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estrogen deficit on the association of OP and cartilage
damage. In addition, we emphasize the relevance of these
effects in the onset and/or progression of OA as well as
summarizing our current knowledge on how estrogen
regulates the metabolism of joint tissues. Finally, we examine
the effects of ERT and current SERMs in OA, as well as the
development of new specific estrogen ligands as potential
therapeutic strategies to treat this disease.

The effects of estrogen deficiency on
components of the osteoarthritis joint
Different studies have provided compelling information on the
relevant effects of estrogen deficiency on joint components in
cell culture, animal models or humans. Although much of the
attention has focused on the effects of estrogen on articular
cartilage, estrogen deficiency also affects other joint tissues
during the course of OA, such as the periarticular bone,
synovial lining, muscles, ligaments and the capsule (Figure 1).

In vitro studies
Several experimental studies have shown that estrogens are
implicated in the regulation of cartilage metabolism. Indeed,
17β-estradiol (E2) enhances glycosaminoglycan synthesis in
cultures of rabbit joint chondrocytes through the up-regula-
tion of the uridine diphosphate glucose dehydrogenase gene
[15]. Furthermore, estrogen (1 to 100 M) significantly impairs
the release of C-telopeptide of type II collagen from TNF-α
and oncostatin M-stimulated bovine cartilage explants ex vivo
in a dose-dependent manner [16]. In addition, E2 inhibits
cyclooxygenase-2 mRNA expression in bovine articular chon-
drocytes and protects them from reactive oxygen species-
induced damage [17,18]. However, the effects of high doses
of estrogen on chondrocytes are contradictory. High
concentrations of E2 lead to deleterious effects such as
suppression of DNA synthesis in human chondrocytes [19],

as well as the inhibition of proteoglycan synthesis and cell
division in both bovine chondrocytes and cartilage explants
[20,21]. A significant difference in ER affinity for its ligand as
a function of age was observed. Human chondrocytes from
early pubertal individuals display a maximal response to
estrogens, while chondrocytes from neonatal children do not
respond at all [22]. Similarly, ERs from pubertal rabbit
chondrocytes exhibit higher affinity for estrogens than pre-
pubertal chondrocytes [23]. Thus, estrogen dose and donor
age are the main factors that influence chondrocyte response
to estrogen.

These and many other relevant findings in vitro (discussed
below) clearly show that estrogen influences the activity of all
joint tissues through complex molecular mechanisms acting
at multiple levels.

In vivo studies
The effects of estrogen on joint tissues have primarily been
studied in ovariectomized (OVX) animal models. Despite these
studies, the influence of estrogen deficiency on cartilage
remains unclear, even though there is significant evidence of
the detrimental effect of estrogen loss in mature female
animals [7]. An increase in cartilage turnover and surface
erosion was observed in OVX Sprague-Dawley rats [24], as
well as in cynomolgus macaques subjected to bilateral OVX
[25]. Significantly, intact females had less severe OA than
OVX females and although intact male mice showed more
severe OA than intact females, orchiectomized mice develop
less OA than intact males [26]. By contrast, such associations
could not be shown in other earlier studies [7].

Relevant changes have also been described in the sub-
chondral bone of OVX animals. Indeed, OVX cynomolgus
monkeys have higher indices of bone turnover in

Figure 1

Estrogen actions on target articular tissues. ACL, anterior cruciate ligament; [Ca2+]i, intracellular calcium concentration; COX-2, cyclooxygenase-2;
IGF, insulin-like growth factor; iNOS, inducible nitric oxide synthase; MRI, magnetic resonance imaging; OB, osteoblast; OVX, ovariectomized; PG,
proteoglycan.



subchondral bone compared to epiphyseal/metaphyseal
cancellous bone of the proximal tibia [27]. Moreover, the
marginal osteophyte area is positively correlated with
subchondral bone thickness in the medial tibial plateau of
these animals [28]. Significantly, subchondral bone
remodeling has also been described in conjunction with
changes in joint cartilage in a guinea pig model of
spontaneous OA [29]. We found that rabbit subchondral
bone has mixed densitometric characteristics with a marked
predominance of cortical bone [30]. In fact, subchondral
knee bone mineral density (BMD) is significantly correlated
with the BMD of the spine, and trabecular and cortical knee
bone in healthy, OA, OP and OP/OA rabbits [31].

Our rabbit model is a valuable tool to study OP because
rabbits have much faster bone turnover than rodents or
primates, and in contrast to rodents, they reach skeletal
maturity soon after their sexual development is complete [32].
Moreover, since OVX itself only causes mild osteopenia,
which may be insufficient to provoke OP in these animals,
moderate doses of methylprednisolone were administrated to
ensure OP development [33]. We evaluated whether estro-
gen deficiency alone can induce OA alterations in healthy
cartilage or, by contrast, whether OP subchondral bone is the
origin of the cartilage changes in these animals. Estrogen
deficiency leads to mild OA changes 22 weeks after isolated
OVX in healthy articular cartilage, while OVX and methyl-
prednisolone-induced OP play an additional role in these
osteoarthritic changes (Figure 2). Thus, estrogen deprivation
might produce a dual effect: a main direct action upon joint
cartilage and a minor indirect effect on subchondral bone.

