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Abstract

The basis of eukaryotic complexity is an intricate genetic architecture where parallel systems 

are involved in tuning gene expression, via RNA-DNA, RNA-RNA and RNA-protein and 

DNA-protein interactions.  In higher organisms, about 97% of the transcriptional output is 

represented by non-coding RNA (ncRNA) encompassing not only rRNA, tRNA, introns, 5’ 

and 3’-untranslated regions, transposable elements and intergenic regions, but also a large 

rapidly emerging family, named microRNAs. MicroRNAs are short 20-22 nucleotide RNA 

molecules that have been shown to regulate the expression of other genes in a variety of 

eukaryotic systems. MicroRNAs are formed from larger transcripts that fold to produce 

hairpin structures and serve as substrates for the cytoplasmic Dicer, a member of the RNase 

III enzyme family. A recent analysis of the genomic location of human microRNA genes 

suggested that 50% of microRNA genes are located in cancer-associated genomic regions or 

in fragile sites. This review focuses on the possible implications of microRNAs in post-

transcriptional gene regulation in mammalian diseases, with particular focus on cancer. We 

argue that developing mouse models for deleted and/or overexpressed microRNAs will be of 

invaluable interest to decipher the regulatory networks where microRNAs are involved.
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What are microRNAs?

MicroRNAs are a group of small non-coding RNA (ncRNA) molecules, distinct from 

but related to small interfering RNAs (siRNAs), that have been identified in a variety of 

organisms (for reviews see He and Hannon 2004; Bartel 2004). These small 20-22 

nucleotides (nt) RNAs are transcribed as parts of longer molecules of several kilobases (kb) 

in length that are processed in the nucleus into hairpin RNAs of 70-100 nt by the double-

stranded RNA-specific ribonuclease Drosha (Cullen 2004). The hairpin RNAs are 

transported to the cytoplasm, via an exportin-5 dependent mechanism, where they are 

digested by a second, double-stranded specific ribonuclease called Dicer. These mechanisms 

are described in more detail in the next section.  In animals, single-stranded microRNA binds 

specific messenger RNA (mRNA) through sequences that are significantly, though not 

completely, complementary to the target mRNA, mainly to the 3’ untranslated region (3’ 

UTR).  By a mechanism that is not fully characterized, the bound mRNA remains 

untranslated, resulting in reduced levels of the corresponding protein; alternatively, the 

bound mRNA can be degraded, resulting in reduced levels of the corresponding transcript 

(Fig. 1).

The central dogma of classical biology is that genetic information flows from DNA to 

RNA to proteins. Therefore “genes” are synonymous with proteins and a gene is defined as a 

protein-coding region with associated regulatory signals (Mattick 2003). MicroRNAs 

represent new stars in the gene regulation galaxy, and there is a strong interest among 

researchers in different fields to understand their mechanism of action and identify their 

targets. The definition of a gene in the genomics era should be expanded as a “transcription 

unit” or “a complete chromosomal segment responsible for making a functional product” 

(Okazaki et al. 2002). Due to the complex genetic architecture of eukaryotic cells, this 

definition is still not complete, and additional issues such as overlap, alternative splicing, or 

transcribed pseudogenes have to be considered (Snyder and Gerstein 2003).  Thus, the term 

“gene” could be expanded to include microRNAs (and other functional ncRNAs).
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The number of microRNAs is growing rapidly, especially after using “in silico” 

cloning (Table 1). One such bioinformatics tool is MiRscan: it ranks predicted hairpins that 

are conserved in the genome of two related animals based on several criteria (Lim et al. 

2003). Initially, it was estimated that there could be from 200 to 1,000 microRNA genes in 

the mammalian genome (~1-3% of known genes are represented by microRNAs). Today the 

number of microRNAs, including those electronically cloned, is over one thousand and still 

growing (Berezikov et al. 2005; Xie et al. 2005). Mammalian microRNA genes have been 

distinguished by using the prefix mir followed by a number; the prefixes lin and let refer to 

microRNAs originally identified in C. elegans. (see below).  The MicroRNA Registry 

website contains a comprehensive list of microRNAs from all species (Table 1).

How are microRNAs produced?

More than a decade ago, Victor Ambros and colleagues, discovered that lin-4, a gene 

known to control the timing of C. elegans larval development, does not code for any protein, 

but instead codes for a pair of small RNAs (Lee et al. 1993).  One RNA is longer (~70 nt) 

and can fold in a stem-loop structure, as the precursor of the shorter RNA (~22 nt). The 

Ambros and Ruvkun laboratories later discovered that the small lin-4 RNAs had an antisense 

complementarity to multiple sites in the 3’ UTR of the lin-14 protein-coding gene (Lee et al. 

