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SUMMARY 

Phosphorylation of endogenous inhibitor proteins specific for type-1 Ser/Thr 

phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and 

phosphatase activities. Phosphorylation of Thr38 in the inhibitor protein CPI-17 

transduces G-protein-mediated signaling into a > 1000-fold increase of inhibitory 

potency toward myosin phosphatase. We show here the solution NMR structure of 

phospho-T38-CPI-17 with r. m. s. d. of 0.36 ± 0.06 Å for the backbone secondary 

structure, which reveals how phosphorylation triggers a conformational change and 

exposes the PP1 inhibitory surface.  This active conformation is stabilized by the 

formation of a hydrophobic core of intercalated side-chains, which is not formed in a 

phospho-mimetic D38 mutant form of CPI-17. Thus, the profound increase in potency 

of CPI-17 arises from phosphorylation, conformational change and hydrophobic 

stabilization of a rigid structure that poses the phosphorylated residue on the protein 

surface and restricts its hydrolysis by myosin phosphatase. Our results provide 

structural insights into transduction of kinase signals by PP1 inhibitor proteins. 
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INTRODUCTION 

Type-1 Ser/Thr phosphatase (PP1) is conserved among all eukaryotes and is 

responsible for regulation of a plethora of cellular functions,.  A specific multisubunit form 

of PP1, called myosin phosphatase, is a ubiquitous enzyme that functions in various 

signaling circuits (Hartshorne, et al, 2004). Myosin phosphatase is a trimeric holoenzyme 

consisting of a catalytic subunit of PP1 and a myosin targeting MYPT1 subunit with an 

accessory M21 subunit (Hartshorne, et al, 2004). The N-terminal ankyrin-repeat domain of 

MYPT1, including a PP1 binding site, functions as an allosteric regulator of the catalytic 

subunit.  On the other hand, C-terminal domain is phosphorylated by multiple kinases, 

ROCK, ZIPK and ILK, that is involved in the inhibition of myosin phosphatase in response 

to G-protein activation (Trinkle-Mulcahy, et al, 1995). In smooth muscle, agonist-induced 

activation of G-protein enhances the activity of Ca2+/calmodulin-dependent myosin 

light-chain kinase, and coincidently suppresses the activity of myosin phosphatase via the 

activation of kinases ROCK and PKC (Kitazawa, et al, 1991; Somlyo, et al, 2003).  The 

inhibition of myosin phosphatase is required for robust and sustained myosin 

phosphorylation in response to agonist stimuli (Dimopoulos, et al, 2007). The inhibition of 

myosin phosphatase is also involved in regulation of cytoskeletal reorganization during cell 

migration (Kawano, et al, 1999) and cytokinesis (Matsumura, 2005).   

In addition to direct phosphorylation of the MYPT1 subunit myosin phosphatase is 

regulated by a specific inhibitor protein, CPI-17, that is predominantly expressed in smooth 

muscles and neurons (Eto, et al, 1997; Eto, et al, 2002; Woodsome, et al, 2001). 

Phosphorylation of CPI-17 at Thr38 is necessary and sufficient to convert the protein into a 

potent inhibitor of myosin phosphatase (Eto, et al, 1995; Kitazawa, et al, 2000; Koyama, et al, 

2000; Pang, et al, 2005).  Other PP1 holoenzymes in cells are insensitive to 

phospho-CPI-17 (P-CPI-17) (Senba, et al, 1999).  One example is a glycogen-bound form 

of PP1 holoenzyme, which binds P-T38-CPI-17 but dephosphorylates it .  In contrast, with 
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myosin phosphatase there is binding of P-T38-CPI-17, but the hydrolysis step is arrested, 

resulting in formation of inactive complex.  Thus, P-T38-CPI-17 can be a substrate or an 

inhibitor of different forms of PP1, depending on regulatory subunits (Eto, et al, 2004). In 

smooth muscle cells, rapid phosphorylation of CPI-17 at Thr38 occurs in parallel to 

phosphorylation of myosin via activation of Ca2+-dependent PKC, followed by prolonged 

phosphorylation, maintained via RhoA/ROCK signal (Dimopoulos, et al, 2007). 

Phosphorylation of CPI-17 is reduced through a cGMP-dependent pathway in response to 

nitric oxide release, in parallel to muscle relaxation (Bonnevier, et al, 2004; Etter, et al, 2001). 

Thus, in smooth muscles phosphorylation of CPI-17 functions to inhibit myosin phosphatase 

and thereby promote myosin phosphorylation and contraction. 