The influence of estrogen on the remaining joint tissues has
not been studied directly in OA animal models. However, the
involvement of these tissues in OA and the changes
produced by estrogen in related animal models suggest a
potential role of estrogen in OA changes. Indeed, the
remodeling of the cruciate ligament is thought to occur early
during knee OA in guinea pigs [29] and the potential role of
endogenous estrogens in the disproportionate number of
anterior cruciate ligament (ACL) injuries seen in female
athletes has been studied in different animal models, although
to date with negative results [34]. Besides, significant
attenuation of histochemical and biochemical indices of
muscle damage and inflammatory response were found in
female rats after downhill running when compared with their
male counterparts. Such an effect may possibly be explained
by the higher circulating estrogen levels in these rats [35]. In
addition, estrogen deficiency following OVX is often
accompanied by an increase in fat mass, which in turn leads
to increased adipokine levels, the role of which in OA is also
now being investigated.

Human studies
Associations between polymorphisms in the human ERα
gene (ESR1) and OA have been studied in different

populations with mixed results. Haplotypes of the PvuII and
XbaI polymorphisms in the ERα gene have been associated
with an increased prevalence of clinical and radiographic
knee OA [36-38]. In addition, the exon 8 G/A BtgI poly-
morphism was also associated with knee OA in Asian popula-
tions [38]. However, other studies showed either no or only a
modest inverse relationship between ERα gene polymor-
phisms and OA in Caucasian populations [39,40].

Numerous clinical studies have also shown that OA is related
to estrogen levels [8,9,41-47]. Thus, the prevalence of OA is
greater in women than men and a clear increase in OA
prevalence is associated with the peak age of menopause
[8,9,41]. Indeed, a nationwide population survey showed that
radiographic generalized OA is three times more common in
women aged 45 to 64 years compared to their male counter-
parts [9], and a hospital-based study found a high female to
male ratio of 10:1 for OA, with a peak at 50 years of age [42].
In addition, 64% of females with knee OA suffered the onset
of symptoms either perimenopausally or within 5 years of
natural menopause or hysterectomy. In fact, the onset of
symptoms of knee OA occurred before 50 years of age in
58% of females as opposed to only 20% of males [43].

Since the earliest studies of OA, generalized involvement of
joints was described in postmenopausal females, and
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Figure 2

Osteoarthritic cartilage damage is aggravated by ovariectomy plus
glucocorticoid-induced osteoporosis in a rabbit model. Ovariectomy
itself induces small disturbances in the cartilage, while no differences
were found between articular cartilage from ovariectomized (OVX),
osteoporosis (OP) and osteoarthritis (OA) rabbits. Bar graphs showing
the total Mankin score from the histological evaluation of joint cartilage
at the weight bearing area of the medial femoral chondyle in the
different experimental groups. Healthy, controls; OVX, ovariectomized
rabbits; OP, osteoporotic rabbits induced by OVX followed by
parenteral methyprednisolone injections for 4 weeks; OA,
osteoarthritic rabbits induced by partial medial meniscectomy and
anterior cruciate ligament section of the knee; OP+OA, rabbits with
experimentally induced OP followed by OA induction. Data are
expressed as the mean ± standard deviation. #P < 0.05 versus
healthy; &P < 0.05 versus OVX; §P < 0.05 versus OP; ¶P < 0.05
versus OA.



predominant node formation with early signs of inflammation
was observed in the proximal and distal interphalangeal joints
of the hands [44]. Nodular hand OA is often associated with
a polyarticular and symmetric involvement of major joints such
as knees and hips [45]. Erosions may occur in the inter-
phalangeal joints and are characteristic of erosive OA. This
disorder tends to occur in middle-aged women, and it is often
an acute condition with features of inflammation that subside
over a period of months to years, leaving deformed joints and
occasional ankylosis [46]. Lower levels of serum E2 and its
metabolite 2-hydroxyestrone in urine were recently reported
in postmenopausal women who developed radiographically
defined knee OA [47].

Failure of estrogen production at menopause is associated
with a relevant loss of muscle mass and, therefore, significant
impairment of muscle performance and functional capacity
[48]. Diminished strength of the quadriceps in women but not
men predict knee OA [49], and peri- and postmenopausal
women also seem to have less lean body mass when
compared with pre-menopausal women [50]. In addition,
varus-valgus laxity has more frequently been described in
women than in men [51].

The effect of estrogen deficiency on the
association between osteoarthritis and
osteoporosis
At this time, a complex and paradoxical relationship seems to
exist between OA and OP, although there is increasing
evidence supporting a close biomolecular and mechanical
association between subchondral bone and cartilage [52].
Indeed, microarray profiles have identified a number of genes
differentially expressed in OA bone that are key players in the
structure and function of both bone and cartilage, including
genes that participate in the Wingless-type mouse mammary
tumor virus/β-catenin (Wnt/β-catenin) and transforming growth
factor-β/mothers against decapentaplegic (TGF-β/SMAD)
signaling pathways and their targets [53]. Wnt5b and other
genes involved in osteoclast function are differentially
expressed between male and female OA bone [53]. Further-
more, aggrecan production, as well as SOX9, type II collagen
and parathyroid hormone-related protein mRNA expression
was inhibited in sclerotic but not non-sclerotic osteoblasts
(OBs), while expression of matrix metalloproteinases MMP-3
and MMP-13 and osteoblast-specific factor 1 by human OA
chondrocytes was augmented in a co-culture system. Thus,
sclerotic osteoarthritic subchondral OBs may contribute to
cartilage degradation and chondrocyte hypertrophy [54].