1993; Wightman et al. 1993).  The sequence complementarity between the non-coding lin-4 

RNA and the 3' UTR of the protein-coding lin-14 gene suggested that lin-4 regulated 

translation of lin-14 by binding to the 3' UTR.  It was later shown that lin-4 regulated the lin-

14 gene during early larval development as well as the lin-28 gene during late larval 

development by a mechanism involving RNA-RNA binding that led to suppression of 

translation (Moss et al. 1997).  The shorter lin-4 RNA is now known as the founding member 

of the class of microRNA genes (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and 

Ambros 2001).  

The majority of microRNAs (70%) are located in introns and/or exons, and ~30% are 

located in intergenic regions (Rodriguez et al. 2004) (Fig. 1). The first group of microRNAs 

from introns and/or exons are oriented in sense with the exon-coding “host” gene, and 

therefore, may be transcribed as part of annotated genes.  The second group of microRNAs 
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are transcribed from intergenic regions (gene deserts) (Lagos-Quintana et al. 2001; Lau et al. 

2001; Lee and Ambros 2001), indicating that they form independent transcription units (Lee 

et al. 2002). The third group of microRNAs are derived from introns and/or exons of 

annotated genes, but are transcribed in the antisense orientation, suggesting that they too 

form their own transcription units.  Tightly linked microRNAs may be transcribed as 

polycistronic messengers; however, microRNAs separated by more than 50 kb tend to 

represent independent transciption units (Baskerville and Bartel 2005).  RNA polymerase II 

and III are candidates for pri-microRNAs (primary) transcription (Fig.1).  

In animals (Fig.1), the first step in microRNA maturation is the nuclear cleavage of 

the several kb long pri-microRNA, which releases a ~70 nt cropped hairpin-shaped 

intermediate, known as pre-microRNA (precursor). The Drosha RNase III endonuclease is 

responsible for this nuclear processing (Bartel 2004; Lee et al. 2003; Zeng et al. 2005). 

Drosha cannot cleave without a partner, forming a complex with DGCR8 (a product of the 

DiGeorge syndrome critical region gene 8), which contains two double-stranded RNA-

binding domains (Tomari  and Zamore 2005; Han et al. 2004). The hairpin precursor is 

actively transported from the nucleus to the cytoplasm by Exportin-5 (Yi et al. 2003; Lund et 

al. 2004). A second enzyme, an RNase III endonuclease called Dicer, is responsible for 

generating a ~21 nt short single-stranded RNA that is the mature microRNA (Lee et al. 

2003). Dicer was first recognized for its role in generating siRNAs that mediate RNA 

interference (RNAi) (Bernstein et al. 2001). After cleavage in the cytoplasm, the microRNA 

pathways of plants and animals share some other steps with RNA silencing, and the cleavage 

products become incorporated as single-stranded RNAs into the ribonucleoprotein RNA-

induced silencing complex, RISC (Hammond et al. 2000). The RISC has been purified from 

fruit fly and human cells and in both cases contains a member of the Argonaute protein 

family (essential for gene silencing in Caenorhabditis elegans, Neurospora, and 

Arabidopsis), which is thought to be a core component of the complex (Hammond et al. 

2001; Mourelatos et al. 2002). Once incorporated in the cytoplasmic RISC complex, the 

microRNA will specify cleavage if the mRNA has sufficient complementarity to the 

microRNA, or it will block translation if the microRNA does not have sufficient 

complementarity, resulting in reduced expression of the corresponding protein.  MicroRNA 
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regulation of the microRNA:mRNA duplex is mainly mediated through multiple 

complementary sites in the 3’ UTRs, but there are many exceptions. MicroRNAs may also 

bind the 5’ UTR and/or the coding region of mRNAs, resulting in a similar outcome (Fig. 1).

How are microRNAs working?

The functions of microRNA are various, such as the control of leaf and flower 

development in plants (Aukerman and Sakai 2003) or the modulation of hematopoietic 

lineage differentation in mammals (Chen et al. 2004).  Several groups have uncovered roles 

for microRNAs in the coordination of cell proliferation and cell death during development, 

and in stress resistance and fat metabolism (Ambros 2003).  For example, the Drosophila

microRNA gene (mir-14) suppresses cell death and is required for normal fat metabolism 

(Xu et al. 2003), while the bantam locus encodes a developmentally regulated microRNA 

that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila

(Brennecke et al. 2003).  It was recently shown that, in addition to their regulatory functions, 

cellular microRNAs mediate antiviral defenses in human cells (Lecellier et al. 2005).   

