Sheltify

Adam Hecht (Industrial Design)
Thomas Jefferson University, hecht2080@mail.philau.edu

Follow this and additional works at: http://jdc.jefferson.edu/nexusmaximus
Part of the Industrial and Product Design Commons
Let us know how access to this document benefits you

Recommended Citation
Hecht (Industrial Design), Adam, "Sheltify" (2017). Nexus Maximus. 11.
http://jdc.jefferson.edu/nexusmaximus/11

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Nexus Maximus by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
SHELTFIFY
Modular, Collapsible, Community Building, and Mental Health Enhancing Refugee Shelter

ZAATARI, JORDON
• Hot desert climate
• 80,000 refugees
• Established economy
• Water, food, and electricity provided

SHELTER FOR THE VULNERABLE
• Mostly women and children traumatized and from war
• Many injured and handicapped from bombings
• High rates of PTSD, and depression
• Strong reliance on others
• Constant fear of assault

Features Include:
• Longterm durability (materials and arrangement)
• Collapsible for shipping
• Inexpensive and sustainable
• Each grouping of units has secluded inner communal area
• Enables psychological escape from surrounding chaos
• Fosters new relationships, feeling of community, and self reliance through tending of a communal garden
• Enables more self sufficiency
• Gives children a safe space to play, reducing stress on parents

Vacuum formed ABS outer shell for its durable, lightweight, impact resistant qualities
Tinted plexi-glass window enables efficient lighting during day. Additional opaque cover can be added in hot weather to reduce heat and removed in colder weather to trap heat
Mycelium lining on both floor and ceiling due to its lightweight, heat resistant, sound dampening, and water and mold resistant qualities
Spring assisted structural supports enable easier opening and closing of units
Polyvinyl chloride membrane is lightweight, flexible, resistant to bacteria growth, and water proof
Recycled plastic extrusions for their durable yet flexible properties, low cost, ease of production, and positive environmental impact.