Current methodological difficulties in detecting and closely
following incipient OA lesions at early stages in humans are a
major obstacle to better understanding the relationship
between OA and OP. Therefore, animal models provide an
alternative to study this relationship. However, some species
may not be suitable for such studies since OVX provokes
strong subchondral bone remodeling and loss in these

animals (for example, rodents), and possibly ensuing indirect
cartilage damage. Conversely, there are certain advantages
to studying OP in rabbits [32] and, in this context, our group
has developed an experimental model in mature rabbits
where OP markedly aggravates the severity of OA estimated
using the Mankin score (Figure 2). Moreover, the increased
cartilage damage is correlated with loss of bone mass,
suggesting a direct relationship between OA and OP [31].

Several cross-sectional studies have demonstrated an
inverse relationship between OP and OA [55,56], while
others produced opposite results [57]. However, some
confounding variables such as race, obesity and physical
activity could explain the mutually exclusive relationship
between OA and OP. Thus, overweight individuals and/or
those that undertake excessive physical activity could have a
higher risk of developing OA and of having a higher bone
mass. This controversial relationship is also witnessed at the
regional level. Indeed, severe hip OA has a protective role
against the age-related decrease in structural and mechanical
properties of cancellous bone in the principal compressive
region of the ipsilateral femoral head [58]. In turn, sub-
chondral tibial BMD was correlated with future joint space
narrowing and it has been proposed as a predictor of knee
OA progression [59]. However, other studies have shown a
decrease in subchondral BMD associated with knee OA.
Indeed, in female patients with relatively mild OA of the knee,
a significant decrease in periarticular subchondral BMD was
evident, whether or not they had a low spine BMD [60].

Mechanisms underlying the effects of
estrogen on joint tissues
Estrogen influences the biology of joint tissues by regulating
the activity and expression of key signaling molecules in
several distinct pathways (Figure 3).

Canonical estrogen receptor signaling pathway
(estrogen response element-dependent)
Estrogen primarily exerts its effects on target tissues by
binding to and activating ERs. ERs act as ligand-activated
transcription factors in the nucleus that specifically bind to
estrogen response elements (EREs) in the promoters of
target genes such as the human oxytocin, prolactin, cathepsin
D, progesterone receptor, vascular endothelial growth factor,
insulin-like growth factor (IGF)-1, or c-fos genes [61], as
diagrammatically shown in Figure 3 (pathway 1). The ERE is a
13 base-pair inverted sequence that binds ERs as dimers.
Because imperfect palindromic EREs, or even half EREs, are
often seen in the regulatory region of estrogen target genes,
transcriptional synergism might occur that could include the
co-operative recruitment of co-activators, direct interaction
between ER dimers, or allosteric modulation of the DNA-ER
complexes [62].

ERs contain four functional domains. The variable amino-
terminal A/B domain harbors the constitutive activation

Arthritis Research & Therapy    Vol 11 No 5 Roman-Blas et al.

Page 4 of 14
(page number not for citation purposes)



function (AF)-1, which modulates transcription in a gene- and
cell-specific manner. The central and most conserved C
domain contains the DNA binding domain, and it also
mediates receptor dimerization. The D domain is a less well
understood region. Finally, the carboxy-terminal multifunc-
tional E/F domain holds the ligand-binding domain as well as
sites for cofactors, transcriptional activation (AF-2) and
nuclear localization (Figure 4) [63]. There are two receptor
subtypes, ERα and ERβ, which are different proteins
encoded by distinct genes located on chromosomes 6
(q24-q27) and 14 (q21-q22), respectively [64]. These two

receptor subtypes have 96% amino acid homology in the
DNA binding domain but only 53% identity in the ligand-
binding domain. As a result, similar ERE binding properties
have been associated with a partially distinct spectrum of
ligands for each receptor, although with similar affinities for
estrogen. Even weaker amino acid identity is found in the A/B
domain of ERα and ERβ (Figure 4). Both receptors also show
little conservation in AF-2 and, therefore, several proteins may
direct ERα and ERβ to different targets as observed in their
contrasting effects at the activator protein (AP)-1 site of the
collagenase promoter. Thus, ERα and ERβ have different
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Figure 3