However, the function of most microRNAs is not known. The antisense single-

stranded microRNAs can bind specific mRNA transcripts through sequences that are 

significantly, though not completely, complementary to the target mRNA. This process is 

also known as post-transcriptional gene regulation (PTGS). Some microRNAs can 

downregulate large numbers of target mRNAs (Lim et al. 2005) and it has been speculated  

that microRNAs could regulate ~30% of the human genome (Bartel 2004).  MicroRNAs 

seem to be responsible for fine regulation of gene expression, “tuning” the cellular phenotype 

during delicate processes like development and differentiation in all organisms, from plants 

to mammals. Many microRNAs are conserved in sequence between distantly related 

organisms (see The MicroRNA Registry in Table 1), suggesting that these molecules 

participate in essential processes (Lagos-Quintana et al. 2003; Pasquinelli et al. 2000).  One 

example is the cluster of mir-16-1 and mir-15a, which is highly conserved in 9 out of 10 

primate species (Berezikov et al. 2005).  
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Target identification has been hampered by the fact that in animals, in contrast to 

plants, microRNAs do not bind perfectly to their targets. A few nucleotides typically remain 

unbound, yielding complex secondary structures. Mammalian genes can have more than one 

microRNA target site in their 3’ UTRs and one microRNA can target more than one mRNA. 

Bioinformatics approaches have been developed to search for the most thermodynamically 

favorable microRNA:mRNA duplex interactions (Table 1). Several computational 

procedures are available to predict microRNA targets such as DianaMicroT, TargetScan, and 

miRanda (Lewis et al. 2003; Kiriakidou et al. 2004; Enright et al. 2003). Another set of 

programs developed for target identification is RNAhybrid, RNAcalibrate, and RNAeffective 

(Rehmsmeier et al. 2004), which work by searching for the most energetically favorable 

hybridization sites for the smaller microRNA within the larger mRNA (Table 1). Only a few 

target mRNAs have been experimentally proven and studied in vitro, but the numbers of such 

confirmed interactions is expected to sharply increase, as prediction tools become more 

sophisticated. Generally, the proven mRNAs targets are produced from different 

chromosomes as the corresponding microRNAs (such as mir-19a on chromosome 13q31.3 

having as a target the mRNA of the PTEN tumor suppressor gene located on chromosome 

10q23.3), but examples of microRNAs targeting “host” antisense exon-coding genes are also 

known.  An important example is that of mir-196, which leads to the cleavage and 

degradation of mRNA from the homeobox gene HOXB8 (Yekta et al. 2004). 

MicroRNAs are not the only ncRNA sequences that have been shown to play a role in 

the regulation of gene expression. A large set of ncRNAs are known as “gene regulators” and 

the list in mammals includes Air, H19, Ipw, NTT, Tsix and XIST (Table 2).  These ncRNAs 

have a variety of functions, from potential involvement in the imprinting process to X-

chromosome inactivation in mammals.  It is likely that other ncRNAs will be found, albeit 

with additional effects on critical biological processes. 

MicroRNAs and Human Cancer

Several papers have now shown the possibility that small ncRNAs play an important 

role in cancer (Table 3). We show in Figure 2 diagrams of several proposed mechanisms for 
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microRNAs as cancer players (Calin et al. 2004a, McManus 2003). Inherited or somatic 

mutations, amplification, deletion, or epigenetic silencing of microRNA genes may not only 

cause certain cancers, but may contribute to an individual's risk of developing cancer (Fig. 2).

The first report linking microRNAs and cancer (Calin et al. 2002) involves chronic 

lymphocytic leukemia (CLL), the most common form of adult leukemia in the Western 

world. Hemizygous and/or homozygous loss at chromosome 13q14 occurs in more than half 

of CLL cases. Loss of chromosome 13q14 is also found in more than 50% of mantle cell 

lymphomas (Stilgenbauer et al. 1998), ~30% of multiple myeloma (Elnenaei et al. 2003), and 

~69% of prostate cancers (Dong et al. 2001), suggesting that one or more tumor suppressor 

genes located at chromosome 13q14 are involved in the pathogenesis of human tumors 

(Calin et al. 2002). However, detailed genetic analysis, including extensive loss of 

heterozygosity (LOH), mutation, and expression studies failed to demonstrate the consistent 

involvement of any of the 12 protein-coding genes located in or close to the deleted region. A 

cluster of two microRNAs, mir-15a and mir-16-1, was found within the minimal region of 

deletion (~30 kb) at 13q14, and to be deleted or downregulated in ~70% of CLL samples.  