 

Fluctuation in the expression and the phosphorylation levels of CPI-17 is associated 

with smooth muscle-related diseases, such as intestinal bowel disease (Ohama, et al, 2003), 

asthma (Sakai, et al, 2005), pulmonary hypertension (Dakshinamurti, et al, 2005), and 

diabetic dysfunction of smooth muscle (Chang, et al, 2006; Xie, et al, 2006). In Purkinje 

neurons, CPI-17 is essential to maintain G-protein-mediated AMPA receptor internalization 

and generate long-term synaptic depression in response to stimulation(Eto, et al, 2002). In 

addition, the upregulation of CPI-17 was found in tumor cells, which causes 

hyperphosphorylation of tumor suppressor merlin (NF2) and transformation of cells (Jin, et 

al, 2006). Therefore, CPI-17 poses a potential target of pharmaceutical approaches for these 

diseases.  

Determination of the three-dimensional (3D) structure of unphospho-CPI-17 by 

NMR revealed a 2x2 pairing of a four-helix bundle, forming a unique V-shape structure 

(Ohki, et al, 2001).   The phosphorylation site, Thr38, is located in a loop structure (P-loop) 

at the N-terminus, sitting in a cavity between helices (Ohki, et al, 2001). When Thr38 is 

substituted for Asp to mimic phosphorylation, the P-loop becomes exposed to solvent, 
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suggesting a conformational change of the P-loop upon activation of CPI-17 (Ohki, et al, 

2003).  However, structural analysis of the basis for enhanced inhibition of myosin 

phosphatase by CPI-17 was limited because the D38-form of CPI-17 is significantly less 

potent, compared with phospho (P)-T38-CPI-17 (Ohki, et al, 2003). We concluded that 

despite a conformational change in the D38 protein, this structure was not the same as that of 

the highly potent and fully activated P-T38-CPI-17.  Therefore we prepared CPI-17 protein 

fully phosphorylated with PKC and determined the 3D structure using multidimensional 

NMR techniques.  The 3D structure indicates a global conformational switch upon 

phosphorylation of CPI-17 at Thr38, shows differences relative to the phospho-mimetic D38 

structure and exposes novel interactions between P-CPI-17 and myosin phosphatase. 
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RESULTS  

Phosphorylation of CPI-17(22-120) 

The inhibitory domain of CPI-17 comprised of residues 22-120 is conserved among 

the CPI-17 family of PP1 inhibitor proteins, such as PHI-1, KEPI and GBPI (Figure 1A).  

The recombinant 13C/15N-labeled 22-120 protein was phosphorylated to completion by 

extended incubation with purified PKC (Supplementary Figure S1), and subjected to a series 

of multidimensional NMR experiments (Supplementary Figure S2, and S3). Figure 1B shows 

part of the 1H-15N HSQC spectrum of 13C/15N-labeled P-CPI-17 (red) superimposed on the 

previous spectra of unphosphorylated (gray) and Asp-substituted D38-CPI-17 (blue) 

(22-120) proteins (Ohki, et al, 2003). The backbone amide resonance of Thr38 is shifted to 

downfield upon phosphorylation (Figure 1B).  This phosphorylation-dependent downfield 

shift is consistent with a previous report on phosphorylation of the tau protein (Landrieu, et 

al, 2006) .  In addition, the phosphorylation at Thr38 induces a relatively large chemical 

shift change of amide resonances from the neighbor residues in the phosphorylation loop 

(P-loop), such as V39 and Y41.  The chemical shifts of these residues in P-T38-CPI-17 did 

not match those in the D38-form of CPI-17 (blue).  This suggests that the conformation of 

the phosphorylated protein differs from the conformation of the protein with a 

“phosphomimetic” mutation to introduce an Asp at the same residue. Overall the profiles of 

HSQC spectra in the full-scale chart (Supplementary Figure S2) are similar in all three forms 

of CPI-17 examined by NMR. Furthermore, there was no evidence of multiple conformation 

states in the spectrum of P-T38-CPI-17. 

 

Structure of phospho-T38-CPI-17 

The 3D structure of P- T38-CPI-17 was calculated using 1,518 structural restraints 

obtained from the NMR data (Supplementary Figure S3), summarized in Supplementary 

Table S1. Overall the topology of P-T38-CPI-17 is composed of a long loop with the 
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phosphorylation site, Thr38, followed by a left-handed 4-helix bundle (termed A to D from 

the N-terminus) (Figure 2). The four helices are arranged in an anti-parallel orientation. The 

structure of residues 22 to 31 at the N terminus of the truncated protein was in a flexible 

conformation, seen by lack of long-range NOE. This conclusion is supported by very small 

heteronuclear 15N-{1H} NOE values (Supplementary Figure S4) and the fast H-D exchange 

rates (data not shown) of these10 residues.  In contrast, the conserved region of residues 32 

to 40 with phospho-Thr38 (P-Thr38), termed the P-loop, converged into a single 

conformation with a backbone r.m.s.d. of 1.18 + 0.27 Å, with relatively higher heteronuclear 

15N-{1H} NOE values (Supplementary Figure S4, red). The P-Thr38 side chain is exposed to 

solvent, and the P-loop lays on the surface of the four-helix bundle. The side chains of Val37 

and Val39 face into the protein, making contacts with Ile56 and Tyr41/Val52/Ile77, 

respectively. These two Val residues function to anchor the P-loop to the four-helix bundle by 

hydrophobic interactions of the aliphatic side chains.   