Intracellular signaling pathways used to regulate the activity of estrogens, estrogen receptors, and selective estrogen receptor modulators on
articular tissues. Pathway 1: canonical estrogen signaling pathway (estrogen response element (ERE)-dependent) - ligand-activated estrogen
receptors (ERs) bind specifically to EREs in the promoter of target genes. Pathway 2: non-ERE estrogen signaling pathway - ligand-bound ERs
interact with other transcription factors, such as activator protein (AP)-1, NF-κB and Sp1, forming complexes that mediate the transcription of
genes whose promoters do not harbor EREs. Co-regulator molecules regulate the activity of the transcriptional complexes. Pathway 3: non-
genomic estrogen signaling pathways - ERs and GP30 localized at or near the cell membrane might elicit the rapid response by activating the
phosphatidylinositol-3/Akt (PI3K/Akt) and/or protein kinase C/mitogen activated protein kinase (PKC/MAPK) signal transduction pathways.
Pathway 4: ligand-independent pathways - ERs can be stimulated by growth factors such as insulin-like growth factor (IGF)-1, transforming growth
factor-β/mothers against decapentaplegic (TGF-β/SMAD), epidermal growth factor (EGF) and the Wnt/β-catenin signaling pathway in the absence
of ligands, either by direct interaction or by MAP and PI3/Akt kinase-mediated phosphorylation. Since members of these signaling pathways are
transcription factors, some of them, such as SMADs 3/4, can elicit estrogen responses by interacting with ER in the non-ERE-dependent genomic
pathway. ERK, extracellular signal regulated kinase; GF, growth factor; GFR, growth factor receptor; MNAR, Modulator of nongenomic action of
estrogen receptors; TF, transcription factor.



transcriptional activities that may contribute to their distinct
tissue-specific actions [63,65].

Both ERs are distributed widely throughout the body,
displaying distinct but overlapping expression in a variety of
tissues. ERα is highly expressed in classical estrogen target
tissues such as the uterus, placenta, pituitary and cardio-
vascular system, whereas ERβ is more abundant in the
ventral prostate, urogenital tract, ovarian follicles, lung, and
immune system. However, the two ERs are co-expressed in
tissues such as the mammary gland, bone, and certain
regions of the brain [66]. Although both ER subtypes can be
expressed in the same tissue, they may not be expressed in
the same cell type. Nonetheless, in cells where the two ER
subtypes are co-expressed, ERβ can antagonize ERα-
dependent transcription [64]. The generation of human ERα
and ERβ mRNA transcripts is a complex process that is
controlled by sophisticated regulatory mechanisms leading to
the generation of several isoforms/variants for each receptor
subtype. Most ERα variants only differ at the 5’ untranslated
region and they are involved in tissue-specific regulation of
ERα gene expression. Several species-specific and common
ERβ isoforms have been described, many of which are
expressed as proteins in tissues [67].

In articular tissues, both ER types are expressed by the
chondrocytes [10], subchondral bone cells [11], synovio-
cytes [12], ligament fibroblasts [13] and myoblasts [14] in
humans and other species. However, ERα is predominant in
cortical bone and ERβ predominates in cartilage, cancellous
bone and synovium [10,12,68]. More mRNA transcripts for

both subtypes of ERs were found in male than in female
human cartilage, but there were no differences between
different joints, or between cartilage from OA patients and
the normal population [10]. In bone, ERα and ERβ are
expressed by OBs and they are differentially expressed
during rat OB maturation [69]. Pre-osteoclasts express ERα,
while osteoclast maturation and bone resorption is asso-
ciated with the loss of ERα expression [70]. ERβ mRNA and
protein are predominantly found in the stroma and lining cells
of normal human synovium, independent of sex or meno-
pausal status of the tissue donor [12]. Fibroblasts from
human ACL, medial cruciate ligament and patellar tendon
express functional ER transcripts. Indeed, 4 to 10% of ACL
cells express ERs in patients with acute ACL injuries,
approximately twice the proportion found in control subjects
[13,71]. In human skeletal muscle, ERα mRNA expression
was 180-fold higher than that of ERβ [72]. Remarkably,
individuals that undergo high endurance training have more
ERα and ERβ mRNA transcripts in skeletal muscles than
moderately active individuals [73].

Characterizing the phenotypes of knockout models has
advanced our understanding of the role of ER in biological
processes. Indeed, ERβ plays a significant role in bone
remodeling in female ER knockout mice, whereas ERα does
so in both sexes. Thus, male and female ERα–/– mice show
decreased bone turnover and greater cancellous bone
volume, even though the cortical thickness and BMD was
reduced. Female ERβ–/– mice have slightly increased
trabecular bone volume, while male animals do not show any
change in their bones. Male and female double ER–/– mice
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Figure 4

Structural composition of estrogen receptor (ER)α and ERβ. Both receptors have four functional domains that harbor a DNA-binding domain
(DBD), a ligand-binding domain (LBD) and two transcriptional activation functions (AF-1 and AF-2), as indicated for ERβ. The percent of homology
in these domains between ERα and ERβ is indicated, as well as the location of several phosphorylation sites in ERα whereby this receptor is
activated by important kinases that modulate a wide variety of cellular events. aa, amino acids; Akt, serine/threonine specific-protein kinase family
encoded by the Akt genes; CDK2,cyclin-dependent kinase 2; MAPK, mitogen activated protein kinase; PKA, protein kinase A; Src: steroid receptor
coactivator.