Similarly, a t(12;13) chromosome translocation in a patient with CLL was found to decrease 

the mir-15a and mir-16-1 precursors (Calin et al. 2002).  A similar cluster of microRNAs, 

named mir-15b and mir-16-2, is located on human chromosome 3, but is expressed at very 

low levels in lymphoid cells.  

The first genome-wide systematic search for correlations between the genomic 

positions of microRNAs and cancer-associated genomic regions (CAGRs) provided a catalog 

of microRNAs possibly involved in cancer (Calin et al. 2004a). 186 microRNAs were 

mapped to the human genome and compared to the location of previously reported 

nonrandom genetic alterations identified in human tumors, as well as with cloned fragile sites 

(FRAs). Minimal regions of LOH are suggestive of the presence of tumor suppressor genes, 

minimal regions of amplification for the presence of oncogenes, while common breakpoint 

regions are found close to both types of cancer genes. Some common fragile sites predispose 

to DNA instability in cancer cells, indeed they are preferential sites of sister chromatid 

exchange, translocation, deletion, amplification, or integration of plasmid DNA and tumor-
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associated viruses.  This study concluded that 19% (35 of 186) of microRNAs are located 

inside or near FRAs and the relative incidence of microRNAs inside FRAs occurred at a rate 

9-times higher than in non-FRAs. A significant proportion, 52.5% (98 of 186) of microRNAs 

are in CAGRs described in a variety of tumors such as lung, breast, ovarian, colon, gastric, 

and hepatocellular carcinoma, as well as leukemias and lymphomas.  

Little was known about the expression levels of microRNA genes in normal and 

neoplastic cells until 2002. To assess cancer-specific expression levels for hundreds of 

microRNAs is time-consuming, requires a large amount of total RNA, and the use of 

radioactive isotopes. cDNA microarrays are useful tools to identify different patterns of 

expression in large number of samples. The first developed oligonucleotide microRNA 

microarray chips (Liu et al. 2004), containing hundreds of human precursor and mature 

microRNA probes identified distinct patterns of microRNA expression in human and mouse 

tissues (tissue-specific microRNA expression signatures).  Another method to determine 

microRNA expression levels involves the use of a bead-based flow cytometric technique (Lu 

et al. 2005a).  Since these two methods of assessing global microRNA expression, several 

commercially available platforms have been developed for microRNA gene expression 

profiling.

Specific differences in microRNA expression between CLL samples and normal 

CD5+ B-cells, the latter representing normal cells corresponding to CLL malignant cells, 

were found. Two clusters of CLL samples were identified that were associated with the 

presence or absence of ZAP-70 expression, a predictor of early disease progression. Low 

levels of ZAP-70 (identified by both Western blots and flow cytometry) are associated with 

good prognosis. Two microRNA signatures were associated with the presence or absence of 

mutations in the expressed immunoglobulin variable-region genes or with deletions at 

chromosome 13q14, respectively. Different microRNA expression profiles suggested that 

specific microRNAs can have prognostic significance in CLL, thus expanding the spectrum 

of prognostic markers (Calin et al. 2004b). A unique microRNA expression signature

composed of 13 genes can differentiate cases with low or high ZAP-70 expression and cases 

with unmutated or mutated IgVH. Furthermore, both mir-15a and mir-16-1 are members of 
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this signature, suggesting an important functional role in the pathogenesis of human CLL

(Calin et al. 2005).

The list of microRNAs reported to be involved in cancer is growing continuously 

(Table 3). One report showed that mir-143 and mir-145 exhibited reduced levels of the 

mature microRNA in colon cancer patients, colon cancer cell lines, and precancerous 

adenomatous polyps when compared to normal tissues by Northern Blot (Michael et al. 

2003). On the contrary, levels of unprocessed hairpin precursors were not altered. It is 

possible that the reduced accumulation of the mature microRNA reflects early changes in 

neoplastic cells or that this depletion is related to their activity in binding and inactivating 

target mRNAs in the cytoplasm. Putative targets (human mRNAs that display imperfect 

complementarity of 70-100%) for mir-143 and mir-145 include several genes that encode 

components of signal transduction pathways (such as RAF, RHO, and G-proteins) and 

chromatin-mediated control of gene expression were found by computer search (Table 3).

