl, 2.52 CaCl2, 24.8 

NaHCO3, 1.7 MgSO4, 1.2 KH2PO4, 11.0 glucose, 0.5 EDTA and 8 units/L insulin. The 

perfusate was insufflated continuously with 95%O2/5%CO2. The hearts were paced at 240 

beats/min using platinum-tipped electrodes connected to a Grass Instruments (Quincy, MA, 

USA) SD-5 stimulus generator. Left ventricular developed pressure (LVDP) was measured 

from a 2.5 French, high-fidelity micromanometer (Nihon-Kohden, Tokyo, Japan) passed 

into a compliant latex balloon inserted into the LV, and recorded on a PowerLab 2/20 Data 

Recording System (ADInstruments, Hayward, Australia). The balloon was connected to a 

Y-adapter with one end used to advance the micromanometer and the other used to fill the 

LV balloon with bubble-free water to an end-diastolic pressure (LVEDP) of 10 mmHg. The 

maximum rate of increase of LV pressure (+dP/dtmax) and the minimum rate of decrease of 

LV pressure (-dP/dtmin) were calculated using Chart
TM

5 (ADInstruments). Coronary flow 
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(CF) was measured by collecting effluent. Global ischemia was achieved by clamping the 

aortic inflow line. Temperature of the heart was continuously monitored by a digital 

thermometer (PTW-100A, Unique Medical, Japan). During ischemia, hearts were 

maintained at 37 °C by enclosure in a water-jacketed air chamber. Warmed perfusate kept in 

the lower part of the chamber saturated the air with humidity and prevented cooling by 

evaporation. 

 

Experimental Protocol 

Animals were assigned to one of 8 groups (n=10 each; Figure 1). Animals were 

initially given 1.25 % ethanol in their drinking water for 1 week and then 2.5 % ethanol for 

6 weeks. Serum ethanol levels at time of sacrifice were measured by gas chromatography 

(Shimadzu, Kyoto, Japan). Liver enzymes were measured to rule out the possible liver tissue 

damage.   

After a 20 min equilibration, baseline LVDP, LVEDP and CF were recorded. All 

hearts were subjected to 30 min of ischemia followed by 120 min of reperfusion. Anesthetic 

preconditioning was elicited by administration of sevoflurane (2%) for 10 min followed by 

10 min washout before ischemia. Sevoflurane was insufflated by passing the 

95%O2/5%CO2 gas mixture through a calibrated vaporizer (ACOMA, Tokyo, Japan). 

Samples of coronary perfusate were collected anaerobically from the aortic cannula for 

measurement of sevoflurane concentration by an organic vapor sensor (OSP, Saitama, 

Japan).  To investigate the role of PKC and mitochondrial K
ATP

 channels activation, their 

inhibitors chelerythrine (CHE) and 5-hydroxydecanoate (5-HD) were administered for 20 

min, starting 10 min before sevoflurane (EtOH+SEVO+CHE, EtOH+SEVO+5HD) or saline 
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vehicle (CTL+CHE, CTL+5HD) administration. Chelerythrine (Alexis-Calbiochemicals, 

Tokyo, Japan) and 5-HD (Sigma Chemicals, St. Louis, MO, USA) were dissolved in 

distilled water, and added to the KH perfusate to a final concentration of 10 µM and 200 

µM, respectively. We performed experiments in the following order: first a CTL, followed 

by ETOH, SEVO, ETOH+SEVO, CTL+CHE, and so forth until the first series of 

experiments were completed. This sequence was repeated a total of ten times.     

 

Determination of Myocardial Infarct Size 

At the end of experiments, the hearts were quickly frozen at –80 °C for 15 min, then 

sliced into 2 mm thick transverse sections from apex to base (6 slices/heart). After removing 

the right ventricle and defrosting, each slice was weighed and incubated at 37 °C with 1% 

triphenyltetrazolium chloride (Sigma Chemicals) in phosphate buffer (pH 7.4) for 10 min 

and then fixed in 10% formalin for at least 5 h to distinguish red stained viable tissue from 

pale unstained necrotic tissue.
19

 Each slice was photographed and the necrotic area was 

determined using Adobe Photoshop
®
 CS (Adobe, CA, USA) and multiplied by the weight of 

the slice, then expressed as a fraction of left ventricle.   