showed significant defects in cortical bone and BMD, while
female mice alone displayed a profound decrease in
trabecular bone volume [74]. A recent study has shown that
ERα–/–β–/– double knockout increased osteophytosis and
thinning of the lateral subchondral plate, both osteoarthritic
characteristics, in the knee of transgenic mice [75]. These
results confirm the relevant changes described in sub-
chondral bone of OVX animal models [27-29]. However, no
difference in cartilage damage was observed between the
ERα–/–, ERβ–/– and ERα–/–β–/– double knockout and wild-
type mice at 6 months of age, although the cartilage damage
was very mild in all mice [75]. Whether the absence of
significant cartilage damage in all ER knockout mice groups
reflects some important differences between ER knockout
mice, which lack ER expression since birth, and OVX models
that show significant OA cartilage changes associated with
estrogen depletion at a later age [7,24-26] remains to be
established.

As regards muscle, ERα–/– mice have lower tetanic tension
per calculated anatomical cross-sectional and fiber areas in
tibialis anterior and gastrocnemius than in wild-type mice. In
contrast, ERβ–/– and wild-type mice were comparable in all
measures. These results suggest that the effects of estrogen
on skeletal muscle are mainly mediated by ERα [76]. With
respect to ligaments, no changes in medial cruciate ligament
or ACL viscoelastic or tensile mechanical properties were
observed in ERβ–/– mice [77].

Non-estrogen response element-mediated genomic ER
signaling
The second genomic mechanism involves the interaction of
ligand-bound ERs with other transcription factors like Fos/Jun
(AP-1-responsive elements), c-Jun/NF-κB and specificity
protein 1 (Sp1) recruiting co-regulators to form initiation com-
plexes that regulate the transcription of genes whose
promoters do not harbor EREs [64,78]. In this tethering
mechanism, ERs do not bind directly to DNA (Figure 3,
mechanism 2) and, thus, ERs can up-regulate the expression
of promoters containing AP-1 sites, such as the collagenase
and IGF-1 genes. Interestingly, E2 exerts distinct transcrip-
tional activation on the AP-1 site of the collagenase promoter
depending on whether ERα or ERβ is involved: it elicits
transcriptional activation with ERα, while it represses
transcription with ERβ [65,78]. The interaction of ERs with
Sp1 activates uteroglobin, retinoic acid receptor alpha, IGF-
binding protein 4 (IGFBP4), TGF-α, bcl2 and the low-density
lipoprotein receptor genes [61,78]. Similarly, suppression of
IL-6 expression by E2 occurs through interactions of the
ligand bound ER with the NF-κB complex [64].

Ligand-dependent activation of ERs, both ERE and non-ERE-
mediated, attracts co-regulator molecules that modify the
chromatin state, thereby recruiting or hindering the trans-
criptional complex and representing another level of control in
ER gene regulation [61,63,79]. Co-activators stimulate

transcription by interacting with helix 12 (H12) of the AF-2
region through their short ‘nuclear receptor boxes’, trans-
ducing ligand signals to the basal transcriptional machinery.
The best characterized co-activators include the steroid
receptor co-activator (SRC) family (SRC1, SRC2 and SRC3)
and members of the mammalian mediator complex (thyroid
receptor associated proteins, vitamin-D receptor interacting
proteins, activator-recruited cofactor) [63,79]. Alternatively,
co-repressors that impede transcription include the nuclear
receptor co-repressor (NCoR) and the silencing mediator for
the retinoic acid and thyroid hormone receptor (SMRT),
which interact with ligand-free ER through an elongated
amino acid sequence called the CoRNR-box. By contrast, if
H12 assumes a ‘charge clamp’ configuration in response to
agonist binding, then it could not hold the long NCoR/SMRT
helices. Thus, agonist binding reduces the affinity of ERs for
co-repressors and increases their affinity for co-activators
[63,79]. In addition, both SMRT and NCoR recruit the protein
SIN3 and histone deacetylases to form a large co-repressor
complex, implicating histone deacetylation in transcriptional
repression [79].

In rabbit articular chondrocytes, ERα activation inhibits
NF-κB p65 activity and, subsequently, decreases IL-1β-
stimulated inducible nitric oxide synthase expression and
nitric oxide production [80]. Moreover, ERα and, particularly,
ERβ transfection significantly enhances MMP-13 promoter
activity through an AP-1 site, which may be modulated
through the sites of the Runt-related (Runx) and PEA-3 Ets
transcription factors in a rabbit synovial cell line lacking
endogenous ER [81]. A normal balance between classic
ERE-mediated and non-ERE-mediated ERα, genomic and
non-genomic, pathways in cortical bone have also been
described in ERα-/NERKI mice and its disruption can lead to an
aberrant response to estrogen [82].