In an independent study, it was shown that mir-143 regulates adipocyte differentiation 

(Esau et al. 2004).  When antisense oligonucleotides (ASOs) targeting human microRNAs 

were transfected into cultured human primary subcutaneous pre-adipocytes, mir-143 was up-

regulated as adipocytes differentiated.  Bioinformatics approaches predicted several putative 

microRNA targets. ERK5/BMK1 (which promotes cell growth and proliferation in response 

to tyrosine kinase signaling) was predicted to be a mir-143 target and in fact, ERK5 protein 

levels were up-regulated in mir-143 ASO-treated adipocytes. But because each microRNA 

can regulate multiple target genes, mir-143 could directly inhibit ERK5 by binding the 3’ 

UTR of ERK5, or indirectly, by binding to another target gene (Esau et al. 2004).

Another study reported reduced expression of the let-7  microRNA in human lung 

cancer and the correlation with clinicopathological features (Takamizawa et al. 2004). 

Reduction in the expression (>80%) levels of let-7 was observed in 60% (12 of 20) of cancer 

cell lines and 44% (7 of 16) of lung tumors when compared with normal lung tissues by 

Northern blots. The reduced expression was significantly associated with shortened survival 

of patients after potential curative resection. 143 cases had been followed for more than 5 
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years after surgery and were used to study the prognostic significance of let-7. 143 non-small 

cell lung carcinoma (NSCLC) cases were classified into clusters 1 and 2 (cluster 1 with low 

let-7  expression and higher disease stages; cluster 2 with high let-7 expression and lower 

disease stages). The difference in postoperative survival between clusters 1 and 2 was highly 

significant. In addition, overexpression of let-7  in the A549 lung adenocarcinoma cell line 

inhibited lung cancer cell growth in vitro (Takamizawa et al. 2004).  Several observations led 

to the conclusion that let-7 acts as a tumor suppressor gene in lung tissue. Several let-7  

family members, including let- 7a-2, let- 7c and let- 7g, have been mapped to minimally 

deleted regions in lung cancers (Calin et al. 2004a). Let-7 expression is lower in lung tumors 

than in normal lung tissue, while RAS protein is significantly higher in lung tumors (Johnson 

et al. 2005). Finally, expression of the RAS oncogene is regulated by let-7 , and 

overexpression of let-7  has been shown to inhibit lung tumor cell line growth (Johnson et al. 

2005).

High expression of human BIC RNA has been found in Hodgkin lymphoma (van den 

Berg 2003). In contrast, an analysis of non-Hodgkin lymphoma (NHL) did not reveal any 

remarkable up-regulation of BIC expression. The BIC locus was originally identified as a 

common retroviral integration site in avian-leukosis virus-induced B-cell lymphomas (Tam et 

al. 1997). The human BIC locus also encodes a microRNA, mir-155 (Tam 2001; Lagos-

Quintana et al. 2002). The conditio sine qua non for the development of Burkitt’s lymphoma 

is activation of the MYC oncogene, mostly by chromosomal translocations in which MYC is 

juxtaposed next to an immunoglobulin enhancer. But activation of MYC alone is not 

sufficient for full malignancy; in fact, MYC cooperates with other oncogenes. In childhood 

Burkitt’s lymphoma, there has been reported a 100-fold up-regulation of the hairpin 

precursor mir-155 (Metzler et al. 2004). It could be speculated that mir-155 directly down-

regulates one of the MYC antagonists, such as MAD1, MXI1 or ROX/MNT. Accumulation 

of mir-155 and BIC RNA was also reported in other B-cell lymphomas (Eis et al. 2005).  

It was recently reported that mir-21 is upregulated in both human gliobastomas as 

well as cultured glioblastoma multiforma cells and cell lines compared to primary astrocyte 

cultures derived from normal tissue; inhibition of mir-21 expression led to the activation of 
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caspases and cell death in vitro (Chan et al. 2005).  These data suggest a role for mir-21 in 

malignant glioblastoma, most likely by acting to influence expression of genes involved in 

apoptosis (Chan et al. 2005).

Overall, the studies to date clearly implicate a causative role for microRNAs in 

human cancer.  The intricate network of signals regulating gene expression requires a 

delicate balance between protein-coding genes and microRNA genes.  Disruption of this 

delicate relationship by mutation can tip the balance in favor of the development of cancer.