 

Comparison between unphospho-, phospho-, and Asp-substituted CPI-17 structures 

Comparison of P-T38-CPI-17 structure with that in the unphospho-form (U-CPI-17) 

and D38-form (Ohki, et al, 2003) reveals global conformational change in response to 

phosphorylation (Figure 3) (Table S2). The most remarkable difference is the position of the 

key residue, Thr38, whose side chain comes out of a cavity between A and B helices upon 

phosphorylation. When structures are superimposed using the A/D helix pair for alignment 

(Figure 3, bottom), the phosphorylation at Thr38 is seen to trigger a swinging motion of the 

P-loop around the A-helix, resulting in 8.1 Å movement of residue 38. The swing of the 

P-loop is coupled with a right-handed rotation of A-helix by 29 degrees, along with a 

complementary rotation of the D-helix. These rotations expose new surfaces of both helices 

that become available for binding to myosin phosphatase.  Similar to U-CPI-17, the A/D 

helix-pair in P-T38-CPI-17 is stabilized by hydrophobic residues as shown in Figure 3. In 
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concert with motion of the A-helix, the B/C helix-pair becomes close to the A/D helix-pair. 

This aligns the four helices into an anti-parallel bundle (Table S3).  The average distance 

between the four helices becomes 15 % shorter (Table S3), and the compaction of the 

structure causes the overall surface area of the protein to be reduced from 7,221 to 6,374 Å2. 

Substitution of T38 to Asp results in the P-loop becoming exposed to solvent, consistent with 

changes in P-form.  However, the re-alignment of four helices is not evident in the D38 

protein relative to the U-CPI-17, and the overall structure remains V-shape (Figure 3, center). 

 

Formation of hydrophobic core 

The phosphorylation-induced compression of the four helices gathers Tyr41 in the 

P-loop, Leu46/Val52 in A-helix, and Ile77/Leu80/Leu81 in B-helix into a stable hydrophobic 

core (Figure 4A). For example, the distance between Val 52 and Ile77 Cα atoms shortens 

from 19.0 to 6.4 Å. Such hydrophobic clustering likely functions to stabilize the 

anti-parallel-aligned four-helix bundle of P-CPI-17. This stabilization reflects in higher 

heteronuclear NOE value of P-T38-CPI-17, compared with U- and D38-CPI-17 

(Supplementary Figure S3).  We assayed thermal stabilities of U-and P-T38-CPI-17, and 

indeed, phosphorylation increased the mean melting temperature Tm from 59 °C (U-CPI-17) 

to 64 °C (P-T38-CPI-17), showing an effect on the thermodynamic stability of the protein.  

We attribute this change to the hydrophobic core in P-T38-CPI-17 (Figure 4B).  The 

hydrophobic core is not well-defined in the D38-CPI-17 structure (Figure 4A, middle). 

Consistent with this observation, we found the thermal stability of D38-CPI-17 was lower 

(Tm = 54 °C), compared to P-T38-CPI-17 (Figure 4B).  Overall, the structure and thermal 

stability are consistent with the idea that phosphorylation but not mutation to an acidic 

residue triggers condensation of the protein into a rigid structure, with a surface topography 

distinctly different from the unphosphorylated protein.   
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The hydrophobic core of P-T38-CPI-17 

We examined effects of mutation of residues in the hydrophobic core on the 

inhibition of purified myosin phosphatase, using wild type CPI-17 and Y41A, W55A, 

D73A/E74A, and I77A/L80A/L81A mutants. All these recombinant CPI-17, were equally 

phosphorylated by purified PKC, suggesting that the mutations do not impair reaction with 

Thr38 (Table S4). However, the phosphorylated mutant CPI-17 showed different inhibitory 

potency (Figure 5A). Mutation at either Trp55 or Asp73/Glu74 caused moderate reduction in 

inhibitory potency, and the triple mutation of Ile77/Leu80/Leu81 showed greatly reduced 

potency, to an IC50 of around 100 nM. Our previous data showed that an Ala-mutation at 