 

Western Blot Analysis 

     Separate experiments were performed (n=4 in each group) to examine iNOS and eNOS 

expression. Myocardial tissue samples were collected before ischemia, and homogenized in 

ice-cold homogenizing buffer containing in mM: 250 sucrose, 20 HEPES (pH 7.5), 10 KCl, 2 

EGTA, 2 MgCl2, 25 NaF, 50 β-glycerophosphate, 1 Na3VO4, 1 PMSF, 1% Triton X and 

protease inhibitor leupeptin (10 µg/ml). The homogenate was centrifuged at 1000g and 4 °C 
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for 5 min. The supernatant was re-centrifuged at 10000g and 4 °C for 15 min. The protein 

concentration was estimated with a Bradford assay. Equivalent amounts (50 µg) of protein 

samples were loaded and separated on a 5-10% SDS-PAGE gradient gel, then electrically 

transferred overnight to a PVDF membrane (Millipore Co., Billerica, USA). After blocking 

with 5% skim milk in Tris-buffered saline containing 0.1% Tween-20 (TBS-T), the 

membranes were incubated for 2 hr at 4 °C in TBS-T containing 5% milk and 1:200 dilution 

of rabbit primary antibody for iNOS and eNOS (H-174 and H-159, Santa Cruz Biotechnology, 

USA). Membranes were incubated with a 1:1000 dilution of horseradish peroxidase–labeled 

anti-rabbit immunoglobulin G (NA 934V, GE Healthcare, UK). The same blot was stripped 

and re-blotted with antibodies to α-tubulin to confirm equal protein loading. Bound antibody 

signals were detected with enhanced chemiluminescence (Pierce Biotechnology, IL, USA) and 

visualized using VersaDoc 5000
®
 Imaging System (Bio-Rad). Quantitative analysis of the 

band densities was performed by Quantity One
®
 software (Bio-Rad).  

 

Statistical Analysis 

All data are expressed as mean±SD. Two-factor repeated-measures analysis of 

variance was used to evaluate differences over time between groups. If differences were 

observed, a Tukey post-hoc test was used to confirm the significance of differences between 

groups. The differences in expressions of iNOS and eNOS were determined by unpaired 

Student’s t test. Power analysis demonstrated a sample size of n=10 hearts per group was 

sufficient. A value of p<0.05 was considered statistically significant. 
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Results 

Of a total of 92, 10 hearts were not used secondary to intractable ventricular 

fibrillation after reperfusion (four in CTL, three in CTL+CHE, two in CTL+5HD and one 

EtOH+SEVO+CHE) and 2 hearts were not used due to aortic rupture. Additional hearts 

were studied until each group had n=10 successful experiments. There was no significant 

difference in body weight among groups. Serum ethanol levels at time of sacrifice was 

2.7±0.5 mmol/L. Ethanol was not detected in the effluent of the 10 EtOH hearts sampled 

after 50 min washout but before ischemia or sevoflurane exposure. There was no difference 

in liver enzymes levels between EtOH and CTL animals. The concentration of sevoflurane 

in the coronary perfusate after 10 min of exposure was 0.36±0.09 mM. Sevoflurane was not 

detected in the effluent during the baseline, ischemic, and reperfusion periods.  

 

Hemodynamics   

Baseline LVDP, +dP/dtmax, -dP/dtmin and CF were similar among the 8 groups. 

Administration of sevoflurane or treatment with CHE and 5-HD did not significantly affect 

LVDP or CF. Recovery of LVDP was greater in EtOH, SEVO, and EtOH+SEVO compared 

with CTL throughout the reperfusion period. Recovery of LVDP in EtOH+SEVO hearts was 

abolished by administration of CHE and 5-HD. Treatment with CHE and 5-HD alone did not 

affect the recovery of LVDP.  LVEDP increased to 600% of baseline in CTL after ischemia-

reperfusion. The increase in LVEDP was significantly less in EtOH, SEVO, and 

EtOH+SEVO compared with CTL hearts during reperfusion period. LVEDP in CHE and 5-

HD groups was similar to that of CTL hearts. Treatment with CHE and 5-HD alone did not 

affect the increased LVEDP.  
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All groups had reduced +dP/dtmax  after reperfusion compared with baseline. 

Recovery of +dP/dtmax was significantly greater in SEVO, EtOH and SEVO+EtOH 

compared with CTL hearts, but not in hearts pretreated with CHE and 5-HD. Changes of -

dP/dtmin during the reperfusion period were similar to those of +dP/dtmax.  There was no 

significant difference in CF among all groups throughout the experiment. This suggests that 

changes in CF could not account for the improved contractile recovery of SEVO or ETOH 

hearts (Table 1). 