MicroRNAs and other Human Diseases

Several papers have been published showing a probable link between microRNAs 

and other human diseases, but the precise mechanisms are still not known (Table 4). Fragile 

X syndrome is the most common inherited mental retardation disease. In the U.S.,

conservative estimates report that Fragile X syndrome affects approximately 1 in 4000 males 

and 1 in 8000 females; the rate of the female carrier state has been estimated to be as high as 

1 in 250 and the male carrier state has been estimated to be 1 in 1000. The Fragile X mental 

retardation protein (FMRP) is an RNA-binding protein that can function as a translational 

suppressor. FMRP can form a messenger ribonucleoprotein (mRNP) complex, interacting 

with specific RNA transcripts and proteins. The complex is transported out of the nucleus 

and into the cytoplasm, where it can either associate with the ribosome or interact with RISC; 

in both cases, it will lead to protein synthesis regulation. FMRP can interact with microRNAs 

and other components of the microRNA pathways, including Dicer and the mammalian 

ortholog of Argonaute 1 (AGO1), a component of RISC (Jin et al. 2004; Peng et al. 2004).

Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease with 

neuromuscular symptoms. Survival of Motor Neurons protein (SMN) is a component of the 

SMN complex that has critical functions in the assembly and restructuring of diverse 

ribonucleoprotein (RNP) complexes. Components of the SMN complex (GEMIN3 and 

GEMIN4) are also in a separate complex that contains eIF2C2, a member of the Argonaute 

protein family. This novel complex contains numerous microRNAs that form novel RNPs 

named miRNPs (Mourelatos et al. 2002).  This link between microRNAs and a devastating 
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neurodegenerative disease is intriguing and will be of great interest to determine what effect 

these microRNAs have on miRNPs in SMA patients.

DiGeorge Syndrome is characterized by few specific cardiac malformations, facial 

deformity and certain endocrine and immune anomalies.  The DGCR8 (DiGeorge syndrome 

critical region gene 8) protein and Drosha interact in human cells. Knockdown of the 

Drosophila dmDGCR8 resulted in a 5- to 23-fold accumulation of some pri-microRNAs, 

confirming a role in mediating the genesis of miRNAs from the pri-microRNA transcript 

(Landthaler et al. 2004; Gregory et al. 2004). 

 MicroRNAs have also been shown to regulate insulin secretion (Poy et al. 2004). 

Overexpression of mir-375 (a pancreatic islet-specific microRNA) suppresses glucose-

induced insulin secretion, and conversely, inhibition of endogenous mir-375 by ASOs 

enhances insulin secretion in murine pancreatic α- and β-cell lines. Bioinformatics 

approaches predicted several putative targets with a potential role in insulin secretion, such as 

MAPK4, MKI1, VTI1A, and MTPN; the last two proteins are known to be involved in vesicle 

transport of neurons and in neurotransmitter release.

These studies represent the beginning links between microRNAs and human disease.  

Further investigations are likely to reveal the involvement of additional microRNAs and their 

targets in simple as well as complex genetic diseases.

Mouse models for microRNA studies

Almost all mammalian microRNAs are highly conserved and more than 220 mouse 

microRNAs were cloned by conventional methods (Lagos-Quintana et al. 2002; Seitz et al. 

2004) (see The MicroRNA Registry in Table 1).  It has been shown that a tissue-specific 

microRNA dominates the population of expressed microRNAs, suggesting important roles in 

tissue differentiation.  For example, in mouse liver, mir-122a and mir-122b represent 72% of 

all cloned microRNAs; these microRNAs were not detected in the other tissues analyzed.  In 

spleen, mir-143 was the most abundant microRNA. In colon, mir-142 was cloned several 
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times; however, due to the strong RNase activity in small intestine and pancreas, too few 

microRNA sequences were obtained from these tissues to reach statistical significance.

Using a microRNA microarray approach, microRNA expression was analyzed in 17 

mouse organs and tissues (Babak et al. 2004). More than half of the 78 microRNAs detected 

were expressed in specific adult tissues.  The results were confirmed by Northern blotting 

and were consistent with microRNA expression data reported in the literature. Furthermore, 

this study is consistent with microRNA expression profiling in human tissues (Liu et al. 

2004). For example, seven of eight microRNAs were brain-specific in both mice and 

humans.

Another report gave new light on the world of microRNA regulation in humans and 

mice (Seitz et al. 2004).  By bioinformatics approaches, 46 potential microRNAs located in 

the human imprinted 14q32 domain have been identified. 40 of these microRNAs are 

clustered and most of them are arranged in tandem arrays.  The majority of these genes map 

within a ~40 kb region, making it the largest microRNA cluster that has been described. In 

mouse, this microRNA cluster is conserved at the homologous region on chromosome 12.  

The detected microRNAs are expressed in embryos and placenta, whereas in the adult their 

expression pattern is limited to the brain. Expression of these microRNAs comes solely from 

the maternally-inherited chromosome which is imprinted. Regulation of their expression is 

dictated by a region located ~200 kb upstream from the microRNA cluster (Seitz et al. 2004). 