Tyr41 (Y41A) eliminated the inhibitory activity of CPI-17 (Hayashi, et al, 2001). Thermal 

stability of the Y41A protein (Tm = 56 °C) was lower than that of wild type (Figure 4B, 

cross). We concluded that the hydrophobic clustering of Y41 and Ile77/Leu80/Leu81 was 

required for CPI-17 to act as an inhibitor for myosin phosphatase. The function of CPI-17 

mutated in the hydrophobic core was examined using beta-escin-permeabilized vas deferens 

smooth muscle tissues (Figure 5B).  Because CPI-17 is present at only negligible levels in 

vas deferens smooth muscle, phorbol ester (PDBu, a PKC activator) stimulation does not 

induce force production at limiting Ca2+ concentrations (Figure 5B, arrowhead) (Woodsome, 

et al, 2001).  Doping of recombinant U-CPI-17 into a permeabilized vas deferens smooth 

muscle strip restored PDBu-induced force production at clamped Ca2+ concentration, 

suggesting that PKC induced the phosphorylation of CPI-17 causing inhibition of the 

endogenous myosin phosphatase in the strip (Figure 5B, double arrowhead). The 

triple-mutant CPI-17, I77A/L80A/L81A or Y41A (Figure 5B), did not induce PKC-mediated 

smooth muscle contraction, suggesting that the formation of hydrophobic core is necessary 

for CPI-17 to inhibit myosin phosphatase in tissues. On the other hand, CPI-17 mutants 

D73A/E74A and W55A supported PDBu-induced force production. The maximum extent 

and the rate of force development were slightly lower with these mutant proteins, compared 
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with wild type -17. We note that D73, E74 and W55 are conserved among CPI-17 from 

various species, so changes in these residues have not survived probably because of the 

changes in properties. .  

 

Modeling of the interaction between P-T38-CPI-17 and myosin phosphatase  

The phospho-pivot computer modeling method was used to examine hypothetical 

docking of P-T38-CPI-17 with myosin phosphatase (Eto, et al, 2004; Matsuzawa, et al, 

2005a; Matsuzawa, et al, 2005b).  The phosphate group of P-T38-CPI-17 was set into the 

active site of PP1δ•MYPT1(1-299) complex (Terrak, et al, 2004), and 186,624 in-silico 

complexes were generated by rotating P-T38-CPI-17 around the phosphorus atom as a pivot. 

Each model complex was scored based on only atomic distances between two proteins.  The 

modeling yields one converged structure of P-CPI-17 on myosin phosphatase (Figure 6A). In 

this complex, the P-loop fits in the active site groove of PP1, from the cavity of 

ankyrin-repeat domain toward the N-terminal alpha-helical segment of MYPT1 (Terrak, et al, 

2004). This model suggests that four Arg side chains in P-loop, Arg 33, 36, 43, and 44, are 

involved in the interaction with myosin phosphatase, in addition to phospho-Thr38. This is 

consistent to our previous results that an Ala mutation of CPI-17 at Arg 43 and Arg 44 

impairs the inhibitory potency over 40 fold (Hayashi, et al, 2001).  Interestingly, this model 

positions Asp5 on N-terminal segment of MYPT1 in close proximity to Arg44 of 

P-T38-CPI-17 (Figure 6A).  Experimental testing of this model using immobilized peptides 

corresponding to MYPT1 segments (1-19) and (24-41) showed weak binding of 

P-T38-CPI-17 to MYPT1(1-19), but not to MYPT1(24-41) (Figure 6B). Thus, the N-terminal 

segment of MYPT1 (1-19) is possibly involved in the interaction with P-CPI-17.   
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DISCUSSION 

From comparison of the structures of the inactive U-CPI-17 and the active 

P-T38-CPI-17 we identify a conformational transition upon phosphorylation of CPI-17 at 

Thr38.  The phosphorylation induces a swing of the P-loop and a formation of the 

hydrophobic core to lock and stabilize a condensed active conformation of P-T38-CPI-17. 

We conclude that this swing-and-lock mechanism of CPI-17 is responsible for potent and 

specific inhibition of myosin phosphatase to switch phosphorylation levels of myosin and 

merlin in response to G-protein activation. All PP1 specific inhibitor proteins are regulated 

by phosphorylation, and five of them are in the CPI-17 family, based on the similarity of the 

sequences including residues in the hydrophobic core identified here by NMR , so these 

results should apply to other CPI-17 family members. On the other hand, phosphorylation of 

another class of PP1 inhibitors, inhibitor-1 and DARPP-32, apparently only induces a minor 

conformational change in the molecule, despite over 1000-fold increase in the inhibitory 

potency (Endo, et al, 1996; Neyroz, et al, 1993).  The phosphorylation-induced 

conformational switch seems to be a unique feature in the CPI-17 family of proteins. 