 

Myocardial Infarct Size 

Myocardial infarct size in EtOH and SEVO groups was significantly reduced by 

approximately 50% compared with control hearts (EtOH:27±6%, SEVO:23±7% vs. 

CTL:45±11%, p<0.001). The administration of sevoflurane in EtOH hearts decreased infarct 

size compared with EtOH alone (EtOH+SEVO:15±4%, vs. EtOH: 27±6%, p<0.001). 

Myocardial infarct size in EtOH and SEVO hearts pretreatment with CHE and 5-HD was not 

different compared with CTL hearts (EtOH+SEVO+CHE:44±12%, p=0.777, 

EtOH+SEVO+5-HD:45±9%, p=0.852 vs. CTL). Treatment with CHE and 5-HD alone did 

not affect the infarct size compared with the CTL group (p=0.884; 0.355, respectively, vs. 

CTL) (Figure 2).   

 

Western Blot analysis 

  The densities of iNOS and eNOS were normalized against that of CTL. Chronic 

EtOH consumption increased expression of eNOS whereas it reduced expression of iNOS 

compared with the CTL groups (Figure 3). Ethanol-treated and CTL hearts showed similar 
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iNOS and eNOS expression in the presence of CHE and 5-HD with and without sevoflurane 

exposure (data not shown). 
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Discussion 

We found that pretreatment with sevoflurane and regular ethanol consumption 

equally preconditioned hearts against ischemia-reperfusion injury. Furthermore, sevoflurane 

enhanced the cardioprotective effect of regular ethanol consumption resulting in smaller 

infarct size. This protection was abolished by inhibiting PKC or mitochondrial K
ATP

 

channels, suggesting their role in mediating the observed cardiac preconditioning. Finally, 

we found that regular ethanol consumption increased eNOS expression and reduced iNOS 

expression. Our finding that hearts treated with sevoflurane or ethanol showed similar 

improved functional recovery, demonstrated by increased LVDP and lower LVEDP, as well 

as a nearly 50% decrease in infarct size, following ischemia-reperfusion is consistent with 

previous reports.
12,20,21

 We observed that despite a significant reduction of myocardial infarct 

size induced by the combination of ethanol and sevoflurane, compared with either 

preconditioning therapy alone, recovery of LVDP during reperfusion was comparable among 

SEVO, EtOH and SEVO+EtOH hearts. This disparity between the functional recovery and 

infarct size might be explained by myocardial stunning from global ischemia that affected a 

greater area of the LV than that susceptible to infarction.
22,23

   

A new finding of this study was that ethanol-induced preconditioning is enhanced by 

anesthetic-induced preconditioning. A possible mechanism for this effect may be that 

ethanol does not completely activate the signal transduction pathways eliciting 

cardioprotection. We previously demonstrated that exposure to 2.5 % ethanol for 6 weeks 

reduces ischemia-reperfusion injury to the same degree as 5%, 10%, and 20% ethanol for 6 

to 12 weeks.
12

 Thus, the ethanol dose used in the present study should induce the maximum 

ethanol-induced cardiac protection. Similarly, the sevoflurane dose (2%) used in the present 
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study has been previously shown to produce the maximum cardiac protection.
24

 The additive 

preconditioning effect by the combination of sevoflurane and ethanol suggests that there are 

some differences in either their mechanisms of action or degree of signaling activation. 

Opening of K
ATP

 channels is an important step in the signal transduction cascade of 

cardiac protection from both volatile anesthetics
21

 and chronic ethanol exposure.
25

 For 

example, Zaugg et al.
26

, demonstrated that sevoflurane increased mitochondrial flavoprotein 

oxidation, an index of mitochondrial K
ATP

 channel activity, and that this effect was 

completely abolished by chelerythrine (2 µM) in rat cardiomyocytes. Mitochondrial K
ATP

 

channels are activated by NO
27

, a key mediator in late ischemic preconditioning.
28

 Others 

have shown that preconditioning with sevoflurane enhances the increased NO effluent 

induced by bradykinin and nitroprusside in isolated guinea pig hearts.
17

 Moreover, ethanol 

consumption increases serum NO production 30 min after drinking in humans.
29

 Our data 

and prior reports suggest that increased eNOS expression due to chronic ethanol 

consumption could result in increased NO production. This is consistent with a previous 

study demonstrating that ethanol increases NO production through modulation of eNOS 

expression.
18

 Recently, the importance of eNOS in myocardial ischemic protection was 

demonstrated in an eNOS knockout mice model.
30

 Thus, augmentation of mitochondrial 

K
ATP

 channel activity by increased NO with the combination of sevoflurane and chronic 

ethanol consumption might explain the additive cardioprotection in SEVO+EtOH hearts. 