Research has shown how microRNAs have a role in fine-tuning specific Hox mRNA 

expression patterns during mouse development (Mansfield et al. 2004). A novel approach 

was used to monitor microRNA tissue-specific expression patterns during embryogenesis. 

Until now, microRNA expression studies were done by Northern blots, tissue-specific RNA 

cloning and microarrays, but all of those methods are not useful to display spatio-temporal 

expression patterns. In situ hybridization methods are still difficult to adapt in vertebrate 

embryos because of the small size of microRNAs. An alternative approach, previously used 

in Drosophila melanogaster, was used where several reporter transgenes (“sensors”) were 

made to detect microRNAs in the embryo. The sensor was a constitutively expressed reporter 
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gene (lacZ) containing microRNA complementary sequences in the 3’ UTR. In cells lacking 

the corresponding microRNAs, the reporter transgene is stable and will express b-

galactosidase. In contrast, cells expressing the corresponding microRNA degrade the lacZ 

message by an RNA interfering pathway (RNAi), thus resulting in absence of b-galactosidase 

activity.

To prove the biological significance of microRNAs in human biology and cancer in 

particular, the development of mouse models for deleted and/or overexpressed microRNAs 

will be of invaluable interest to decipher the regulatory networks where microRNAs are 

involved. Several groups have started this task by disrupting Dicer 1 in mice. Loss of Dicer1 

by replacement of exon 21 with a neomycin-resistance cassette leads to lethality early in 

embryogenesis  at day 7.5 of development; Dicer1-null embryos were found to be depleted of 

pluripotent stem cells (Bernstein et al. 2003). Another group generated Dicerex1/2 mice that 

have a deletion of the amino acid sequences from the first and second exons of the dicer gene 

(Yang et al. 2005). Dicerex1/2 homozygous embryos died between days 12.5 and 14.5 of 

gestation, again demonstrating that Dicer is necessary for normal mouse development. In 

addition, blood vessel formation and maintenance in Dicerex1/2 embryos and yolk sacs were 

severely compromised, with altered expression of Vegf, Flt1, Kdr, and Tie1 being detected in 

the mutant embryos. This study suggests that Dicer has a role in embryonic angiogenesis, 

probably through processing of microRNAs that regulate expression levels of key angiogenic 

regulators (Yang et al. 2005).

Although Dicer-null ES cells are viable, they are defective in RNA interference (RNAi) 

and the generation of microRNAs (Kanellopoulou et al. 2005). These mutant ES cells 

displayed severe defects in differentiation both in vitro and in vivo. An increase in

centromeric repeat transcripts was detected, whereas the expression of homologous small 

double-stranded RNAs was markedly reduced in Dicer-deficient ES cells (Kanellopoulou et 

al. 2005; Murchison et al. 2005). Re-expression of Dicer in the knockout cells rescued these 

phenotypes.  These Dicer-deficient cells were able to undergo gene silencing when provided 

with synthetic siRNAs (Kanellopoulou et al. 2005; Murchison et al. 2005), indicating that 

Dicer function is required for processing of microRNAs, but not required for the action of 
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microRNAs once they are produced. However, the status of cytosine methylation of 

centromeric satellite sequences remains in question. Taken together, these studies suggest 

that the essential role of Dicer in the production of mature microRNAs is central for 

biological processes in mammalian organisms, ranging from stem cell differentiation to the 

integrity and function of centromeric heterochromatin  (Kanellopoulou et al. 2005).  

Critical insights into the roles of individual proteins of the microRNA processing 

machinery have been provided by in situ hybridization studies of Argonaute (Ago1 - Ago4) 

family members in mouse embryos (Liu et al. 2004; Lu et al. 2005b).  Studies in embryos at 

days 9.5 to 14.5 of development have shown that Argonaute family members are restricted in 

both their temporal and spatial patterns of expression.  However, Ago2 shows the broadest 

expression in mouse embryos and is consistent with the fact that Ago2-deficient mice die 

early in development (Liu et al. 2004). Thus, the differential expression of Ago family 

members suggests specific roles for these proteins during organogenesis, most likely 

involving the production of microRNAs that are controlled at different times and in specific 

tissues by the presence of Ago proteins.