Non-genomic ER signaling pathways
Estrogens may also exert their ligand-dependent effects
through non-genomic mechanisms that are responsible for
more rapid effects, occurring within seconds or minutes of
stimulating cell signal transduction pathways, such as the
mitogen activated protein (MAP) kinases, in particular the
extracellular signal regulated kinase 1/2 (ERK 1/2), p38 and
phosphatidylinositol-3 (PI3) kinase/Akt pathways [64]. A
small ER population and/or a G-protein-coupled receptor
termed GP30, localized at or close to the cell membrane, may
elicit these responses [83,84]. ER translocation to the cell
membrane is nourished by its interaction with membrane
proteins such as caveolin 1/2, striatin and the adaptor
proteins Shc and p130 Cas [64]. S-palmitoylation and
myristoylation of ERα also promote ERα association with the
plasma membrane and its interaction with caveolin-1 [64].
Furthermore, interaction between ER, the tyrosine kinase
cSrc and an adaptor protein called modulator of nongenomic
action of estrogen receptors (MNAR) generates a signaling
complex that may be crucial for the important cSrc activation
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and further kinase phosphorylation [85]. Thus, several
molecular processes have been shown to mediate the non-
genomic effects of ER (Figure 3, pathway 3). However, the
precise mechanisms involved in ER localization in the cell
membrane, as well as the interaction between ERs and
signaling pathways, are yet to be fully established.

There appears to be sexual dimorphism in the non-genomic
pathways described in human articular and rat growth plate
chondrocytes. Thus, only female cells respond to estrogens
by promoting a rapid protein kinase C (PKC)-α-mediated
increase in proteoglycan production and alkaline phospha-
tase activity (PKC increase occurred within 9 minutes and
was maximal at 90 minutes). Treatment with the PKC inhibitor
chelerythrine blocked these effects [86,87]. PKC activation
initiated a signaling cascade involving the ERK1/2 and p38
MAP kinase pathways, which in turn mediate the downstream
biological effects of estrogen on alkaline phosphatase activity
and [(35)S]-sulfate incorporation in rat growth plate
chondrocytes. A membrane receptor has been proposed to
elicit this response, although its precise nature remains to be
established [88].

Estrogen also regulates intracellular calcium concentrations
([Ca2+]i) in a sex-specific and cell maturation state-dependent
manner in rat growth plate chondrocytes. Indeed, E2 more
rapidly increased [Ca2+]i in resting zone chondrocytes than in
growth-zone chondrocytes from female rats, while no effect
was observed in chondrocytes from male rats. This effect is
mediated by membrane-associated events, phospholipase C-
dependent inositol triphosphate-3 production and Ca2+

release from the endoplasmic reticulum [89]. In the light of
the higher prevalence of OA in postmenopausal females, it
has been proposed that these intrinsic sex-specific differ-
ences may contribute to OA development [86]. In addition,
inclusion of the gender variable when interpreting experi-
mental data and the functional adaptation of donor cells in
transplants between organisms of different sexes should be
considered [86].

Both ERK phosphorylation kinetics and the duration of
phospho-ERK nuclear retention determine the pro- or anti-
apoptotic effects of estrogen in bone cells. In fact, E2-
induced transient ERK phosphorylation (lasting 30 minutes)
leads to anti-apoptotic effects in OBs and osteocytes,
whereas it produces pro-apoptotic signals in osteoclasts
through sustained ERK phosphorylation (for at least 24 hours)
[90]. Also, the ERK 1/2 and PI3K/Akt/Bad pathways mediate
the anti-apoptotic effect of estrogens in C2C12 muscle cells
following activation of ERα and ERβ located in diverse
cellular compartments such as the mitochondria and
perinucleus [91]. Divergent ER-induced gene expression has
been found depending on whether the genomic or non-
genomic signaling pathways are activated in different cell
types. In osteoblastic OB-6 cells, E2 stimulated complement
3 (C3) and IGF-1 expression after 24 hours, which did not

occur following estren administration. This discrepancy is
explained by the ERE present in the promoter of the C3 gene
and by ER regulating IGF-1 through a protein-protein
interaction that influences the AP-1 enhancer. Since estren is
a non-genotropic ER activator, it did not activate these ERE-
or AP-1-containing genes [92].

Ligand-independent signaling pathways
The stimulation of growth factors such as those of the IGF-1,
epidermal growth factor, TGF-β/SMAD and Wnt/β-catenin
signaling pathways can activate ERs or associated co-
regulators via kinase phosphorylation in the absence of ER
ligands [64,93-95]. In turn, ERα may also regulate growth
factor signaling [64,93-95]. Crosstalk between growth factors
and ERs occurs in both the nuclear and cytoplasmic
compartments, promoting highly active interactions [64,93-95]
(Figure 3, pathway 4).

In OBs, estrogen and TGF-β/SMAD signaling pathways may
interact at several levels: activation of the TGF-β pathway by
estrogens via TGF-β mRNA induction; increase of estrogen
and TGF-β/SMAD signaling due to cytoplasmic MAP kinase
activity; direct interaction between ERs and the SMAD proteins
in the cytoplasm or nucleus; and interaction between ERs and
the TGF-β-inducible early-response gene (TIEG) and Runx-2
transcription factors in the nucleus. Both TIEG and Runx-2
expression are induced by E2 and TGF-β and, furthermore,
TIEG appears to be required for the E2 and TGF-β-induced
regulation of Runx2 expression [95]. Thus, a relevant inhibition
of osteoclastic bone resorption by osteocytes occurs as a
result of TGF-β enhancement by estrogen [96].