 

Asp- or Glu-substitution of Ser or Thr is often used for mimicking phosphorylation 

of proteins.  One example is the activation loop of protein kinases. Phosphorylation of 

protein kinases in the activation loop is required for full activity, and it can be mimicked by 

substitution with Asp or Glu (Zhang, et al, 1995).  The phosphate group in the activation 

loop of kinases directly forms salt bridges with Arg residues in N-terminal domain 

(Canagarajah, et al, 1997; Johnson, et al, 1996) and the effectiveness of Glu or Asp suggests 

these residues can form salt bridges with the same Arg. In contrast the phosphate of 

P-T38-CPI-17 is exposed to solvent and interacts instead with the active site of PP1 in 

myosin phosphatase.. Asp-substitution at Thr38 induces a swing of the P-loop, but not the 

same re-alignment of helices or formation of the hydrophobic core in the protein as is formed 
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when T38 is phosphorylated (Ohki, et al, 2003).  The failure of hydrophobic clustering in 

D38-CPI-17 is evidenced by lower thermal stability. Without the hydrophobic core there is a 

100-fold lower inhibitory potency of D38-CPI-17 compared to P-T38-CPI-17.  Thus, the 

negative charge of a carboxyl group is insufficient for completion of the conformational 

switching in CPI-17. This gives an example of where an acidic side chain is not 

phosphomimetic, offering a note of caution to the common practice of using properties of 

mutated proteins to make conclusions about effects of phosphorylation. 

 

Currently, about 150 protein structures with phospho-Thr are listed in PDB database.  

In most cases, the phosphate group is directly tethered to other residues in the same protein 

via salt bridges and/or hydrogen bonds. In this way the phosphate drives formation of a new 

protein conformation that is stabilized by these intramolecular interactions, as seen in 

glycogen phosphorylase-a and protein kinases (Johnson, et al, 1996; Sprang, et al, 1988).  

Another example is the NMR structure of a 44-residue P-Thr peptide mimicking the 

forkhead-associated (FHA) domain of human Ki67 protein in the complex with its receptor, 

the human nucleolar protein hNIHK, where the phosphate functions as a ligand (Byeon, et al, 

2005). Our studies reveal a different mechanism of phosphorylation-induced conformational 

change. The phospho conformation of the CPI-17 P-loop is stabilized without a hydrogen 

bond or salt bridge to the phosphate group from other residues in the protein.  Based on 

heteronuclear NOE data, the P-loop of unphosphorylated CPI-17 is highly flexible and this 

presumably exposes Thr38 to kinases, such as PKC and ROCK. Upon the phosphorylation of 

T38 the side chains of neighboring V37, V39 and Y41 anchor the P-loop to the hydrophobic 

core formed between the helices that restrains the overall solution structure.  The rigid 

structure of phosphorylated P-loop is likely critical for the potent inhibition of the 

phosphatase by positioning the phosphate relative to other residues in CPI-17 that form 

contacts with MYPT1 and PP1. When the hydrophobic core of P-T38-CPI-17 is perturbed by 
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Ala-substitution of Tyr41, the P-Thr38 residue is readily dephosphorylated by myosin 

phosphatase (Hayashi, et al, 2001). We propose that the rigidity of the structure due to the 

hydrophobic core is key to preventing hydrolysis of the P-T38, making P-T38-CPI-17 an 

inhibitor instead of a substrate. Thus, the swing-and-lock mechanism of CPI-17 activation 

restricts flexibility of the P-loop and protects P-Thr38 from being hydrolyzed at the active 

site of myosin phosphatase. Interestingly, P-T38 is hydrolyzed by other PP1 holoenzymes, 

such as glycogen phosphatase (a heterodimer of PP1 plus GM subunit), so phospho-CPI-17 

is both a substrate and an inhibitor, depending on the form of PP1 it encounters. 

Previously, phospho-pivot modeling with D38-CPI-17 (PDB: 1J2N) and monomeric 

PP1 alpha isoform catalytic subunit (1IT6) predicted critical roles for residues at the active 

site of PP1δ, namely D137, D193, R220, Y271, and E274  Indeed, these residues are 

necessary for the binding of PP1 δ with P-T38-CPI-17 in an in vitro assay (Matsuzawa, et al, 

2005a).These same residues at the PP1 active site seem to be involved in the model of the 

P-T38-CPI-17•PP1δ•MYPT1(1-299) complex.  However, the best fitting model was 

obtained when the pivot phosphorus atom was set at a position 0.5 Å away from the active 

site. Thus, the phosphate group is not in an optimum position for hydrolysis in this model. 