One example of the use of mouse models to study the roles of specific microRNAs in 

cancer was provided by He et al. (2005).  Their initial observation was that the human mir 

17-92 cluster was overexpressed by more than five-fold in a majority of human B-cell 

lymphomas.  To determine whether overexpression of this cluster could drive B-cell 

lymphomagenesis in mouse, the authors derived hematopoeitic stem cells from a susceptible 

Eµ-myc transgenic mouse and transduced them with a retrovirus carrying the mir 17-92

cluster.  Injection of transduced cells into normal mice resulted in acceleration of the

development of B-cell lymphomas; in contrast, other subsets of microRNAs expressed in 

these cells did not have similar effects (He et al. 2005).

The ability to manipulate the genome of mice coupled with the multitude of inbred 

strain backgrounds provides invaluable tools to genetically dissect the biological functions of 

individual microRNAs.  Further studies of mouse models will provide significant insights 

into the roles of different microRNAs in development and disease processes.
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Conclusions

A link between microRNAs and human diseases, in particular with cancer as focused on in 

this review, has been recently shown. To better understand the biological significance of 

microRNAs and of alterations found in human diseases (such as the effect of microRNA 

mutations or variations in expression) the development of mouse models is mandatory. 

Regulation of gene expression in the mammalian genome, during development, 

differentiation, and disease is a complex and multitasked system. To make transcripts, 

instead of proteins, is energetically “less expensive” for cells and could be the reason why

regulation at the RNA level is “cheaper” and more efficient than at the protein level. 

Penetrance in gene expression requires a fine regulation and microRNAs could have a role in 

different phenotypic expressions of the same gene. The ability to simultaneously regulate 

large sets of genes by a single microRNA appears to be at the heart of control of multiple 

pathways that include morphogenesis and cell fate decisions, response to infectious 

organisms, and centromeric heterochromatin structure.  MicroRNAs appear to be at the

center of the balance between apoptosis and proliferation in cancer cells and thus could 

provide novel approaches for therapeutics. MicroRNAs are young stars in the genome galaxy 

with many surprises still in store.
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FIGURE LEGENDS

Fig. 1.  Biogenesis of microRNAs and hypothetical mechanisms in regulation of gene 

expression. RNA polymerases II and III are believed responsible for microRNA 

transcription, although a recent publication indicates that polymerase II is the main RNA 

polymerase for microRNA transcription (Lee et al. 2004).  (A) Exonic microRNAs in sense 

orientation as a part of annotated host genes are transcribed as parts of longer molecules that 

are processed in the nucleus into hairpin RNAs of 70-100 nt by the dsRNA-specific 

ribonuclease Drosha. The hairpin RNAs are transported to the cytoplasm, where they are 

digested by a second, double-strand specific ribonuclease called Dicer. In animals, single-

stranded miRNA binds specific mRNA through sequences that in most of cases are 

significantly, though not completely, complementary to the target mRNA. (B) The excision 

of intronic microRNAs out of the precursors is completed through the process of RNA 

splincing, followed by Dicer digestion. MicroRNAs are finally incorporated in to an RNA-

induced silencing complex (RISC) to induce translation suppression or degradation 

depending of the degree of complementary with the target mRNA. (C) and (D) Exonic and 

Intronic microRNAs in antisense orientation as a part of annotated host genes can be 

trancribed as independent transcription units. The mature microRNA sequence, in our 

hypothetical mechanisms, can lead to translation or transcription suppression of the host gene 

of other target mRNAs. MicroRNA genes located in intergenic regions (gene desert) are 

transcribed as independent transcription units and their biogenesis can be described as in 

Fig.1a.

Fig. 2. MicroRNAs as cancer players.  MicroRNAs may act as tumor suppressors or 

oncogenes in cancer.  Orange triangles represent mir promoters and blue ovals represent their 

corresponding mir genes.  Orange rectangles represent promoters of protein-coding genes 

and blue rectangles represent the actual coding sequences of their corresponding genes.  One 

mechanism for the downregulation of "suppressor-microRNAs" that has been identified is 

(A) Homozygous deletion of microRNA coding regions, as exemplified by deletion of the 

mir-15a/mir-16a cluster in B-CLL (Calin et al. 2002).  Hypothetical mechanisms for 

downregulation of "suppressor-microRNAs" in cancer include (B) the combination of 
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Deletion plus Promoter Hypermethylation, and (C) Deletion plus Mutation.  Mechanisms for 

the upregulation of "onco-microRNAs" that have been identified are: (D) Amplification and 

overexpression of pre-microRNAs, as exemplified by mir-155/BIC in pediatric Burkitt’s 

Lymphoma (Metzler et al 2004), and (E) translocations of either protoconcogenes near the 

promoter of microRNAs or translocation of microRNAs near the promoters of oncogenes 

(modified after Calin et al PNAS, copyright 2004, National Academy of Sciences, USA).
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