ERs can interact with members of the Wnt/β-catenin
signaling system in both the presence and absence of the
ligand [97]. Bone response to mechanical forces can be
influenced by interactions between the β-catenin and T-cell
factor nuclear complex, and ERα in OBs. Indeed, ER
modulators suppressed the accumulation of active β-catenin
in the nucleus of OBs in vitro within 3 hours following a
single period of dynamic strain of magnitude similar to the
estimated strain that OBs regularly experience in vivo.
Accordingly, microarray analysis performed with RNA
extracted from the tibia of ERα–/– mice demonstrated the
abrogation of dynamic axial loading-induced expression of
Wnt-responsive genes (compared with RNA from the tibia of
wild-type mice) [98]. These results suggest that ERα is
required for early Wnt/β-catenin-induced bone cell responses
to mechanical strain. Indeed, the reduced effectiveness of the
bone cell responses to mechanical load associated with
estrogen deficiency may alter the bone mass in postmeno-
pausal OP women.

In cynomolgus monkey joint cartilage, IGFBP2-mediated
activation of the IGF system induces IGF-1 production, which
in turn leads to increased sulfate incorporation into proteo-
glycans following estrogen administration [99]. In addition,
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ERs might interact with the TGF-β and Wnt/β-catenin
signaling cascades in articular chondrocytes. Both the
Wnt/β-catenin and TGF-β/SMAD signaling pathways play a
prominent role in bone and cartilage biology. The TGF-β/
SMAD pathway fulfils a beneficial role in bone and cartilage
maintenance/repair, although it is also an important protago-
nist of osteophyte formation [95,100]. In turn, the Wnt/β-
catenin system is essential in many biological aspects of
bone, from differentiation, proliferation and cellular apoptosis
to bone mass regulation and its ability to respond to mecha-
nical load [101]. Activation of the Wnt/β-catenin pathway has
also been implicated in OA cartilage damage, and Wnt
inhibitors such as the secreted frizzled related protein 3 and
Dickkopf-1 might modulate the susceptibility to, and the
progress of, hip OA [102].

Although our understanding of the different molecular
mechanisms by which estrogen deficits could act on articular
tissues and their contribution to OA development has
advanced significantly in recent years, it is still limited and
more research will be necessary to identify therapeutic
targets for this very prevalent disease.

The effects of estrogen replacement therapy
and selective estrogen receptor modulators
on articular tissues
ERT has displayed mixed effects on joint tissues in various
animal and human studies while SERMS conversely have
demonstrated a homogeneous response in these tissues (a
general description of the effects of SERMs on different
tissues is presented in Table 1).

In vivo studies
Estrogen administration in OVX animals has paradoxical
effects on joint cartilage, in contrast to the clear benefits of
SERM administration [24]. While intra-articular E2 injections
[103] and high supraphysiological estrogen concentrations
[104] caused deleterious effects on joint cartilage in a dose-
and time-dependent fashion, the beneficial effects of long-
term estrogen treatment have been seen in different models
[24,25,99]. Early estrogen administration maximizes its positive
effects on cartilage [16] and, in turn, tamoxifen decreases
cartilage damage in a rabbit model of OA, even in males
[105]. Furthermore, tamoxifen antagonized the chondro-
destructive effects of high dose intra-articular E2 during early
knee OA in rabbits [106]. Also, NNC 45-0781 and levor-
meloxifen both inhibited the OVX-induced acceleration of
cartilage and bone turnover, and they significantly
suppressed cartilage damage in female Sprague-Dawley rats
[24,107].

In subchondral bone, the effects of long-term ERT have only
recently begun to be studied. ERT limits bone formation in
both subchondral bone and epiphyseal/metaphyseal
cancellous bone of the proximal tibia in OVX cynomolgus
monkeys [27]. ERT also reduces the prevalence of marginal

osteophytes, particularly in the lateral tibial plateau, while the
presence of axial osteophytes is not affected. However,
neither the cross-sectional area in osteophytes nor its static
and dynamic histomorphometric parameters are significantly
influenced by ERT [28,108]. In addition, a significant effect of
ERT has been described on several components of the IGF
system in the synovial fluid of OVX female adult cynomolgus
monkeys, suggesting a potential stimulatory effect of
estrogen on joint tissues in vivo [109]. In turn, estrogen
administration reversed OVX-induced contractile muscle and
myosin dysfunction, as well as the OVX-induced increase of
muscle wet mass in mature female mice caused by fluid
accumulation [110].

Clinical studies
The effect of ERT on the risk of developing OA and on its
progression in postmenopausal women remains unclear.
Unlike observational clinical studies, some radiographic
studies have suggested a protective effect of ERT on the
radiographic detection of OA or its progression [111-115]. In
a cross-sectional study, ERT significantly reduced the risk of
radiographic hip OA, particularly in long-term users [111].
Similarly, an initial cross-sectional analysis of two of the
largest studies found an inverse association between ERT
use and radiological knee OA, suggesting that ERT may have
a chondroprotective effect. However, a subsequent follow-up
analysis failed to show significant ERT protection against
either the development or progression of radiographic knee
OA [112-115]. Additionally, contradictory results were
described regarding the association between ERT and the
requirement for arthroplasty [116]. Nevertheless, in the
largest study, females that received estrogen alone had
significantly fewer arthroplasties, particularly in the hip. Thus,
unopposed estrogen administration might have a protective
effect against the risk of joint replacement, an effect that may
be particularly relevant in hip compared to knee OA [117].

