6-18-2014

Neonatal abstinence syndrome in methadone exposed infants: Role of genetic variability

Andrea L. Fielder
Nursing & Midwifery, Sansom Institute, University of South Australia, Adelaide, SA, Australia

J. K. Coller
University of Adelaide, Adelaide, SA, Australia

M. R. Hutchinson
University of Adelaide, Adelaide, SA, Australia

Ross R. Haslam
Women's & Children's Hospital, Adelaide, SA, Australia

Nona Lu
Thomas Jefferson University, Philadelphia, PA, United States, nona.lu@jefferson.edu

See next page for additional authors

Follow this and additional works at: http://jdc.jefferson.edu/petposters

Part of the Pharmacy and Pharmaceutical Sciences Commons

Let us know how access to this document benefits you

Recommended Citation
http://jdc.jefferson.edu/petposters/3
Authors

This poster is available at Jefferson Digital Commons: http://jdc.jefferson.edu/petposters/3
Neonatal abstinence syndrome (NAS) in methadone exposed infants: role of genetic variability

1. Nursing & Midwifery, Sansom Institute, University of South Australia, Adelaide, Australia.
2. School of Medical Sciences, University of Adelaide, Adelaide, Australia.
3. Women's & Children's Hospital, Adelaide, Australia.
4. Thomas Jefferson University, Philadelphia, United States
5. Mt Sinai School of Medicine, New York, United States.

Opioid dependence in pregnancy

- Methadone (MD):
 - Currently the only FDA/TGA “approved” opioid substitution therapy during pregnancy.
 - Advantages: ↓ obstetric complications, ↑ prenatal care, ↑ maternal nutrition, ↓ drug seeking environment.
 - Disadvantages: Neonatal Abstinence Syndrome (NAS).

Understanding opioid dependence

- ↓ understanding of opioid dependence in adults.
- ↑ inter-individual variability in response to MD:
 - Impact of genetic variability.
 - Drug targets/receptors (OPRM1)?
 - Drug transporters (ABCB1)?
 - Metabolising enzymes (CYP2D6)?
- Immune response (IL-1β)?
 - Glial activation → release of immune mediators incl. proinflammatory cytokines interleukin-1 beta (IL-1β), creates proinflammatory environment → neuronal excitability to ↑ opioid reward and dependence.

Genetic variability and NAS

- Despite ↑ knowledge on the impact of genetic variability on MD response, the underlying mechanisms explaining NAS largely undefined:
 - ? genetic variability.
- By assessing genetic variability in mothers and infants, the association between genetic variability and NAS could be used as a predictive tool:
 - o = ↑ management of the infant by potentially ↓ morphine administered to control NAS.

Aim

- Investigate the impact of IL-1B -31 and OPRM1 A118G genetic variability on NAS incidence (treatment required) & severity (dose of morphine).