We speculate that weak interactions of the MYPT1 subunit with P-T38-CPI-17, perhaps 

involving the MYPT1 N-terminal (1-19) segment, displaces phospho-Thr38 from being in an 

optimum position at the PP1 active site for dephosphorylation. Some involvement of MYPT1 

seems to be needed to account for the inhibitor vs. substrate reaction of P-T38-CPI-17 with 

different PP1 holoenzymes.  

 

It is noteworthy that the phospho-pivot model positions the unstructured N-terminal 

tail of CPI-17 near the MYPT1 ankyrn repeat domain. Other CPI-17 family members, PHI-1 

and KEPI, also inhibit myosin phosphatase, but with different potencies. The IC50 for PHI-1 

(50 nM) is 50-fold higher than that for CPI-17, whereas KEPI inhibits myosin phosphatase 



 
 

14 

with IC50 of 0.1 nM (Erdodi, et al, 2003; Eto, et al, 1999). It is possible that the N-terminal 

tail of the different CPI-17 family members functions as a sensor for different regulatory 

subunits of PP1,  This gives us a future direction for studying functional diversity in the 

CPI-17 family. Despite a focus on the MYPT1 N terminal domain we cannot completely rule 

out involvement of the MYPT1 C-terminal domain and/or the M21 subunit in specific 

recognition of P-CPI-17.  Other PP1 inhibitor proteins are known to contact both PP1 

catalytic and regulatory subunits to form trimeric complexes that account for their selective 

inhibition of PP1 in different contexts. One example is inhibitor-1 binding to GADD-34 that 

is bound to PP1, and other examples are inhibitor-2 binding to either neurabin or KPI-2 that 

both bind PP1 at independent sites. (Connor, et al, 2001; Terry-Lorenzo, et al, 2002; Wang, et 

al, 2002). Inhibitor-2 also binds to PP1 that is engaged with an VxF motif in Nek2A, forming 

a heterotrimer with PP1 as the bridging protein (Eto, 2002 and Li 2007) Direct contact 

between regulatory subunits and PP1 inhibitor proteins is an attractive idea to provide 

signaling specificity for controlling individual PP1 complexes. The structure of an activated 

PP1 inhibitor gives general insight into phosphorylation-dependent conformational changes 

and regulation of cellular PP1, and opens a door to understanding mechanisms of signaling 

crosstalk between kinases and phosphatases.  
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METHODS 

Proteins:  The cDNA of CPI-17 was cloned from pig aorta smooth muscle library.  

Recombinant CPI-17 (22-120) for NMR was prepared using pET30 bacterial expression 

vector with the minimal medium containing 15N-ammnonium chloride and/or 13C-glucose as 

the sole source of nitrogen and/or carbon. This method yields the uniformly stable-isotope 

labeled (> 95 %) sample for NMR spectroscopy (Ohki, et al, 2001; Ohki, et al, 2003). CPI-17 

proteins for other assays are expressed as full-length versions with N-terminal His6- and 

S-tag™ sequences (Eto, et al, 2003). Phosphorylation of the protein was performed with an 

active fragment of PKC.  The active fragment of PKC was extracted from human red cells 

with hypotonic buffer and purified by ammonium sulfate precipitation, and sequencial 

column chromatographies using DEAE-Sepharose, Phenyl-Sepharose, Q-Sepharose and 

Protamine-agarose. Stoichiometric phosphorylation of CPI-17 was verified by urea-PAGE 

analysis (Figure S1), as described previously (Eto, et al, 2003).  Anti-P-T38-CPI-17 IgY 

was prepared using synthetic phospho-peptide as an antigen and purified by affinity 

chromatography, as described previously (Kitazawa, et al. 2000) (Aves Lab, Tigard OR).   

 

NMR structure determination:  All NMR data for ~1 mM P-T38-CPI-17 (in 50 mM 

phosphate buffer pH 6.8, 100 mM KCl, 1 mM DTT, and 0.02 % NaN3) were recorded on a 

Varian INOVA750 spectrometer. The sample temperature was kept at 25.0 oC. A set of two- 

and three-dimensional NMR data was obtained for resonance assignments (Bax, et al, 1992).  

Homonuclear 2D-NOESY, 15N-edited NOESY, and 13C-edited NOESY with mixing time of 

100 msec were recorded to collect distance information.  To obtain the information about 

hydrogen bonding, amide proton H-D exchange was monitored by 1H-15N HSQC. 