Magnetic resonance imaging-estimated subchondral bone
attrition and bone-marrow abnormalities associated with
cartilage degradation in knee OA was delayed or prevented
by ERT or alendronate in postmenopausal women [118]. In
turn, ERT may preserve muscle performance. A 12-month trial
showed that ERT protects against the detrimental effects of
estrogen deficiency on skeletal muscle in early postmeno-
pausal women, thereby positively influencing muscle
performance and structure. Moreover, high-impact physical
training provided additional benefits [119].

Development of novel estrogen ligands
Recently, novel ER ligands, both pathway-selective and ERβ-
selective, have been developed due to the potent anti-
inflammatory activity they have been attributed [120,121]
(Table 1). Indeed, the pathway-selective ER ligands WAY-
169916 and WAY-204688 inhibit NF-κB transcriptional
activity in the absence of conventional estrogenic activity in
different animal models of inflammatory diseases [122,123].
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The suppressive effects of estrogen on inflammatory
mediators, including NF-κB, inducible nitric oxide synthase,
cyclooxygenase-2, and reactive oxygen species in articular
chondrocytes [17,18,80], in association with other selective
estrogenic benefits on joint tissues might reflect their
potential utility in OA treatment.

Conclusion
Progressive structural and functional changes on articular
structures commence at early menopause and persist post-
menopause, leading to an increase in the prevalence of OA in
the latter population and representing a big impact on health
costs worldwide. Both experimental and observational
evidence support a relevant role for estrogens in the homeo-
stasis of joint tissues and, hence, in the health status of joints.
Indeed, estrogens influence their metabolism at many crucial
levels and through several complex molecular mechanisms.
These effects of estrogens at joints are either significantly

dampened or lost as a result of postmenopausal ovary
insufficiency.

A better understanding of the role that estrogen and its
deficiency plays in the molecular mechanisms of menopause-
induced osteoarthritic changes that affect the different joint
structures will help further development of new and precise
therapeutic strategies to prevent and/or restore damaged
articular tissues in OA. These improved therapeutic
approaches must be devoid of the widely known undesirable
effects of estrogens in other target tissues. Thus, in OA,
which represents a particularly challenging disease due to its
effects upon different joint structures, these therapeutic
options should target the joint as a whole organ rather than
focusing only on cartilage damage.
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Table 1

Partial list of selective estrogen receptor modulators and selective estrogen receptor ligands in clinical development

Pharmacologic group Compound name ER action (main target tissues) Indications and stage of development

Chloroethylene Clomiphene ER antagonist (brain) Ovulation induction*

Triphenylethylenes Tamoxifen ER antagonist (breast) Breast cancer therapy and prevention*
ER agonist (bone, uterus and serum cholesterol) Beneficial effects on BMD

Beneficial cartilage effect. Animal models
Toremifene Similar to tamoxifen Breast cancer therapy and prevention*
Ospemifene Similar to tamoxifen Vaginal atrophy. Phase III

Benzothiophenes Raloxifene ER antagonist (breast) OP therapy and prevention*
ER agonist (bone and serum cholesterol) Breast cancer therapy and prevention*

Arzoxifene ER antagonist (breast and uterus) OP therapy and prevention. Phase III
ER agonist (bone and serum cholesterol) Breast and uterine cancer therapy. Phase II

Naphthalenes Lasofoxifene ER agonist (bone and serum cholesterol) OP treatment. Phase III
High bioavailability Vaginal atrophy. Phase III

Indoles Pipendoxifene ER antagonist (breast) Breast cancer therapy. Phase II
Bazedoxifene ER agonist (bone and blood lipids) OP treatment and prevention. Phase III

Hydroxy-chromanes NNC 45-0781 Tissue-selective partial ER agonists Postmenopausal OP prevention. Preclinical
Beneficial cartilage effect. Animal models

NNC 45-0320
NNC 45-1506

Steroidals HMR-3339 ER agonist (bone and serum cholesterol) Decrease serum cholesterol. Phase II
Postmenopausal OP treatment. Preclinical

Fulvestrant Steroid ER antagonist (breast) Refractory breast cancer

Selective ER ligands Pinaberel (ERB-041) ERβ-selective agonist Chronic arthritis/endometriosis. Phase II
WAY-169916 NF-κB activity inhibition. No classical ER action Anti-inflammatory. Preclinical studies
WAY-204688 Similar to WAY-169916

*Products currently on the market. Levormeloxifen, a discontinued selective estrogen receptor modulator, also showed beneficial effects on
cartilage in an animal model. BMD, bone mineral density; ER, estrogen receptor; OP, osteoporosis.
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