Previous experiments suggest that inflammation plays a role ischemia-reperfusion 

injury.
31

 NO derived from iNOS mediates cardiac dysfunction by inducing production of 

pro-inflammatory cytokines.
32

 Cytokines such as interleukin-1β, interleukin-6, and tumor 

necrosis factor-alpha (TNF-α) are up-regulated rapidly in response to myocardial ischemia.
33
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Sevoflurane has been shown to reduce the production of TNF-α in patients undergoing 

coronary bypass surgery.
34

 Interestingly, a recent study found that the late phase of ethanol’s 

myocardial preconditioning correlated with reduced leukocyte-endothelial cell adhesive 

interactions, suggesting an anti-inflammatory effect.
35

 In the present study, with a 

crystalloid-perfused heart, leukocyte-endothelial cell adhesive interactions, though, is not a 

factor. Nevertheless, EtOH hearts demonstrated reduced iNOS expression before ischemia 

compared with CTL. Thus, regular ethanol consumption could attenuate the inflammatory 

response to myocardial ischemia resulting from increased NO production via iNOS. 

Although iNOS is thought to be absent in myocytes under physiologic conditions, there is 

evidence that iNOS is present in small vessel endothelium, vascular smooth muscle cells, 

and immune cells that infiltrate the heart.
36

  

Recent studies demonstrate that acute (as opposed to chronic) ethanol exposure fails 

to exert a cardioprotection when ethanol is present during ischemia-reperfusion.
37

 Although 

not withdrawn from the drinking water before sacrifice in this study, serum ethanol levels 

were low (2.7±0.5 mmol/L) at the time of sacrifice. Ethanol was washed out prior to 

ischemia using a crystalloid ethanol-free buffer. Ethanol was not detected after 50 min 

perfusion in the effluent. Ethanol freely diffuses in myocytes. Thus, tissue levels of ethanol 

were likely negligible at the time of study.  

  A limitation of the present study is that we did not directly measure PKC levels and 

mitochondrial K
ATP

 channel activity before and during ischemia-reperfusion. The doses of 

CHE and 5-HD used in the present study have been previously found to reduce PKC levels 

and inhibit mitochondrial K
ATP

 channel activity, respectively.
14,38

 Furthermore, we and other 

investigators have previously shown that the same concentrations of CHE and 5-HD inhibit 
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the preconditioning-like effects of ethanol or sevoflurane alone.
14,25,38

 Prolonged ingestion of 

ethanol may lead to changes in heart rate and blood pressure. Although we did not measure 

heart rate or blood pressure prior to sacrifice in this study, a previous study demonstrated 

that feeding 10 % ethanol (a much higher dose) for 40 weeks to guinea pigs did not alter 

hemodynamics compared with control
39

. Finally, animals were not randomized to each study 

group although the order of study was standardized. 

In conclusion, sevoflurane enhances cardiac preconditioning induced by regular 

ethanol consumption. Our findings suggest that PKC and mitochondrial KATP channels play 

a role in mediating this cardioprotection. NOS expression is altered by regular ethanol 

consumption.  
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Table Legend 

Table 1: Data are presented as mean ± SD. LVDP=left ventricular developed pressure; 

LVEDP=left ventricular end-diastolic pressure; CF=coronary flow; +dP/dt
max=maximum 

rate of increase of LV pressure; -dP/dt
min

= maximum rate of increase of LV pressure; 

CTL=control; EtOH=ethanol; SEVO=sevoflurane CHE=chelerythrine; 5-HD=5- 

hydroxydecanoate. *p<0.05 vs. CTL , n=10 for each group  
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                                                       Figure Legends 

 

Figure 1: Schematic illustration of the experimental protocol of this study.  All hearts were 

subjected to 30 min global ischemia followed by 120 min reperfusion. Anesthetic 

preconditioning (APC) was elicited by administration of sevoflurane (2% or 1 MAC) for 10 

min with a 10 min washout period. Ethanol-treated animals received 2.5% ethanol in their 

drinking water for 6 weeks. CTL=control; EtOH=ethanol; SEVO=sevoflurane; 

CHE=chelerythrine, PKC inhibitor; 5-HD=5-hydroxydecanoate, mitochondrial KATP channel 

inhibitor 

 

Figure 2: Infarct size as a percentage of LV in eight groups. Treatment with sevoflurane (1 

MAC) and 2.5 % ethanol for 6 weeks equally reduced infarct size compared with control. 