2D-HMQC-J spectra were also recorded to obtain dihedral angle constraints. All NMR data 

were processed using nmrPipe/nmrDraw (Delaglio, et al, 1995) and were analyzed with PIPP 

(Garrett, 1991).  Structure calculation was carried out using X-PLOR version 3.851 
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(Brunger, et al, 1998; Kleywegt, et al, 1998). Quality of each coordinate was examined by 

using AQUA/procheck-NMR (Laskowski, et al, 1996).  The Ramachandran plot analysis of 

the final structures showed that 1.7 ± 1.1% of non-glycine and non-proline residues were in 

the disallowed regions.   

 

Structural analysis: All structural images were drawn with MOLMOL (Koradi, et al, 1996), 

Molscript (Kraulis, 1991), and Raster3D (Merrit, et al, 1997). Vector geometry mapping and 

calculations of surface potential and area were done using an algorithm of Yap, et al. (Yap, et 

al, 2002) and PyMol Molecular Graphic System (http://www.pymol.org), respectively.  The 

rotation angle of A-helix was estimated from mean value of differences on Calpha-Cbeta 

angle of each residue.   

 

Phospho-pivot modeling: An in silico model of the ternary complex, P-T38-CPI-17 / PP1 

delta / MYPT1(1-299) was obtained using the phospho-pivot modeling method, as described 

previously (Matsuzawa, et al, 2005a; Matsuzawa, et al, 2005b). Structural data of 

P-T38-CPI-17 (present study) and the myosin phosphatase complex of MYPT1(1-299) and 

PP1 delta (Terrak, et al, 2004) were used for the modeling. The best result was obtained 

when the phosphate group of P-CPI-17 was placed at a point 0.5 Å-away from the putative 

phosphorus position.  The atomic distance violation was set with the threshold of 3.5 Å 

(Ca-Ca), or 2.0 Å (N-O, N-N, O-O). Models without distance violation between main chain 

atoms, identified as 68 out of 186,624 models, were subjected to an energy minimization 

process with permitted of structural adjustments on both molecules, using AMBER force 

field on SYBYL/BIOPOLYMER (Tripos Inc.).  In this modeling atoms within 8 Å of 

CPI-17 were used for the energy calculation.  The results of energy minimization were 

shown in Table S5.  The orientation of P-CPI-17 against MYPT1•PP1 complex is the same 

in 4 of the best 5 models. Both electrostatic and hydrogen-bonding energy values dominantly 
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contribute to the total binding force.  The best model (shown in Figure 6A) includes 15 

atomic violations.   

 

Assays: CD spectrum measurements were performed on a JASCO 720 spectropolarimeter at 

various temperatures (20 – 95 °C) with 20 µM U- and H6S-P-T38-CPI-17 full-length proteins 

in phosphate-buffered saline. Thermal stability of CPI-17 was assessed via the melting 

temperature (Tm ) from the plot of molar ellipticity at 222 nm against the temperature.  

Other assays were carried out at 20 °C.  The H6S-tag does not affect the CD spectrum (data 

not shown).  The inhibitory potency of CPI-17 proteins was measured using myosin 

phosphatase purified from pig aorta smooth muscle with 0.5 µM 32P-labeled phospho-myosin 

light chain as a substrate, at 20 °C (Eto, et al, 2003).  The Ca2+ sensitizing effect of CPI-17 

protein was examined at 20 °C in vas deferens smooth muscle strips permeabilized with 

beta-escin (Masuo, et al, 1994).  This tissue preparation s depleted to a minimum amount of 

endogenous CPI-17, but retains other regulatory proteins, such as myosin phosphatase, PKC 

and ROCK (Woodsome, et al, 2001).  Binding assay of P-CPI-17 was performed with 

synthetic segments of MYPT1 (1-19) and (24-41) (GenScript, Piscataway, NJ).  

MYPT1(1-19) and (24-41) peptides were immobilized onto Sulfo-link beads (Pierce) via a 

C-terminal Cys residue added for cross-linking, and then excess reactive groups on the beads 

were quenched with 50 mM L-Cys.  Blank beads for controls were treated with 50 mM 

L-Cys without peptide conjugation. H6S-P-T38-CPI-17 (0.1 µM) was mixed for 30 min at 

23 °C, with 10 µL of slurry in 150 µL of 50 mM MOPS-NaOH, pH 7.0 including 0.1 M 

NaCl, 1 mM EGTA, 0.1 % Tween 20, 5 % glycerol, 0.4 mM Pefabloc™, and 0.5 mM TCEP.  

The beads were washed with 100 µL of the binding buffer 3 times, and bound CPI-17 was 

detected by immunobloting with anti-CPI-17 using FluoroChemSP CCD imaging system 

(Alpha-Innotech).  Relative amount of bound CPI-17 was obtained from three independent 

experiments by quantifying the band intensity using AlphaEace FC imaging software.    
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Accession codes in Protein Data Bank and BioMagResBank 

 The atomic coordinates and the chemical shift table of P-T38-CPI-17(22-120) 

protein are deposited in the Protein Data Bank (2RLT) and BioMagResoBank (15428), 

respectively.   
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FIGURE LEGENDS 

Figure 1. Inhibitory domain of CPI-17 family. (A) Amino acid sequence of CPI-17 

family of PP1 inhibitor proteins.  Asterisk indicates Thr38, and arrows indicate Trp55, Ile77, 

Leu80, and Leu81. Boxes show regions in helices A to D. (B) 1H-15N HSQC spectrum of 

13C/15N-labeled P-CPI-17 (1 mM).  Red, gray and blue indicate amide resonances of P-, U-, 

and D38-CPI-17(22-120), respectively.  Resonance peaks of T38, V39 and V41 were 

connected by arrows, from U-form to P- or D38-form.   

 

Figure 2. Solution NMR structure of phospho-CPI-17(22-120).  (A) Stereo view 

of the backbone of 20 superimposed structures obtained by NMR analysis. Red indicates the 

region of α-helix. (B) Ribbon representation of an energy-minimized average structure. In 

the ribbon model, the flexible N-terminal 31 residues are not depicted. T38 and residues 

involved in hydrophobic clustering are drawn with ball-and-stick side chains labeled with 

residue numbers to facilitate identification, and the helices are labeled with upper case letters. 

(C) Space-filling representation with molecular surface potential, superimposed on backbone 

structure (green).  Red and blue on surface indicate regions of negative and positive charges, 

respectively. A side chain of P-T38 is drawn as ball-and-stick.   

 

Figure 3. Conformational transition of CPI-17 upon phosphorylation.  

U-CPI-17 (1J2M) (left) D38-CPI-17 (1J2N) (middle) and P-T38-CPI-17 (right) are displayed 

as ribbon structures.  Side chains of hydrophobic residues that tether Helix A to D are 

shown as ball-and-stick for emphasis.   

 

Figure 4. Formation of the hydrophobic core in P-CPI-17.  (A) Top, middle, and 

bottom panels represent the structures of U-, D38-, and P-T38-CPI-17, respectively.  

Hydrophobic side chains responsible for the condensed conformation are displayed as Corey, 



 
 

26 

Pauling and Koltun colored model.  (B) Thermal stability of CPI-17 proteins monitored by 

circular dichroism (CD). Vertical axis shows relative change of the molar ellipticity at 222 

nm at indicated temperature. CD spectrum was measured with 20 µM protein; P-T38-CPI-17 

(open circle), U-CPI-17 (closed circle), D38-CPI-17 (Rectangle), and P-T38-CPI-17 (Y41A) 

(cross), in 50 mM potassium phosphate buffer, pH 7.0.  Mean values from triplicate assays 

are shown.   

 

Figure 5. Effects of the mutation in the hydrophobic core on the inhibitory 

potency of CPI-17. (A) Inhibition of myosin phosphatase purified from pig aorta. The 

myosin phosphatase activity without inhibitor proteins was set as 100 %. Data are averaged 

from two independent assays done in duplicate.   (B) Force measurement of vas deferens 

smooth muscle strip. Panels represent the time-dependent force trace with U-CPI-17: wild 

type, D73A/E74A, I77A/L80A/L81A and W55A.  The rabbit vas deferens smooth muscle 

strips were permeabilized with beta-escin. The CPI-17 proteins were doped into the tissue 

after the addition of PDBu.  The extent of contraction in the presence of 1 µM Ca2+ is set as 

100 % value.  

 

Figure 6. Interaction of P-CPI-17 with PP1•MYPT1 complex.   (A) The 

coordinates of MYPT1(1-299)•PP1 complex (1S70) in Protein Data Bank were used for 

computer modeling of the complex. MYPT1 (yellow) and PP1 (cyan) are depicted in a 

surface model, and P-T38-CPI-17 is drawn as a ribbon structure.  The positive charge of 

MYPT1 Asp5 is shown as red, and the side chains of phospho-Thr38 and Arg43/44 in CPI-17 

are shown as sticks.  (B) Binding assay of P-T38-CPI-17 was performed with synthetic 

peptides corresponding to MYPT1 segments (1-19) and (24-41), immobilized on agarose 

beads.  Asp5 is indicated by arrowhead in the sequence.  Bound P-T38-CPI-17 was 

quantified by immunoblotting with anti-CPI-17 antibody (top).  Mean values from 3 
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independent experiments are represented as a bar graph.  Student’s t test was used to assess 

significance and * and ** indicate p > 0.15 and P < 0.03 respectively.  
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