The combination of sevoflurane and 2.5 % ethanol conferred a further reduction of infarct 

size. This additional cardioprotective effect was abolished by CHE and 5-HD in 

SEVO+EtOH. 5-HD and CHE treatment alone did not affect infarct size. Data are presented 

as mean ± SD. *p<0.001 vs. CTL, #p<0.001 vs. EtOH and SEVO 

 

Figure 3: Western blot analysis of iNOS and eNOS from left ventricular samples before 

ischemia in control and ethanol-treated hearts (n=4 for each group). In ethanol-treated 

hearts, iNOS expression was significantly reduced and eNOS expression was significantly 

increased compared with control. *p<0.05 vs. CTL 
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(CHE or 5HD)

+SEVO/SEVO

-60 -40 -30 30 60 120

LVDP (mmHg)
CTL 113±17 39±7 33±8 26±8
EtOH 104±14 60±13* 56±13* 47±11*
SEVO 101±13 100±12 103±12 61±9* 58±8* 50±8*
EtOH+SEVO 110±16 106±20 110±17 66±8* 61±8* 50±9*
CTL+CHE 109±13 108±15   97±17 26±12 27±12 26±12
EtOH+SEVO+CHE 100±8   99±12   88±18 30±10 29±10 29±9
CTL+5-HD 107±16 108±16 102±17 41±11 39±10 36±10
EtOH+SEVO+5-HD 111±7 112±14 106±14 38±13 35±10 32±8

LVEDP (mmHg)
CTL 10±0 47±13 55±18 60±17
EtOH 10±0 24±21* 25±21* 27±20*
SEVO 10±0 10±3 10±2 24±7* 24±5* 26±7*
EtOH+SEVO 10±0   9±2 10±3 19±6* 20±6* 25±11*
CTL+CHE 10±0 10±3 13±7 52±20 49±23 48±24
EtOH+SEVO+CHE 10±0 10±2 15±13 46±17 50±19 49±20
CTL+5-HD 10±0   7±3   8±4 49±12 53±9 55±10
EtOH+SEVO+5-HD 10±0   8±4 10±4 56±18 58±17 57±19

CF (ml)
CTL 28±7 27±9 28±10 28±11
EtOH 27±4 26±10 26±10 25±11
SEVO 31±7 29±4 27±4 25±7 25±7 24±7
EtOH+SEVO 26±6 30±7 25±5 21±4 20±3 20±3
CTL+CHE 28±8 31±8 26±9 21±7 21±7 20±8
EtOH+SEVO+CHE 28±7 32±8 26±9 20±9 20±9 19±9
CTL+5-HD 29±5 26±6 26±5 28±7 28±7 27±8
EtOH+SEVO+5-HD 27±4 24±4 22±3 22±7 21±7 21±7

+dP/dtmax (mmHg-Es-1)

CTL 1735±310  786±185   674±218 544±168
EtOH 1433±242 1114±197* 1085±212* 925±179*
SEVO 1479±251 1492±212 1529±224 1019±168* 1000±156* 910±124*
EtOH+SEVO 1588±257 1604±285 1623±232 1156±159* 1133±132* 953±162*
CTL+CHE 1566±232 1676±297 1443±349   491±203   490±200 482±197
EtOH+SEVO+CHE 1442±145 1521±205 1368±268   572±176   576±161 537±175
CTL+5-HD 1635±219 1683±203 1656±174   730±212   700±200 660±225
EtOH+SEVO+5-HD 1653±137 1586±276 1485±259   625±113   614±127 564±96

-dP/dtmin (mmHg-Es-1)

CTL -1470±252 -553±141 -483±124 -389±100
EtOH -1197±274 -913±203* -809±190* -709±182*
SEVO -1230±181 -1220±160 -1286±157 -815±120* -771±109* -694±106*
EtOH+SEVO -1318±192 -1261±271 -1344±175 -889±118* -853±114* -699±171*
CTL+CHE -1310±149 -1375±241 -1017±372 -355±144 -367±146 -375±153
EtOH+SEVO+CHE -1321±155 -1254±152 -1081±280 -408±142 -426±139 -413±132
CTL+5-HD -1473±149 -1546±209 -1510±228 -523±136 -486±113 -454±108
EtOH+SEVO+5-HD -1467±151 -1548±251 -1411±265 -524±146 -515±131 -378±356

         

Table 1. Hemodynamic Variables
reperfusion (min)

baseline washout
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